1
|
Hoy RS. Generating Ultradense Jammed Ellipse Packings Using Biased SWAP. J Phys Chem B 2025; 129:763-770. [PMID: 39739335 DOI: 10.1021/acs.jpcb.4c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Using a Lubachevsky-Stillinger-like growth algorithm combined with biased SWAP Monte Carlo and transient degrees of freedom, we generate ultradense disordered jammed ellipse packings. For all aspect ratios α, these packings exhibit significantly smaller intermediate-wavelength density fluctuations and greater local nematic order than their less-dense counterparts. The densest packings are disordered despite having packing fractions ϕJ(α) that are within less than 0.5% of that of the monodisperse-ellipse crystal [ϕxtal = π/(2√3) ≃ 0.9069] over the range 1.2 ≲ α ≲ 1.45 and coordination numbers ZJ(α) that are within less than 0.5% of isostaticity [Ziso = 6] over the range 1.2 ≲ α ≲ 2.6. Lower-α packings are strongly fractionated and consist of polycrystals of intermediate-size particles, with the largest and smallest particles isolated at the grain boundaries. Higher-α packings are also fractionated, but in a qualitatively different fashion; they are composed─of increasingly large locally nematic domains─reminiscent of liquid glasses.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
2
|
Sun Y, Wang C, Yang J, Shi W, Pang Q, Wang Y, Li J, Hu B, Xia C. Evident structural anisotropies arising from near-zero particle asphericity in granular spherocylinder packings. Phys Rev E 2024; 110:014903. [PMID: 39161035 DOI: 10.1103/physreve.110.014903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024]
Abstract
With magnetic resonance imaging experiments, we study packings of granular spherocylinders with merely 2% asphericity. Evident structural anisotropies across all length scales are identified. Most interestingly, the global nematic order decreases with increasing packing fraction, while the local contact anisotropy shows an opposing trend. We attribute this counterintuitive phenomenon to a competition between gravity-driven ordering aided by frictional contacts and a geometric frustration effect at the marginally jammed state. It is also surprising to notice that such slight particle asphericity can trigger non-negligible correlations between contact-level and mesoscale structures, manifested in drastically different nonaffine structural rearrangements upon compaction from that of granular spheres. These observations can help improve statistical mechanical models for the orientational order transformation of nonspherical granular particle packings, which involves complex interplays between particle shape, frictional contacts, and external force field.
Collapse
Affiliation(s)
| | | | | | | | | | - Yujie Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
- Department of Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | | | | | | |
Collapse
|
3
|
Maher CE, Jiao Y, Torquato S. Hyperuniformity of maximally random jammed packings of hyperspheres across spatial dimensions. Phys Rev E 2023; 108:064602. [PMID: 38243527 DOI: 10.1103/physreve.108.064602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
The maximally random jammed (MRJ) state is the most random (i.e., disordered) configuration of strictly jammed (mechanically rigid) nonoverlapping objects. MRJ packings are hyperuniform, meaning their long-wavelength density fluctuations are anomalously suppressed compared to typical disordered systems, i.e., their structure factors S(k) tend to zero as the wave number |k| tends to zero. Here we show that generating high-quality strictly jammed states for Euclidean space dimensions d=3,4, and 5 is of paramount importance in ensuring hyperuniformity and extracting precise values of the hyperuniformity exponent α>0 for MRJ states, defined by the power-law behavior of S(k)∼|k|^{α} in the limit |k|→0. Moreover, we show that for fixed d it is more difficult to ensure jamming as the particle number N increases, which results in packings that are nonhyperuniform. Free-volume theory arguments suggest that the ideal MRJ state does not contain rattlers, which act as defects in numerically generated packings. As d increases, we find that the fraction of rattlers decreases substantially. Our analysis of the largest truly jammed packings suggests that the ideal MRJ packings for all dimensions d≥3 are hyperuniform with α=d-2, implying the packings become more hyperuniform as d increases. The differences in α between MRJ packings and the recently proposed Manna-class random close packed (RCP) states, which were reported to have α=0.25 in d=3 and be nonhyperuniform (α=0) for d=4 and d=5, demonstrate the vivid distinctions between the large-scale structure of RCP and MRJ states in these dimensions. Our paper clarifies the importance of the link between true jamming and hyperuniformity and motivates the development of an algorithm to produce rattler-free three-dimensional MRJ packings.
Collapse
Affiliation(s)
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544, USA
- Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Huang Z, Deng W, Zhang S, Li S. Optimal shapes of disk assembly in saturated random packings. SOFT MATTER 2023; 19:3325-3336. [PMID: 37096323 DOI: 10.1039/d3sm00166k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Particle morphology is one of the most significant factors influencing the packing structures of granular materials. With certain targeted properties or optimization criteria, inverse packing problems have drawn extensive attention in terms of their adaptability to many material design tasks. An important question hard to answer is which particle shape, especially within given shape families, forms the densest (loosest) random packing? In this paper, we address this issue for the disk assembly model in two dimensions with an infinite variety of shapes, which are simulated in the random sequential adsorption process to suppress crystallization. Via a unique shape representation method, particle shapes are transformed into genotype sequences in the continuous shape space where we utilize the genetic algorithm as an efficient shape optimizer. Specifically, we consider three representative species of disk assembly, i.e., congruent tangent disks, incongruent tangent disks, and congruent overlapping disks, and carry out shape optimization on their packing densities in the saturated random state. We numerically search optimal shapes in the three species with a variable number of constituent disks which yield the maximal and minimal packing densities. We obtain an isosceles circulo-triangle and an unclosed ring for the maximal and minimal packing density in saturated random packings, respectively. The perfect sno-cone and isosceles circulo-triangle are also specifically investigated which give remarkably high packing densities of around 0.6, much denser than those of ellipses. This study is beneficial for guiding the design of particle shapes as well as the inverse design of granular materials.
Collapse
Affiliation(s)
- Zhaohui Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Wei Deng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Shixuan Zhang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Shuixiang Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Conzelmann N, Partl M, Clemens F, Müller C, Poulikakos L. Effect of artificial aggregate shapes on the porosity, tortuosity and permeability of their packings. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.11.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Ikeda H. Testing mean-field theory for jamming of non-spherical particles: contact number, gap distribution, and vibrational density of states. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:120. [PMID: 34580779 DOI: 10.1140/epje/s10189-021-00116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We perform numerical simulations of the jamming transition of non-spherical particles in two dimensions. In particular, we systematically investigate how the physical quantities at the jamming transition point behave when the shapes of the particle deviate slightly from the perfect disks. For efficient numerical simulation, we first derive an analytical expression of the gap function, using the perturbation theory around the reference disks. Starting from disks, we observe the effects of the deformation of the shapes of particles by the n-th-order term of the Fourier series [Formula: see text]. We show that the several physical quantities, such as the number of contacts, gap distribution, and characteristic frequencies of the vibrational density of states, show the power-law behaviors with respect to the linear deviation from the reference disks. The power-law behaviors do not depend on n and are fully consistent with the mean-field theory of the jamming of non-spherical particles. This result suggests that the mean-field theory holds very generally for nearly spherical particles.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
| |
Collapse
|
7
|
Optimal Random Packing of Spheres and Extremal Effective Conductivity. Symmetry (Basel) 2021. [DOI: 10.3390/sym13061063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A close relation between the optimal packing of spheres in Rd and minimal energy E (effective conductivity) of composites with ideally conducting spherical inclusions is established. The location of inclusions of the optimal-design problem yields the optimal packing of inclusions. The geometrical-packing and physical-conductivity problems are stated in a periodic toroidal d-dimensional space with an arbitrarily fixed number n of nonoverlapping spheres per periodicity cell. Energy E depends on Voronoi tessellation (Delaunay graph) associated with the centers of spheres ak (k=1,2,…,n). All Delaunay graphs are divided into classes of isomorphic periodic graphs. For any fixed n, the number of such classes is finite. Energy E is estimated in the framework of structural approximations and reduced to the study of an elementary function of n variables. The minimum of E over locations of spheres is attained at the optimal packing within a fixed class of graphs. The optimal-packing location is unique within a fixed class up to translations and can be found from linear algebraic equations. Such an approach is useful for random optimal packing where an initial location of balls is randomly chosen; hence, a class of graphs is fixed and can dynamically change following prescribed packing rules. A finite algorithm for any fixed n is constructed to determine the optimal random packing of spheres in Rd.
Collapse
|
8
|
Fan T, Liu M, Ma H, Liu B, Shao Y, Zhao Y. Investigation of the vibrating feeding system for sphericity separation of coated fuel particles using DEM. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.01.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Kalinin SV, Zhang S, Valleti M, Pyles H, Baker D, De Yoreo JJ, Ziatdinov M. Disentangling Rotational Dynamics and Ordering Transitions in a System of Self-Organizing Protein Nanorods via Rotationally Invariant Latent Representations. ACS NANO 2021; 15:6471-6480. [PMID: 33861068 DOI: 10.1021/acsnano.0c08914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dynamics of complex ordering systems with active rotational degrees of freedom exemplified by protein self-assembly is explored using a machine learning workflow that combines deep learning-based semantic segmentation and rotationally invariant variational autoencoder-based analysis of orientation and shape evolution. The latter allows for disentanglement of the particle orientation from other degrees of freedom and compensates for lateral shifts. The disentangled representations in the latent space encode the rich spectrum of local transitions that can now be visualized and explored via continuous variables. The time dependence of ensemble averages allows insight into the time dynamics of the system and, in particular, illustrates the presence of the potential ordering transition. Finally, analysis of the latent variables along the single-particle trajectory allows tracing these parameters on a single-particle level. The proposed approach is expected to be universally applicable for the description of the imaging data in optical, scanning probe, and electron microscopy seeking to understand the dynamics of complex systems where rotations are a significant part of the process.
Collapse
Affiliation(s)
- Sergei V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shuai Zhang
- Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mani Valleti
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
- Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Maxim Ziatdinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
10
|
Affiliation(s)
- Jennie Seckendorff
- Department of Chemistry Technical University of Munich Garching Germany
- Catalysis Research Center Technical University of Munich Garching Germany
- BU Catalysts Clariant Produkte (Deutschland) GmbH Bruckmühl Germany
| | - Olaf Hinrichsen
- Department of Chemistry Technical University of Munich Garching Germany
- Catalysis Research Center Technical University of Munich Garching Germany
| |
Collapse
|
11
|
Maher CE, Stillinger FH, Torquato S. Kinetic Frustration Effects on Dense Two-Dimensional Packings of Convex Particles and Their Structural Characteristics. J Phys Chem B 2021; 125:2450-2464. [PMID: 33650864 DOI: 10.1021/acs.jpcb.1c00497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of hard-particle packings is of fundamental importance in physics, chemistry, cell biology, and discrete geometry. Much of the previous work on hard-particle packings concerns their densest possible arrangements. By contrast, we examine kinetic effects inevitably present in both numerical and experimental packing protocols. Specifically, we determine how changing the compression/shear rate of a two-dimensional packing of noncircular particles causes it to deviate from its densest possible configuration, which is always periodic. The adaptive shrinking cell (ASC) optimization scheme maximizes the packing fraction of a hard-particle packing by first applying random translations and rotations to the particles and then isotropically compressing and shearing the simulation box repeatedly until a possibly jammed state is reached. We use a stochastic implementation of the ASC optimization scheme to mimic different effective time scales by varying the number of particle moves between compressions/shears. We generate dense, effectively jammed, monodisperse, two-dimensional packings of obtuse scalene triangle, rhombus, curved triangle, lens, and "ice cream cone" (a semicircle grafted onto an isosceles triangle) shaped particles, with a wide range of packing fractions and degrees of order. To quantify these kinetic effects, we introduce the kinetic frustration index K, which measures the deviation of a packing from its maximum possible packing fraction. To investigate how kinetics affect short- and long-range ordering in these packings, we compute their spectral densities χ̃V(k) and characterize their contact networks. We find that kinetic effects are most significant when the particles have greater asphericity, less curvature, and less rotational symmetry. This work may be relevant to the design of laboratory packing protocols.
Collapse
Affiliation(s)
- Charles Emmett Maher
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Physics, Princeton University, Princeton, New Jersey 08544, United States.,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States.,Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Binaree T, Azéma E, Estrada N, Renouf M, Preechawuttipong I. Shape or friction? Which of these characteristics drives the shear strength in granular systems? EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124906008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The shape of the particles and local friction, separately, are known to strongly affect the macroscopic properties of an assembly of grains. But the combined effects of these two parameters still remain poorly described. By means of extensive two dimensional contact dynamics simulations, we perform a systematic analysis of the interplay between friction and shape on strength properties of granular systems. The shape of the particles is varied from disks to triangles, while the friction is varied from 0 to 0.7. We find that the macroscopic friction first increases with angularity, but it may decline (for low friction values), saturate (for intermediates friction values), or continue to increase (for large friction values) for the most angular shapes. In other words, the effect of the particle’s angularity on the shear strength depends on the level of sliding friction. In contrast, the effect of local friction on the shear strength does not depend on the specific properties of shape. The results presented here highlight the subtle coupling existing between shape and friction effects.
Collapse
|
13
|
Li M, Chen H, Lin J, Lura P, Zhu Z. The bias of the interface thickness and diffusivity of concrete comprising Platonic aggregates induced by areal analysis. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Liu L, Li S. Uniform shape elongation effects on the random packings of uniaxially variable superellipsoids. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Dietz JD, Hoy RS. Two-stage athermal solidification of semiflexible polymers and fibers. SOFT MATTER 2020; 16:6206-6217. [PMID: 32568348 DOI: 10.1039/d0sm00754d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study how solidification of model freely rotating polymers under athermal quasistatic compression varies with their bond angle θ0. All systems undergo two discrete, first-order-like transitions: entanglement at φ = φE(θ0) followed by jamming at φ = φJ(θ0) ≃ (4/3 ± 1/12)φE(θ0). For φ < φE(θ0), systems are in a "gas" phase wherein all chains remain free to translate and reorient. For φE(θ0) ≤ φ ≤ φJ(θ0), systems are in a liquid-like phase wherein chains are entangled. In this phase, chains' rigid-body-like motion is blocked, yet they can still locally relax via dihedral rotations, and hence energy and pressure remain extremely small. The ability of dihedral relaxation mechanisms to accommodate further compression becomes exhausted, and systems rigidify, at φJ(θ0). At and slightly above φJ, the bulk moduli increase linearly with the pressure P rather than jumping discontinuously, indicating these systems solidify via rigidity percolation. The character of the energy and pressure increases above φJ(θ0) can be characterized via chains' effective aspect ratio αeff. Large-αeff (small-θ0) systems' jamming is bending-dominated and is similar to that observed in systems composed of straight fibers. Small-αeff (large-θ0) systems' jamming is dominated by the degree to which individual chains' dihedrals can collapse into compact, tetrahedron-like structures. For intermediate θ0, chains remain in highly disordered globule-like configurations throughout the compression process; jamming occurs when entangled globules can no longer even locally relax away from one another.
Collapse
Affiliation(s)
- Joseph D Dietz
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
16
|
Yuan Y, Deng W, Li S. Structural universality in disordered packings with size and shape polydispersity. SOFT MATTER 2020; 16:4528-4539. [PMID: 32356543 DOI: 10.1039/d0sm00110d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We numerically investigate disordered jammed packings with both size and shape polydispersity, using frictionless superellipsoidal particles. We implement the set Voronoi tessellation technique to evaluate the local specific volume, i.e., the ratio of cell volume over particle volume, for each individual particle. We focus on the average structural properties for different types of particles binned by their sizes and shapes. We generalize the basic observation that the larger particles are locally packed more densely than the smaller ones in a polydisperse-sized packing into systems with coupled particle shape dispersity. For this purpose, we define the normalized free volume vf to measure the local compactness of a particle and study its dependency on the normalized particle size A. The definition of vf relies on the calibrated monodisperse specific volume for a certain particle shape. For packings with shape dispersity, we apply the previously introduced concept of equivalent diameter for a non-spherical particle to define A properly. We consider three systems: (A) linear superposition states of mixed-shape packings, (B) merely polydisperse-sized packings, and (C) packings with coupled size and shape polydispersity. For (A), the packing is simply considered as a mixture of different subsystems corresponding to monodisperse packings for different shape components, leading to A = 1, and vf = 1 by definition. We propose a concise model to estimate the shape-dependent factor αc, which defines the equivalent diameter for a certain particle. For (B), vf collapses as a function of A, independent of specific particle shape and size polydispersity. Such structural universality is further validated by a mean-field approximation. For (C), we find that the master curve vf(A) is preserved when particles possess similar αc in a packing. Otherwise, the dispersity of αc among different particles causes the deviation from vf(A). These findings show that a polydisperse packing can be estimated as the combination of various building blocks, i.e., bin components, with a universal relation vf(A).
Collapse
Affiliation(s)
- Ye Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Wei Deng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Shuixiang Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
|
18
|
|
19
|
Cinacchi G, Torquato S. Hard convex lens-shaped particles: Characterization of dense disordered packings. Phys Rev E 2020; 100:062902. [PMID: 31962401 DOI: 10.1103/physreve.100.062902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Indexed: 11/07/2022]
Abstract
Among the family of hard convex lens-shaped particles (lenses), the one with aspect ratio equal to 2/3 is "optimal" in the sense that the maximally random jammed (MRJ) packings of such lenses achieve the highest packing fraction ϕ_{MRJ}≃0.73 [G. Cinacchi and S. Torquato, Soft Matter 14, 8205 (2018)1744-683X10.1039/C8SM01519H]. This value is only a few percent lower than ϕ_{DKP}=0.76210⋯, the packing fraction of the corresponding densest-known crystalline (degenerate) packings [G. Cinacchi and S. Torquato, J. Chem. Phys. 143, 224506 (2015)JCPSA60021-960610.1063/1.4936938]. By exploiting the appreciably reduced propensity that a system of such optimal lenses has to positionally and orientationally order, disordered packings of them are progressively generated by a Monte Carlo method-based procedure from the dilute equilibrium isotropic fluid phase to the dense nonequilibrium MRJ state. This allows us to closely monitor how the (micro)structure of these packings changes in the process of formation of the MRJ state. The gradual changes undergone by the many structural descriptors calculated here can coherently and consistently be traced back to the gradual increase in contacts between the hard particles until the isostatic mean value of ten contact neighbors per lens is reached at the effectively hyperuniform MRJ state. Compared to the MRJ state of hard spheres, the MRJ state of such optimal lenses is denser (less porous), more disordered, and rattler-free. This set of characteristics makes them good glass formers. It is possible that this conclusion may also hold for other hard convex uniaxial particles with a correspondingly similar aspect ratio, be they oblate or prolate, and that, by using suitable biaxial variants of them, that set of characteristics might further improve.
Collapse
Affiliation(s)
- Giorgio Cinacchi
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Instituto de Ciencias de Materiales "Nicolás Cabrera," Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain
| | - Salvatore Torquato
- Department of Chemistry and Department of Physics, Institute for the Science and Technology of Materials, Program for Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
20
|
Lin J, Chen H, Liu L. Impact of polydispersity of particle shape and size on percolation threshold of 3D particulate media composed of penetrable superellipsoids. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.10.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Tian J, Jiao Y. Predicting maximally random jammed packing density of non-spherical hard particles via analytical continuation of fluid equation of state. Phys Chem Chem Phys 2020; 22:22635-22644. [DOI: 10.1039/d0cp03799k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We developed a formalism for accurately predicting the density of MRJ packing state of a wide spectrum of congruent non-spherical hard particles in 3D via analytical fluid EOS.
Collapse
Affiliation(s)
| | - Yang Jiao
- Materials Science and Engineering
- Arizona State University
- Tempe
- USA
- Department of Physics
| |
Collapse
|
22
|
Yuan Y, VanderWerf K, Shattuck MD, O'Hern CS. Jammed packings of 3D superellipsoids with tunable packing fraction, coordination number, and ordering. SOFT MATTER 2019; 15:9751-9761. [PMID: 31742301 PMCID: PMC6902436 DOI: 10.1039/c9sm01932d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We carry out numerical studies of static packings of frictionless superellipsoidal particles in three spatial dimensions. We consider more than 200 different particle shapes by varying the three shape parameters that define superellipsoids. We characterize the structural and mechanical properties of both disordered and ordered packings using two packing-generation protocols. We perform athermal quasi-static compression simulations starting from either random, dilute configurations (Protocol 1) or thermalized, dense configurations (Protocol 2), which allows us to tune the orientational order of the packings. In general, we find that superellipsoid packings are hypostatic, with coordination number zJ < ziso, where ziso = 2df and df = 5 or 6 depending on whether the particles are axi-symmetric or not. Over the full range of orientational order, we find that the number of quartic modes of the dynamical matrix for the packings always matches the number of missing contacts relative to the isostatic value. This result suggests that there are no mechanically redundant contacts for ordered, yet hypostatic packings of superellipsoidal particles. Additionally, we find that the packing fraction at jamming onset for disordered packings of superellipsoidal depends on at least two particle shape parameters, e.g. the asphericity A and reduced aspect ratio β of the particles.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. and Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Kyle VanderWerf
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA and Department of Physics, Yale University, New Haven, Connecticut 06520, USA and Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA and Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
23
|
Kubala P, Cieśla M, Ziff RM. Random sequential adsorption of particles with tetrahedral symmetry. Phys Rev E 2019; 100:052903. [PMID: 31870013 DOI: 10.1103/physreve.100.052903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Indexed: 06/10/2023]
Abstract
We study random sequential adsorption (RSA) of a class of solids that can be obtained from a cube by specific cutting of its vertices, in order to find out how the transition from tetrahedral to octahedral symmetry affects the densities of the resulting jammed packings. We find that in general solids of octahedral symmetry form less dense packing; however, the lowest density was obtained for the packing built of tetrahedra. The densest packing is formed by a solid close to a tetrahedron but with vertices and edges slightly cut. Its density is θ_{max}=0.41278±0.00059 and is higher than the mean packing fraction of spheres or cuboids but is lower than that for the densest RSA packings built of ellipsoids or spherocylinders. The density autocorrelation function of the studied packings is typical for random media and vanishes very quickly with distance.
Collapse
Affiliation(s)
- Piotr Kubala
- M. Smoluchowski Institute of Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Michał Cieśla
- M. Smoluchowski Institute of Physics, Department of Statistical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Robert M Ziff
- Center for the Study of Complex Systems and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
| |
Collapse
|
24
|
Yousefi P, Malmir H, Sahimi M. Morphology and kinetics of random sequential adsorption of superballs: From hexapods to cubes. Phys Rev E 2019; 100:020602. [PMID: 31574695 DOI: 10.1103/physreve.100.020602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 11/07/2022]
Abstract
Superballs represent a class of particles whose shapes are defined by the domain |x|^{2p}+|y|^{2p}+|z|^{2p}≤R^{2p}, with p∈(0,∞) being the deformation parameter. 0<p<0.5 represents a family of hexapodlike (concave octahedral-like) particles, 0.5≤p<1 and p>1 represent, respectively, families of convex octahedral-like and cubelike particles, with p=1,0.5, and ∞ representing spheres, octahedra, and cubes. Colloidal zeolite suspensions, catalysis, and adsorption, as well as biomedical magnetic nanoparticles are but a few of the applications of packing of superballs. We introduce a universal method for simulating random sequential adsorption of superballs, which we refer to as the low-entropy algorithm, which is about two orders of magnitude faster than the conventional algorithms that represent high-entropy methods. The two algorithms yield, respectively, precise estimates of the jamming fraction ϕ_{∞}(p) and ν(p), the exponent that characterizes the kinetics of adsorption at long times t, ϕ_{∞}(p)-ϕ(p,t)∼t^{-ν(p)}. Precise estimates of ϕ_{∞}(p) and ν(p) are obtained and shown to be in agreement with the existing analytical and numerical results for certain types of superballs.
Collapse
Affiliation(s)
- Pooria Yousefi
- Faculty of Engineering, Science and Research Branch, Azad University, Tehran 14515-775, Iran
| | - Hessam Malmir
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Muhammad Sahimi
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
25
|
Liu L, Yuan Y, Deng W, Li S. Determining random packing density and equivalent packing size of superballs via binary mixtures with spheres. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.03.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
|
27
|
Meijer JM, Meester V, Hagemans F, Lekkerkerker HNW, Philipse AP, Petukhov AV. Convectively Assembled Monolayers of Colloidal Cubes: Evidence of Optimal Packings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4946-4955. [PMID: 30874440 DOI: 10.1021/acs.langmuir.8b04330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We employ a system of cubic colloids with rounded corners to study the close-packed monolayers that form via convective assembly. We show that by controlled solvent evaporation large densely packed monolayers of colloidal cubes are obtained. Using scanning electron microscopy and particle-tracking algorithms, we investigate the local order in detail and show that the obtained monolayers possess their predicted close-packed optimal packings, the Λ0-lattice and the Λ1-lattice, as well as the simple square-lattice and disordered packings. We further show that shape details of the cube corners are important for the final packing symmetry, where the frequency of the Λ1-lattice increases with decreasing roundness of the corners, whereas the frequency of the Λ0-lattice is unaffected. The formation of both optimal packings is found to be a consequence of the out-of-equilibrium formation process, which leads to small shifts in rows of cubes, thereby transforming the Λ1-lattice into the Λ0-lattice.
Collapse
Affiliation(s)
- Janne-Mieke Meijer
- Van 't Hoff Laboratory for Physical and Colloid Chemistry , Debye Institute for Nanomaterials Science, Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
- Department of Physics , University of Konstanz , Universitätstrasse 10 , D-78457 Konstanz , Germany
| | - Vera Meester
- Van 't Hoff Laboratory for Physical and Colloid Chemistry , Debye Institute for Nanomaterials Science, Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Fabian Hagemans
- Van 't Hoff Laboratory for Physical and Colloid Chemistry , Debye Institute for Nanomaterials Science, Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - H N W Lekkerkerker
- Van 't Hoff Laboratory for Physical and Colloid Chemistry , Debye Institute for Nanomaterials Science, Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Albert P Philipse
- Van 't Hoff Laboratory for Physical and Colloid Chemistry , Debye Institute for Nanomaterials Science, Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
| | - Andrei V Petukhov
- Van 't Hoff Laboratory for Physical and Colloid Chemistry , Debye Institute for Nanomaterials Science, Utrecht University , Padualaan 8 , 3584 CH Utrecht , The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB Eindhoven , The Netherlands
| |
Collapse
|
28
|
Brito C, Ikeda H, Urbani P, Wyart M, Zamponi F. Universality of jamming of nonspherical particles. Proc Natl Acad Sci U S A 2018; 115:11736-11741. [PMID: 30381457 PMCID: PMC6243269 DOI: 10.1073/pnas.1812457115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amorphous packings of nonspherical particles such as ellipsoids and spherocylinders are known to be hypostatic: The number of mechanical contacts between particles is smaller than the number of degrees of freedom, thus violating Maxwell's mechanical stability criterion. In this work, we propose a general theory of hypostatic amorphous packings and the associated jamming transition. First, we show that many systems fall into a same universality class. As an example, we explicitly map ellipsoids into a system of "breathing" particles. We show by using a marginal stability argument that in both cases jammed packings are hypostatic and that the critical exponents related to the contact number and the vibrational density of states are the same. Furthermore, we introduce a generalized perceptron model which can be solved analytically by the replica method. The analytical solution predicts critical exponents in the same hypostatic jamming universality class. Our analysis further reveals that the force and gap distributions of hypostatic jamming do not show power-law behavior, in marked contrast to the isostatic jamming of spherical particles. Finally, we confirm our theoretical predictions by numerical simulations.
Collapse
Affiliation(s)
- Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brazil
| | - Harukuni Ikeda
- Laboratoire de Physique Theórique, Département de Physique de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Pierfrancesco Urbani
- Institut de Physique Théorique, Université Paris Saclay, CNRS, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), F-91191 Gif-sur-Yvette, France
| | - Matthieu Wyart
- Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique Theórique, Département de Physique de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
29
|
Xu W, Zhu Z, Zhang D. Continuum percolation-based tortuosity and thermal conductivity of soft superball systems: shape dependence from octahedra via spheres to cubes. SOFT MATTER 2018; 14:8684-8691. [PMID: 30191226 DOI: 10.1039/c8sm01488d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the effect of particle shape on the percolation threshold, tortuosity and thermal conductivity of soft (geometrical overlapping) particle systems is very crucial for the design and optimization of such materials, including colloids, polymers, and porous and fracture media. In this work, we first combine the excluded-volume theory with the Monte Carlo simulations to determine the percolation threshold for a family of soft superballs, the shape of which interpolates between octahedra and cubes via spheres. Then, we propose two continuum percolation-based models to respectively obtain the tortuosity and effective thermal conductivity of soft superball systems considering their percolation behavior, where monodisperse overlapping superballs are uniformly distributed in a homogeneous solid matrix. Specifically, both models cover the whole feasible range of superball volume fractions, including near the percolation threshold. Comparison with extensive experimental, numerical and theoretical results confirms that the present models are capable of precisely predicting the percolation threshold, tortuosity and thermal conductivity of such systems. Furthermore, we apply the proposed models to probe the influence of particle shape on these important parameters. Our results show that the decreasing percolation threshold and tortuosity as soft particles become more anisotropic is consistent with increasing conductivity. It suggests that the anisotropic-shaped inclusion phase is more conducting than the spherical inclusion phase. The present theoretical strategies and conclusions may provide sound guidance for the synthesis of colloidal and polymer superballs.
Collapse
Affiliation(s)
- Wenxiang Xu
- Institute of Materials and Structures Mechanics, College of Mechanics and Materials, Hohai University, Nanjing, 211100, P. R. China.
| | | | | |
Collapse
|
30
|
Cinacchi G, Torquato S. Hard convex lens-shaped particles: metastable, glassy and jammed states. SOFT MATTER 2018; 14:8205-8218. [PMID: 30283973 DOI: 10.1039/c8sm01519h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We generate and study dense positionally and/or orientationally disordered, including jammed, monodisperse packings of hard convex lens-shaped particles (lenses). Relatively dense isotropic fluid configurations of lenses of various aspect ratios are slowly compressed via a Monte Carlo method based procedure. Under this compression protocol, while 'flat' lenses form a nematic fluid phase (where particles are positionally disordered but orientationally ordered) and 'globular' lenses form a plastic solid phase (where particles are positionally ordered but orientationally disordered), 'intermediate', neither 'flat' nor 'globular', lenses do not form either mesophase. In general, a crystal solid phase (where particles are both positionally and orientationally ordered) does not spontaneously form during lengthy numerical simulation runs. In correspondence to those volume fractions at which a transition to the crystal solid phase would occur in equilibrium, a 'downturn' is observed in the inverse compressibility factor versus volume fraction curve beyond which this curve behaves essentially linearly. This allows us to estimate the volume fraction at jamming of the dense non-crystalline packings so generated. These packings are nematic for 'flat' lenses and plastic for 'globular' lenses, while they are robustly isotropic for 'intermediate' lenses, as confirmed by the calculation of the τ order metric, among other quantities. The structure factors S(k) of the corresponding jammed states tend to zero as the wavenumber k goes to zero, indicating they are effectively hyperuniform (i.e., their infinite-wavelength density fluctuations are anomalously suppressed). Among all possible lens shapes, 'intermediate' lenses with aspect ratio around 2/3 are special because they are those that reach the highest volume fractions at jamming while being positionally and orientationally disordered and these volume fractions are as high as those reached by nematic jammed states of 'flat' lenses and plastic jammed states of 'globular' lenses. All of their attributes, taken together, make such 'intermediate' lens packings particularly good glass-forming materials.
Collapse
Affiliation(s)
- Giorgio Cinacchi
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Instituto de Ciencias de Materiales "Nicolás Cabrera", Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, E-28049 Madrid, Spain.
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Institute for the Science and Technology of Materials, Program for Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
31
|
Liu L, Yu Z, Jin W, Yuan Y, Li S. Uniform and decoupled shape effects on the maximally dense random packings of hard superellipsoids. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.06.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Piasecki R, Olchawa W, Fra̧czek D, Wiśniowski R. Statistical Reconstruction of Microstructures Using Entropic Descriptors. Transp Porous Media 2018. [DOI: 10.1007/s11242-018-1012-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Torquato S. Perspective: Basic understanding of condensed phases of matter via packing models. J Chem Phys 2018; 149:020901. [DOI: 10.1063/1.5036657] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- S. Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
34
|
You Y, Zhao Y. Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: A comparative study. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.03.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
|
36
|
Azéma É, Radjaï F, Roux JN. Inertial shear flow of assemblies of frictionless polygons: Rheology and microstructure. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:2. [PMID: 29299695 DOI: 10.1140/epje/i2018-11608-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
Motivated by the understanding of shape effects in granular materials, we numerically investigate the macroscopic and microstructural properties of anisotropic dense assemblies of frictionless polydisperse rigid pentagons in shear flow, and compare them with similar systems of disks. Once subjected to large cumulative shear strains their rheology and microstructure are investigated in uniform steady states, depending on inertial number I, which ranges from the quasistatic limit ([Formula: see text]) to 0.2. In the quasistatic limit both systems are devoid of Reynolds dilatancy, i.e., flow at their random close packing density. Both macroscopic friction angle [Formula: see text], an increasing function of I , and solid fraction [Formula: see text], a decreasing function of I, are larger with pentagons than with disks at small I, but the differences decline for larger I and, remarkably, nearly vanish for [Formula: see text]. Under growing I , the depletion of contact networks is considerably slower with pentagons, in which increasingly anisotropic, but still well-connected force-transmitting structures are maintained throughout the studied range. Whereas contact anisotropy and force anisotropy contribute nearly equally to the shear strength in disk assemblies, the latter effect dominates with pentagons at small I, while the former takes over for I of the order of 10-2. The size of clusters of grains in side-to-side contact, typically comprising more than 10 pentagons in the quasistatic limit, very gradually decreases for growing I.
Collapse
Affiliation(s)
- Émilien Azéma
- Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France.
| | - Farhang Radjaï
- Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France
- MSE2, UMI 3466 CNRS-MIT, CEE, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
| | - Jean-Noël Roux
- Université Paris-Est, Laboratoire Navier, 2 Allée Kepler, 77420, Champs-sur-Marne, France
| |
Collapse
|
37
|
Chen S, Adepu M, Emady H, Jiao Y, Gel A. Enhancing the physical modeling capability of open-source MFIX-DEM software for handling particle size polydispersity: Implementation and validation. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2017.04.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Ma H, Xu L, Zhao Y. CFD-DEM simulation of fluidization of rod-like particles in a fluidized bed. POWDER TECHNOL 2017. [DOI: 10.1016/j.powtec.2016.12.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Azéma E, Preechawuttipong I, Radjai F. Binary mixtures of disks and elongated particles: Texture and mechanical properties. Phys Rev E 2016; 94:042901. [PMID: 27841540 DOI: 10.1103/physreve.94.042901] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Indexed: 11/06/2022]
Abstract
We analyze the shear strength and microstructure of binary granular mixtures consisting of disks and elongated particles by varying systematically both the mixture ratio and degree of homogeneity (from homogeneous to fully segregated). The contact dynamics method is used for numerical simulations with rigid particles interacting by frictional contacts. A counterintuitive finding of this work is that the shear strength, packing fraction, and, at the microscopic scale, the fabric, force, and friction anisotropies of the contact network are all nearly independent of the degree of homogeneity. In other words, homogeneous mixtures have the same strength properties as segregated packings of the two particle shapes. In contrast, the shear strength increases with the proportion of elongated particles correlatively with the increase of the corresponding force and fabric anisotropies. By a detailed analysis of the contact network topology, we show that various contact types contribute differently to force transmission and friction mobilization.
Collapse
Affiliation(s)
- Emilien Azéma
- Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France.,Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, 239 Huay Kaew Rd., Chiang Mai 50200, Thailand
| | - Itthichai Preechawuttipong
- Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, 239 Huay Kaew Rd., Chiang Mai 50200, Thailand
| | - Farhang Radjai
- Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France.,〈 MSE 〉2, UMI 3466 CNRS-MIT, MIT Energy Initiative, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
40
|
Brouwers HJH. Packing fraction of particles with a Weibull size distribution. Phys Rev E 2016; 94:012905. [PMID: 27575204 DOI: 10.1103/physreve.94.012905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 11/07/2022]
Abstract
This paper addresses the void fraction of polydisperse particles with a Weibull (or Rosin-Rammler) size distribution. It is demonstrated that the governing parameters of this distribution can be uniquely related to those of the lognormal distribution. Hence, an existing closed-form expression that predicts the void fraction of particles with a lognormal size distribution can be transformed into an expression for Weibull distributions. Both expressions contain the contraction coefficient β. Likewise the monosized void fraction φ_{1}, it is a physical parameter which depends on the particles' shape and their state of compaction only. Based on a consideration of the scaled binary void contraction, a linear relation for (1-φ_{1})β as function of φ_{1} is proposed, with proportionality constant B, depending on the state of compaction only. This is validated using computational and experimental packing data concerning random close and random loose packing arrangements. Finally, using this β, the closed-form analytical expression governing the void fraction of Weibull distributions is thoroughly compared with empirical data reported in the literature, and good agreement is found. Furthermore, the present analysis yields an algebraic equation relating the void fraction of monosized particles at different compaction states. This expression appears to be in good agreement with a broad collection of random close and random loose packing data.
Collapse
Affiliation(s)
- H J H Brouwers
- Department of the Built Environment, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
41
|
Kallus Y. The random packing density of nearly spherical particles. SOFT MATTER 2016; 12:4123-4128. [PMID: 27063779 DOI: 10.1039/c6sm00213g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Obtaining general relations between macroscopic properties of random assemblies, such as density, and the microscopic properties of their constituent particles, such as shape, is a foundational challenge in the study of amorphous materials. By leveraging existing understanding of the random packing of spherical particles, we estimate the random packing density for all sufficiently spherical shapes. Our method uses the ensemble of random packing configurations of spheres as a reference point for a perturbative calculation, which we carry to linear order in the deformation. A fully analytic calculation shows that all sufficiently spherical shapes pack more densely than spheres. Additionally, we use simulation data for spheres to calculate numerical estimates for nonspherical particles and compare these estimates to simulations.
Collapse
Affiliation(s)
- Yoav Kallus
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA.
| |
Collapse
|
42
|
|
43
|
Cinacchi G, Torquato S. Hard convex lens-shaped particles: Densest-known packings and phase behavior. J Chem Phys 2015; 143:224506. [DOI: 10.1063/1.4936938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Giorgio Cinacchi
- Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC), Instituto de Ciencias de Materiales “Nicolás Cabrera,” Universidad Autónoma de Madrid, Campus de Cantoblanco, E-28049 Madrid, Spain
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Institute for the Science and Technology of Materials, Program for Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
44
|
Chen D, Torquato S. Confined disordered strictly jammed binary sphere packings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062207. [PMID: 26764682 DOI: 10.1103/physreve.92.062207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Indexed: 06/05/2023]
Abstract
Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010)] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H, small to large sphere radius ratio α, and small sphere relative concentration x. We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H, though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance σ(τ)(2)(R) to characterize confined packings and find that these packings possess essentially the same level of hyperuniformity as their bulk counterparts. Our findings are generally relevant to confined packings that arise in biology (e.g., structural color in birds and insects) and may have implications for the creation of high-density powders and improved battery designs.
Collapse
Affiliation(s)
- D Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - S Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
45
|
Tian J, Xu Y, Jiao Y, Torquato S. A Geometric-Structure Theory for Maximally Random Jammed Packings. Sci Rep 2015; 5:16722. [PMID: 26568437 PMCID: PMC4644945 DOI: 10.1038/srep16722] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/19/2015] [Indexed: 01/10/2023] Open
Abstract
Maximally random jammed (MRJ) particle packings can be viewed as prototypical glasses in that they are maximally disordered while simultaneously being mechanically rigid. The prediction of the MRJ packing density ϕMRJ, among other packing properties of frictionless particles, still poses many theoretical challenges, even for congruent spheres or disks. Using the geometric-structure approach, we derive for the first time a highly accurate formula for MRJ densities for a very wide class of two-dimensional frictionless packings, namely, binary convex superdisks, with shapes that continuously interpolate between circles and squares. By incorporating specific attributes of MRJ states and a novel organizing principle, our formula yields predictions of ϕMRJ that are in excellent agreement with corresponding computer-simulation estimates in almost the entire α-x plane with semi-axis ratio α and small-particle relative number concentration x. Importantly, in the monodisperse circle limit, the predicted ϕMRJ = 0.834 agrees very well with the very recently numerically discovered MRJ density of 0.827, which distinguishes it from high-density "random-close packing" polycrystalline states and hence provides a stringent test on the theory. Similarly, for non-circular monodisperse superdisks, we predict MRJ states with densities that are appreciably smaller than is conventionally thought to be achievable by standard packing protocols.
Collapse
Affiliation(s)
- Jianxiang Tian
- Department of Physics, Qufu Normal University, Qufu 273165, China.,Department of Physics, Dalian University of Technology, Dalian 116024, China
| | - Yaopengxiao Xu
- Materials Science and Engineering, Arizona State University, Tempe Arizona 85287, USA
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe Arizona 85287, USA
| | - Salvatore Torquato
- Department of Chemistry, Princeton University, Princeton New Jersey 08544, USA.,Department of Physics, Princeton University, Princeton New Jersey 08544, USA.,Program in Applied and Computational Mathematics, Princeton University, Princeton New Jersey 08544, USA
| |
Collapse
|
46
|
Zito G, Rusciano G, Pesce G, Malafronte A, Di Girolamo R, Ausanio G, Vecchione A, Sasso A. Nanoscale engineering of two-dimensional disordered hyperuniform block-copolymer assemblies. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:050601. [PMID: 26651630 DOI: 10.1103/physreve.92.050601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 06/05/2023]
Abstract
Disordered hyperuniform (DH) media have been recognized as a new state of disordered matter that broadens our vision of material engineering. Here, long-range correlated disordered two-dimensional patterns are fabricated by self-assembling of spherical diblock-copolymer (BCP) micelles. Control of the self-assembling parameters leads to the formation of DH patterns of micelles that can host nanoscale material inclusions, therefore providing an effective strategy for fabricating multimaterial DH structures at molecular scale. Centroidal patterns are accurately determined by virtue of BCP micelles loaded with metal nanoparticles. Our analysis reveals the signature of nearly ideal DH BCP assemblies in the local density fluctuation and a dominant linear scaling in the local number fluctuation.
Collapse
Affiliation(s)
- Gianluigi Zito
- Università degli Studi di Napoli Federico II, via Cintia I-80126 Napoli, Italy
| | - Giulia Rusciano
- Università degli Studi di Napoli Federico II, via Cintia I-80126 Napoli, Italy
| | - Giuseppe Pesce
- Università degli Studi di Napoli Federico II, via Cintia I-80126 Napoli, Italy
| | - Anna Malafronte
- Università degli Studi di Napoli Federico II, via Cintia I-80126 Napoli, Italy
| | - Rocco Di Girolamo
- Università degli Studi di Napoli Federico II, via Cintia I-80126 Napoli, Italy
| | - Giovanni Ausanio
- Università degli Studi di Napoli Federico II, via Cintia I-80126 Napoli, Italy
- Consiglio Nazionale delle Ricerche-SPIN, via Cintia I-80126 Napoli, Italy
| | - Antonio Vecchione
- Università degli Studi di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Sa), Italy
- Consiglio Nazionale delle Ricerche-SPIN U.O.S Salerno, via Giovanni Paolo II 132, 84084 Fisciano (Sa), Italy
| | - Antonio Sasso
- Università degli Studi di Napoli Federico II, via Cintia I-80126 Napoli, Italy
| |
Collapse
|
47
|
Royer JR, Burton GL, Blair DL, Hudson SD. Rheology and dynamics of colloidal superballs. SOFT MATTER 2015; 11:5656-65. [PMID: 26078036 DOI: 10.1039/c5sm00729a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent advances in colloidal synthesis make it possible to generate a wide array of precisely controlled, non-spherical particles. This provides a unique opportunity to probe the role that particle shape plays in the dynamics of colloidal suspensions, particularly at higher volume fractions, where particle interactions are important. We examine the role of particle shape by characterizing both the bulk rheology and micro-scale diffusion in a suspension of pseudo-cubic silica superballs. Working with these well-characterized shaped colloids, we can disentangle shape effects in the hydrodynamics of isolated particles from shape-mediated particle interactions. We find that the hydrodynamic properties of isolated superballs are marginally different from comparably sized hard spheres. However, shape-mediated interactions modify the suspension microstructure, leading to significant differences in the self-diffusion of the superballs. While this excluded volume interaction can be captured with a rescaling of the superball volume fraction, we observe qualitative differences in the shear thickening behavior of moderately concentrated superball suspensions that defy simple rescaling onto hard sphere results. This study helps to define the unknowns associated with the effects of shape on the rheology and dynamics of colloidal solutions.
Collapse
Affiliation(s)
- John R Royer
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | | | | | | |
Collapse
|
48
|
Jin W, Lu P, Liu L, Li S. Cluster and constraint analysis in tetrahedron packings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042203. [PMID: 25974480 DOI: 10.1103/physreve.91.042203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Indexed: 06/04/2023]
Abstract
The disordered packings of tetrahedra often show no obvious macroscopic orientational or positional order for a wide range of packing densities, and it has been found that the local order in particle clusters is the main order form of tetrahedron packings. Therefore, a cluster analysis is carried out to investigate the local structures and properties of tetrahedron packings in this work. We obtain a cluster distribution of differently sized clusters, and peaks are observed at two special clusters, i.e., dimer and wagon wheel. We then calculate the amounts of dimers and wagon wheels, which are observed to have linear or approximate linear correlations with packing density. Following our previous work, the amount of particles participating in dimers is used as an order metric to evaluate the order degree of the hierarchical packing structure of tetrahedra, and an order map is consequently depicted. Furthermore, a constraint analysis is performed to determine the isostatic or hyperstatic region in the order map. We employ a Monte Carlo algorithm to test jamming and then suggest a new maximally random jammed packing of hard tetrahedra from the order map with a packing density of 0.6337.
Collapse
Affiliation(s)
- Weiwei Jin
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Peng Lu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Lufeng Liu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Shuixiang Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
49
|
Castillo SIR, Thies-Weesie DME, Philipse AP. Formation and liquid permeability of dense colloidal cube packings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022311. [PMID: 25768509 DOI: 10.1103/physreve.91.022311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 06/04/2023]
Abstract
The liquid permeability of dense random packings of cubic colloids with rounded corners is studied for solid hematite cubes and hollow microporous silica cubes. The permeabilities of these two types of packings are similar, confirming that the micropores in the silica shell of the hollow cubes do not contribute to the permeability. From the Brinkman screening length √k of ∼16 nm, we infer that the relevant pores are indeed intercube pores. Furthermore, we relate the permeability to the volume fraction and specific solid volume of the cubes using the Kozeny-Carman relation. The Kozeny-Carman relation contains a constant that accounts for the topology and size distribution of the pores in the medium. The constant obtained from our study with aspherical particles is of the same order of magnitude as those from studies with spherical and ellipsoidal particles, which supports the notion that the Kozeny-Carman relation is applicable for any dense particle packing with (statistically) isotropic microstructures, irrespective of the particle shape.
Collapse
Affiliation(s)
- Sonja I R Castillo
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dominique M E Thies-Weesie
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert P Philipse
- Van 't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
50
|
Nguyen DH, Azéma E, Radjai F, Sornay P. Effect of size polydispersity versus particle shape in dense granular media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:012202. [PMID: 25122294 DOI: 10.1103/physreve.90.012202] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Indexed: 05/26/2023]
Abstract
We present a detailed analysis of the morphology of granular systems composed of frictionless pentagonal particles by varying systematically both the size span and particle shape irregularity, which represent two polydispersity parameters of the system. The microstructure is characterized in terms of various statistical descriptors such as global and local packing fractions, radial distribution functions, coordination number, and fraction of floating particles. We find that the packing fraction increases with the two parameters of polydispersity, but the effect of shape polydispersity for all the investigated structural properties is significant only at low size polydispersity where the positional and/or orientational ordering of the particles prevail. We focus in more detail on the class of side/side contacts, which is the interesting feature of our system as compared to a packing of disks. We show that the proportion of such contacts has weak dependence on the polydispersity parameters. The side- side contacts do not percolate but they define clusters of increasing size as a function of size polydispersity and decreasing size as a function of shape polydispersity. The clusters have anisotropic shapes but with a decreasing aspect ratio as polydispersity increases. This feature is argued to be a consequence of strong force chains (forces above the mean), which are mainly captured by side-side contacts. Finally, the force transmission is intrinsically multiscale, with a mean force increasing linearly with particle size.
Collapse
Affiliation(s)
- Duc-Hanh Nguyen
- Université Montpellier 2, CNRS, LMGC, Place Eugène Bataillon, 34095 Montpellier, France and CEA, DEN, DEC, SPUA, LCU, F-13108 Saint Paul lez Durance, France
| | - Emilien Azéma
- Université Montpellier 2, CNRS, LMGC, Place Eugène Bataillon, 34095 Montpellier, France
| | - Farhang Radjai
- Université Montpellier 2, CNRS, LMGC, Place Eugène Bataillon, 34095 Montpellier, France
| | - Philippe Sornay
- CEA, DEN, DEC, SPUA, LCU, F-13108 Saint Paul lez Durance, France
| |
Collapse
|