1
|
Davis D, Sen Gupta B. Kinetics of vapor-liquid and vapor-solid phase separation under gravity. SOFT MATTER 2025; 21:1012-1023. [PMID: 39807936 DOI: 10.1039/d4sm01055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We study the kinetics of vapor-liquid and vapor-solid phase separation of a hydrodynamics preserving three-dimensional one-component Lennard Jones system in the presence of an external gravitational field using extensive molecular dynamic simulation. A bicontinuous domain structure is formed when the homogeneous system near the critical density is quenched inside the coexistence region. In the absence of gravity, the domain morphology is statistically self-similar and the length scale grows as per the existing laws. However, the presence of gravity destroys the isotropy of the system and affects the scaling laws. We observe an accelerated domain growth in the direction of the field which resembles a sedimentation process. Consequently, a new length scale emerges which strongly depends on the field strength. Similar behavior is observed in the direction perpendicular to the applied field, with a different growth rate. Finally, the statistical self-similarity of the domain growth and the Porod law in such anisotropic systems is verified in terms of two-point equal time order parameter correlation function and static structure factor.
Collapse
Affiliation(s)
- Daniya Davis
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Bhaskar Sen Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
2
|
Müller F, Christiansen H, Janke W. Nonuniversality of Aging during Phase Separation of the Two-Dimensional Long-Range Ising Model. PHYSICAL REVIEW LETTERS 2024; 133:237102. [PMID: 39714668 DOI: 10.1103/physrevlett.133.237102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/29/2024] [Indexed: 12/24/2024]
Abstract
We investigate the aging properties of phase-separation kinetics following quenches from T=∞ to a finite temperature below T_{c} of the paradigmatic two-dimensional conserved Ising model with power-law decaying long-range interactions ∼r^{-(2+σ)}. Physical aging with a power-law decay of the two-time autocorrelation function C(t,t_{w})∼(t/t_{w})^{-λ/z} is observed, displaying a complex dependence of the autocorrelation exponent λ on σ. A value of λ=3.500(26) for the corresponding nearest-neighbor model (which is recovered as the σ→∞ limit) is determined. The values of λ in the long-range regime (σ<1) are all compatible with λ≈4. In between, a continuous crossover is visible for 1≲σ≲2 with nonuniversal, σ-dependent values of λ. The performed Metropolis Monte Carlo simulations are primarily enabled by our novel algorithm for long-range interacting systems.
Collapse
|
3
|
Thwal S, Majumder S. Interplay of phase segregation and chemical reaction: Crossover and effect on growth laws. Phys Rev E 2024; 109:064131. [PMID: 39020944 DOI: 10.1103/physreve.109.064131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
By combining the nonconserved spin-flip dynamics driving ferromagnetic ordering with the conserved Kawasaki-exchange dynamics driving phase segregation, we perform Monte Carlo simulations of the nearest-neighbor Ising model. This kind of mixed dynamics is found in a system consisting of a binary mixture of isomers, simultaneously undergoing a segregation and an interconversion reaction among themselves. Here, we study such a system following a quench from the high-temperature homogeneous phase to a temperature below the demixing transition. We monitor the growth of domains of both the winner; the isomer, which survives as the majority; and the loser, the isomer that perishes. Our results show a strong interplay of the two dynamics at early times, leading to a growth of the average domain size of both the winner and loser as ∼t^{1/7}, slower than a purely phase-segregating system. At later times, eventually the dynamics becomes reaction dominated and the winner exhibits a ∼t^{1/2} growth, expected for a system with purely nonconserved dynamics. On the other hand, the loser at first show a faster growth, albeit, slower than the winner, and then starts to decay before it almost vanishes. Further, we estimate the time τ_{s} marking the crossover from the early-time slow growth to the late-time reaction-dominated faster growth. As a function of the reaction probability p_{r}, we observe a power-law scaling τ_{s}∼p_{r}^{-x}, where x≈1.05, irrespective of the temperature. For a fixed value of p_{r} too, τ_{s} appears to be independent of the temperature.
Collapse
|
4
|
Thwal S, Majumder S. Segregation disrupts the Arrhenius behavior of an isomerization reaction. Phys Rev E 2024; 109:034119. [PMID: 38632815 DOI: 10.1103/physreve.109.034119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Coexistence of segregation and interconversion or isomerization reaction among molecular species leads to fascinating structure formation in the biological and chemical worlds. Using Monte Carlo simulations of the prototype Ising model, we explore the chemical kinetics of such a system consisting of a binary mixture of isomers. Our results reveal that even though the two concerned processes are individually Arrhenius in nature, the Arrhenius behavior of the isomerization reaction gets significantly disrupted due to an interplay of the nonconserved dynamics of the reaction and the conserved diffusive dynamics of segregation. The approach used here can be potentially adapted to understand reaction kinetics of more complex reactions.
Collapse
Affiliation(s)
- Shubham Thwal
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Suman Majumder
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
5
|
Singh AK, Banerjee V. Accelerated inertial regime in the spinodal decomposition of magnetic fluids. SOFT MATTER 2023; 19:2370-2376. [PMID: 36920058 DOI: 10.1039/d3sm00285c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Furukawa predicted that at late times, the domain growth in binary fluids scales as (t) ∼ t2/3, and the growth is driven by fluid inertia. The inertial growth regime has been highly elusive in molecular dynamics (MD) simulations. We perform coarsening studies of the (d = 3) Stockmayer (SM) model comprising of magnetic dipoles that interact via long-range dipolar interactions as well as the usual Lennard-Jones (LJ) potential. This fascinating polar fluid exhibits a gas-liquid phase coexistence, and magnetic order even in the absence of an external field. From comprehensive MD simulations, we observe the inertial scaling [(t) ∼ t2/3] in the SM fluid for an extended time window. Intriguingly, the fluid inertia is overwhelming from the outset - our simulations do not show the early diffusive regime [(t) ∼ t1/3] and the intermediate viscous regime [(t) ∼ t] prevalent in LJ fluids.
Collapse
Affiliation(s)
- Anuj Kumar Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Varsha Banerjee
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
6
|
Majumder S. Disentangling growth and decay of domains during phase ordering. Phys Rev E 2023; 107:034130. [PMID: 37073047 DOI: 10.1103/physreve.107.034130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/09/2023] [Indexed: 04/20/2023]
Abstract
Using Monte Carlo simulations we study phase-ordering dynamics of a multispecies system modeled via the prototype q-state Potts model. In such a multispecies system, we identify a spin state or species as the winner if it has survived as the majority in the final state, otherwise, we mark them as loser. We disentangle the time (t) dependence of the domain length of the winner from losers, rather than monitoring the average domain length obtained by treating all spin states or species alike. The kinetics of domain growth of the winner at a finite temperature in space dimension d=2 reveal that the expected Lifshitz-Cahn-Allen scaling law ∼t^{1/2} can be realized with no early-time corrections, even for system sizes much smaller than what is traditionally used. Up to a certain period, all others species, i.e., the losers, also show a growth that, however, is dependent on the total number of species, and slower than the expected ∼t^{1/2} growth. Afterwards, the domains of the losers start decaying with time, for which our numerical data appear to be consistent with a ∼t^{-2} behavior. We also demonstrate that this approach of looking into the kinetics even provides new insights for the special case of phase ordering at zero temperature, both in d=2 and d=3.
Collapse
Affiliation(s)
- Suman Majumder
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
7
|
Müller F, Christiansen H, Janke W. Phase-Separation Kinetics in the Two-Dimensional Long-Range Ising Model. PHYSICAL REVIEW LETTERS 2022; 129:240601. [PMID: 36563254 DOI: 10.1103/physrevlett.129.240601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Using Monte Carlo computer simulations, we investigate the kinetics of phase separation in the two-dimensional conserved Ising model with power-law decaying long-range interactions, the prototypical model for many long-range interacting systems. A long-standing analytical prediction for the characteristic length is shown to be applicable. In the simulation, we relied on our novel algorithm which provides a massive speedup for long-range interacting systems.
Collapse
Affiliation(s)
- Fabio Müller
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany
| | - Henrik Christiansen
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany
| |
Collapse
|
8
|
Midya J, Das SK. Kinetics of domain growth and aging in a two-dimensional off-lattice system. Phys Rev E 2021; 102:062119. [PMID: 33465989 DOI: 10.1103/physreve.102.062119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/18/2020] [Indexed: 11/07/2022]
Abstract
We have used molecular dynamics simulations for a comprehensive study of phase separation in a two-dimensional single-component off-lattice model where particles interact through the Lennard-Jones potential. Via state-of-the-art methods we have analyzed simulation data on structure, growth, and aging for nonequilibrium evolutions in the model. These data were obtained following quenches of well-equilibrated homogeneous configurations, with density close to the critical value, to various temperatures inside the miscibility gap, having vapor-"liquid" as well as vapor-"solid" coexistence. For the vapor-liquid phase separation we observe that ℓ, the average domain length, grows with time (t) as t^{1/2}, a behavior that has connection with hydrodynamics. At low-enough temperature, a sharp crossover of this time dependence to a much slower, temperature-dependent, growth is identified within the timescale of our simulations, implying "solid"-like final state of the high-density phase. This crossover is, interestingly, accompanied by strong differences in domain morphology and other structural aspects between the two situations. For aging, we have presented results for the order-parameter autocorrelation function. This quantity exhibits data collapse with respect to ℓ/ℓ_{w}, ℓ, and ℓ_{w} being the average domain lengths at times t and t_{w} (≤t), respectively, the latter being the age of a system. Corresponding scaling function follows a power-law decay: ∼(ℓ/ℓ_{w})^{-λ} for t≫t_{w}. The decay exponent λ, for the vapor-liquid case, is accurately estimated via the application of an advanced finite-size scaling method. The obtained value is observed to satisfy a bound.
Collapse
Affiliation(s)
- Jiarul Midya
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.,Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.,School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
9
|
Chakraborty S, Das SK. Relaxation in a phase-separating two-dimensional active matter system with alignment interaction. J Chem Phys 2020; 153:044905. [PMID: 32752724 DOI: 10.1063/5.0010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Via computer simulations, we study kinetics of pattern formation in a two-dimensional active matter system. Self-propulsion in our model is incorporated via the Vicsek-like activity, i.e., particles have the tendency of aligning their velocities with the average directions of motion of their neighbors. In addition to this dynamic or active interaction, there exists passive inter-particle interaction in the model for which we have chosen the standard Lennard-Jones form. Following quenches of homogeneous configurations to a point deep inside the region of coexistence between high and low density phases, as the systems exhibit formation and evolution of particle-rich clusters, we investigate properties related to the morphology, growth, and aging. A focus of our study is on the understanding of the effects of structure on growth and aging. To quantify the latter, we use the two-time order-parameter autocorrelation function. This correlation, as well as the growth, is observed to follow power-law time dependence, qualitatively similar to the scaling behavior reported for passive systems. The values of the exponents have been estimated and discussed by comparing with the previously obtained numbers for other dimensions as well as with the new results for the passive limit of the considered model. We have also presented results on the effects of temperature on the activity mediated phase separation.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
10
|
Das SK, Das K, Vadakkayil N, Chakraborty S, Paul S. Initial correlation dependence of aging in phase separating solid binary mixtures and ordering ferromagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:184005. [PMID: 31952063 DOI: 10.1088/1361-648x/ab6d10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Following quenches of initial configurations having long range spatial correlations, prepared at the demixing critical point, to points inside the miscibility gap, we study aging phenomena in solid binary mixtures. Results on the decay of the two-time order-parameter autocorrelation functions, obtained from Monte Carlo simulations of the two-dimensional Ising model, with Kawasaki exchange kinetics, are analyzed via state-of-the art methods. The outcome is compared with that obtained for the ordering in uniaxial ferromagnets. For the latter, we have performed Monte Carlo simulations of the same model using the Glauber mechanism. For both types of systems we provide comparative discussion of our results with reference to those concerning quenches with configurations having no spatial correlation. We also discuss the role of structure on the decay of these correlations.
Collapse
Affiliation(s)
- Subir K Das
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India
| | | | | | | | | |
Collapse
|
11
|
Majumder S, Hansmann UHE, Janke W. Pearl-Necklace-Like Local Ordering Drives Polypeptide Collapse. Macromolecules 2019; 52:5491-5498. [PMID: 31631912 PMCID: PMC6795215 DOI: 10.1021/acs.macromol.9b00562] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/31/2019] [Indexed: 11/30/2022]
Abstract
![]()
The
collapse of the polypeptide backbone is an integral part of
protein folding. Using polyglycine as a probe, we explore the nonequilibrium
pathways of protein collapse in water. We find that the collapse depends
on the competition between hydration effects and intrapeptide interactions.
Once intrapeptide van der Waal interactions dominate, the chain collapses
along a nonequilibrium pathway characterized by formation of pearl-necklace-like
local clusters as intermediates that eventually coagulate into a single
globule. By describing this coarsening through the contact probability
as a function of distance along the chain, we extract a time-dependent
length scale that grows in a linear fashion. The collapse dynamics
is characterized by a dynamical critical exponent z ≈ 0.5 that is much smaller than the values of z = 1–2 reported for nonbiological polymers. This difference
in the exponents is explained by the instantaneous formation of intrachain
hydrogen bonds and local ordering that may be correlated with the
observed fast folding times of proteins.
Collapse
Affiliation(s)
- Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany
| |
Collapse
|
12
|
Christiansen H, Majumder S, Janke W. Phase ordering kinetics of the long-range Ising model. Phys Rev E 2019; 99:011301. [PMID: 30780293 DOI: 10.1103/physreve.99.011301] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Indexed: 11/07/2022]
Abstract
We use an efficient method that eases the daunting task of simulating dynamics in spin systems with long-range interaction. Our Monte Carlo simulations of the long-range Ising model for the nonequilibrium phase ordering dynamics in two spatial dimensions perform significantly faster than the standard Metropolis approach and considerably more efficiently than the kinetic Monte Carlo method. Importantly, this enables us to establish agreement with the theoretical prediction for the time dependence of domain growth, in contrast to previous numerical studies. This method can easily be generalized to applications in other systems.
Collapse
Affiliation(s)
- Henrik Christiansen
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| | - Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| |
Collapse
|
13
|
Vadakkayil N, Chakraborty S, Das SK. Finite-size scaling study of aging during coarsening in non-conserved Ising model: The case of zero temperature quench. J Chem Phys 2019; 150:054702. [DOI: 10.1063/1.5052418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nalina Vadakkayil
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Saikat Chakraborty
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K. Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
14
|
Moreno AJ, Lo Verso F. Computational investigation of microgels: synthesis and effect of the microstructure on the deswelling behavior. SOFT MATTER 2018; 14:7083-7096. [PMID: 30118116 DOI: 10.1039/c8sm01407h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present computer simulations of a realistic model of microgels. Unlike the regular network frameworks usually assumed in the simulation literature, we model and simulate a realistic and efficient synthesis route, mimicking cross-linking of functionalized chains inside a cavity. This model is inspired, e.g., by microfluidic fabrication of microgels from macromolecular precursors and is different from standard polymerization routes. The assembly of the chains is mediated by a low fraction of interchain crosslinks. The microgels are polydisperse in size and shape but globally spherical objects. In order to deeply understand the microgel structure and eventually improve the synthesis protocol we characterize their conformational properties and deswelling kinetics, and compare them with the results found for microgels obtained via underlying regular (diamond-like) structures. For the same molecular weight, monomer concentration and effective degree of cross-linking, the specific microstructure of the microgel has no significant effect on the locus of the volume phase transition (VPT). However, it strongly affects the deswelling kinetics, as revealed by a consistent analysis of the domain growth during the microgel collapse. Though both the disordered and the regular networks exhibit a similar early growth of the domains, an acceleration is observed in the regular network at the late stage of the collapse. Similar trends are found for the dynamic correlations coupled to the domain growth. As a consequence, the fast late processes for the domain growth and the dynamic correlations in the regular network are compensated, and the dynamic correlations follow a power-law dependence on the growing length scale that is independent of the microgel microstructure.
Collapse
Affiliation(s)
- Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain.
| | | |
Collapse
|
15
|
Das SK. Pattern, growth, and aging in aggregation kinetics of a Vicsek-like active matter model. J Chem Phys 2018; 146:044902. [PMID: 28147512 DOI: 10.1063/1.4974256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Via molecular dynamics simulations, we study kinetics in a Vicsek-like phase-separating active matter model. Quantitative results, for isotropic bicontinuous pattern, are presented on the structure, growth, and aging. These are obtained via the two-point equal-time density-density correlation function, the average domain length, and the two-time density autocorrelation function. Both the correlation functions exhibit basic scaling properties, implying self-similarity in the pattern dynamics, for which the average domain size exhibits a power-law growth in time. The equal-time correlation has a short distance behavior that provides reasonable agreement between the corresponding structure factor tail and the Porod law. The autocorrelation decay is a power-law in the average domain size. Apart from these basic similarities, the overall quantitative behavior of the above-mentioned observables is found to be vastly different from those of the corresponding passive limit of the model which also undergoes phase separation. The functional forms of these have been quantified. An exceptionally rapid growth in the active system occurs due to fast coherent motion of the particles, mean-squared-displacements of which exhibit multiple scaling regimes, including a long time ballistic one.
Collapse
Affiliation(s)
- Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
16
|
Paul S, Das SK. Dimension dependence of clustering dynamics in models of ballistic aggregation and freely cooling granular gas. Phys Rev E 2018; 97:032902. [PMID: 29776153 DOI: 10.1103/physreve.97.032902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 11/07/2022]
Abstract
Via event-driven molecular dynamics simulations we study kinetics of clustering in assemblies of inelastic particles in various space dimensions. We consider two models, viz., the ballistic aggregation model (BAM) and the freely cooling granular gas model (GGM), for each of which we quantify the time dependence of kinetic energy and average mass of clusters (that form due to inelastic collisions). These quantities, for both the models, exhibit power-law behavior, at least in the long time limit. For the BAM, corresponding exponents exhibit strong dimension dependence and follow a hyperscaling relation. In addition, in the high packing fraction limit the behavior of these quantities become consistent with a scaling theory that predicts an inverse relation between energy and mass. On the other hand, in the case of the GGM we do not find any evidence for such a picture. In this case, even though the energy decay, irrespective of packing fraction, matches quantitatively with that for the high packing fraction picture of the BAM, it is inversely proportional to the growth of mass only in one dimension, and the growth appears to be rather insensitive to the choice of the dimension, unlike the BAM.
Collapse
Affiliation(s)
- Subhajit Paul
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
17
|
Riesch C, Radons G, Magerle R. Pathways to equilibrium orientation fluctuations in finite stripe-forming systems. Phys Rev E 2018; 96:052224. [PMID: 29347679 DOI: 10.1103/physreve.96.052224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Indexed: 11/07/2022]
Abstract
Small-angle orientation fluctuations in ordered stripe-forming systems free of topological defects can exhibit aging and anisotropic growth of two length scales. In infinitely extended systems, the stripe orientation field develops a dominant modulation length λ_{∥}^{*}(t) in the direction parallel to the stripes, which increases with time t as λ_{∥}^{*}(t)∼t^{1/4}. Simultaneously, the orientation correlation length ξ_{⊥}(t) in the direction perpendicular to the stripes increases as ξ_{⊥}(t)∼t^{1/2} [Riesch et al., Interface Focus 7, 20160146 (2017)2042-889810.1098/rsfs.2016.0146]. Here we show that finite systems of size L_{⊥}×L_{∥} with periodic boundary conditions reach equilibrium when the dominant modulation length λ_{∥}^{*}(t) reaches the system size L_{∥} in the stripe direction. The equilibration time τ_{eq}^{∥} is solely determined by L_{∥}, with τ_{eq}^{∥}∼L_{∥}^{4}. In systems with L_{⊥}<L_{∥}^{2}/2πλ_{p}, where λ_{p} is the undulation penetration length, the initial aging and coarsening dynamics changes at the crossover time τ_{C}^{⊥}∼L_{⊥}^{2} to an aging and coarsening dynamics described by the one-dimensional Mullins-Herring equation, before reaching equilibrium at τ_{∥}^{eq}. Our work reveals the two pathways to equilibrium in stripe phases with periodic boundary conditions, the finite-size scaling behavior of equilibrium orientation fluctuations, and the characteristic exponents associated with the influence of a finite system size.
Collapse
Affiliation(s)
- Christian Riesch
- Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Günter Radons
- Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| | - Robert Magerle
- Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz, Germany
| |
Collapse
|
18
|
Paul S, Das SK. Ballistic aggregation in systems of inelastic particles: Cluster growth, structure, and aging. Phys Rev E 2018; 96:012105. [PMID: 29347235 DOI: 10.1103/physreve.96.012105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/07/2022]
Abstract
We study far-from-equilibrium dynamics in models of freely cooling granular gas and ballistically aggregating compact clusters. For both the cases, from event-driven molecular dynamics simulations, we have presented detailed results on structure and dynamics in space dimensions d=1 and 2. Via appropriate analyses it has been confirmed that the ballistic aggregation mechanism applies in d=1 granular gases as well. Aging phenomena for this mechanism, in both the dimensions, have been studied via the two-time density autocorrelation function. This quantity is demonstrated to exhibit scaling property similar to that in the standard phase transition kinetics. The corresponding functional forms have been quantified and the outcomes have been discussed in connection with the structural properties. Our results on aging establish a more complete equivalence between the granular gas and the ballistic aggregation models in d=1.
Collapse
Affiliation(s)
- Subhajit Paul
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
19
|
Singh A, Singh A, Chakraborti A. Effect of bond-disorder on the phase-separation kinetics of binary mixtures: A Monte Carlo simulation study. J Chem Phys 2017; 147:124902. [PMID: 28964037 DOI: 10.1063/1.5004563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present Monte Carlo (MC) simulation studies of phase separation in binary (AB) mixtures with bond-disorder that is introduced in two different ways: (i) at randomly selected lattice sites and (ii) at regularly selected sites. The Ising model with spin exchange (Kawasaki) dynamics represents the segregation kinetics in conserved binary mixtures. We find that the dynamical scaling changes significantly by varying the number of disordered sites in the case where bond-disorder is introduced at the randomly selected sites. On the other hand, when we introduce the bond-disorder in a regular fashion, the system follows the dynamical scaling for the modest number of disordered sites. For a higher number of disordered sites, the evolution morphology illustrates a lamellar pattern formation. Our MC results are consistent with the Lifshitz-Slyozov power-law growth in all the cases.
Collapse
Affiliation(s)
- Awaneesh Singh
- Department of Physics, Institute of Chemical Technology, Mumbai 400019, India
| | - Amrita Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anirban Chakraborti
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
20
|
Christiansen H, Majumder S, Janke W. Coarsening and aging of lattice polymers: Influence of bond fluctuations. J Chem Phys 2017; 147:094902. [DOI: 10.1063/1.4991667] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Henrik Christiansen
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| | - Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany
| |
Collapse
|
21
|
Midya J, Das SK. Kinetics of Vapor-Solid Phase Transitions: Structure, Growth, and Mechanism. PHYSICAL REVIEW LETTERS 2017; 118:165701. [PMID: 28474902 DOI: 10.1103/physrevlett.118.165701] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 06/07/2023]
Abstract
The kinetics of the separation between low and high density phases in a single component Lennard-Jones model is studied via molecular dynamics simulations, at very low temperatures, in the space dimension d=2. For densities close to the vapor branch of the coexistence curve, disconnected nanoscale clusters of the high density phase exhibit essentially ballistic motion. Starting from nearly circular shapes, at the time of nucleation, these clusters grow via sticky collisions, gaining filamentlike nonequilibrium structure at a later time, with a very low fractal dimensionality. The origin of the latter is shown to lie in the low mobility of the constituent particles, in the corresponding cluster reference frame, due to the (quasi-long-range) crystalline order. Standard self-similarity in the domain pattern, typically observed in the kinetics of phase transitions, is found to be absent. This invalidates the common method, that provides a growth law comparable to that in solid mixtures, of quantifying growth. An appropriate alternative approach, involving the fractality, quantifies the growth of the characteristic "length" to be a power law with time, the exponent being strongly temperature dependent. The observed growth law is in agreement with the outcome of a nonequilibrium kinetic theory.
Collapse
Affiliation(s)
- Jiarul Midya
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
22
|
Majumder S, Zierenberg J, Janke W. Kinetics of polymer collapse: effect of temperature on cluster growth and aging. SOFT MATTER 2017; 13:1276-1290. [PMID: 28106216 DOI: 10.1039/c6sm02197b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using state of the art Monte Carlo simulations of a bead-spring model we investigate both the equilibrium and the nonequilibrium behavior of the homopolymer collapse. The equilibrium properties obtained via multicanonical sampling recover the well-known finite-size scaling behavior of collapse for our model polymer. For the nonequilibrium dynamics we study the collapse by quenching the homopolymer from an expanded coiled state into the globular phase. The sequence of events observed during the collapse is independent of the quench depth. In particular, we focus on finding out universal scaling behaviors related to the growth or coarsening of clusters of monomers, by drawing phenomenological analogies with ordering kinetics. We distinguish the cluster coarsening stage from the initial stage of primary cluster formation. By successful application of a nonequilibrium finite-size scaling analysis we show that at all quench temperatures, during the coarsening stage, the cluster growth is roughly linear and can be characterised by a universal finite-size scaling function. In addition, we provide evidence of aging by constructing a suitable autocorrelation function and its corresponding dynamical power-law scaling with respect to the growing cluster sizes. The predicted theoretical bound for the exponent governing such scaling is strictly obeyed by the numerical data irrespective of the quench temperature. The results and methods presented here in general should find application in similar phenomena such as the collapse of a protein molecule preceding its folding.
Collapse
Affiliation(s)
- Suman Majumder
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany.
| | - Johannes Zierenberg
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, 04009 Leipzig, Germany.
| |
Collapse
|
23
|
Chakraborty S, Das SK. Fractality in persistence decay and domain growth during ferromagnetic ordering: Dependence upon initial correlation. Phys Rev E 2016; 93:032139. [PMID: 27078324 DOI: 10.1103/physreve.93.032139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Indexed: 06/05/2023]
Abstract
The dynamics of ordering in the Ising model, following quench to zero temperature, has been studied via Glauber spin-flip Monte Carlo simulations in space dimensions d=2 and 3. One of the primary objectives has been to understand phenomena associated with the persistent spins, viz., time decay in the number of unaffected spins, growth of the corresponding pattern, and its fractal dimensionality for varying correlation length in the initial configurations, prepared at different temperatures, at and above the critical value. It is observed that the fractal dimensionality and the exponent describing the power-law decay of persistence probability are strongly dependent upon the relative values of nonequilibrium domain size and the initial equilibrium correlation length. Via appropriate scaling analyses, these quantities have been estimated for quenches from infinite and critical temperatures. The above-mentioned dependence is observed to be less pronounced in the higher dimension. In addition to these findings for the local persistence, we present results for the global persistence as well. Furthermore, important observations on the standard domain growth problem are reported. For the latter, a controversy in d=3, related to the value of the exponent for the power-law growth of the average domain size with time, has been resolved.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
24
|
Midya J, Majumder S, Das SK. Dimensionality dependence of aging in kinetics of diffusive phase separation: Behavior of order-parameter autocorrelation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022124. [PMID: 26382361 DOI: 10.1103/physreve.92.022124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Indexed: 06/05/2023]
Abstract
Behavior of two-time autocorrelation during the phase separation in solid binary mixtures is studied via numerical solutions of the Cahn-Hilliard equation as well as Monte Carlo simulations of the Ising model. Results are analyzed via state-of-the-art methods, including the finite-size scaling technique. Full forms of the autocorrelation in space dimensions 2 and 3 are obtained empirically. The long-time behavior is found to be power law, with exponents unexpectedly higher than the ones for the ferromagnetic ordering. Both Cahn-Hilliard and Ising models provide consistent results.
Collapse
Affiliation(s)
- Jiarul Midya
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Suman Majumder
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
25
|
Das SK. Atomistic simulations of liquid–liquid coexistence in confinement: comparison of thermodynamics and kinetics with bulk. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.998214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Galanis J, Tsori Y. Interface initiation and propagation in liquid demixing with electric fields. J Chem Phys 2014; 141:214506. [DOI: 10.1063/1.4902406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jennifer Galanis
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Yoav Tsori
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
27
|
Midya J, Majumder S, Das SK. Aging in ferromagnetic ordering: full decay and finite-size scaling of autocorrelation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:452202. [PMID: 25320057 DOI: 10.1088/0953-8984/26/45/452202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nonequilibrium dynamics in Ising and Ginzburg-Landau models were studied for a nonconserved order parameter that mimics ordering in ferromagnets. The focus was on the understanding of the decay of the two time (t, t(w); t > tw) order-parameter correlation function. For this quantity, a full form has been obtained empirically which, for t ≫ t(w), provides a power-law ∼ (ℓ/ℓ(w))(-λ), ℓ and ℓ(w) being the characteristic lengths at t and tw, respectively. This empirical form was used for a finite-size scaling analysis to obtain the exponent λ in space dimensions d = 2 and 3. Our estimates of λ and understanding of the finite-size effects, for the models considered, provide useful information on the relevance of thermal noise. The values of λ obtained are in good agreement with the predictions of a theory based on Gaussian auxiliary field ansatz.
Collapse
Affiliation(s)
- Jiarul Midya
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore-560064, India
| | | | | |
Collapse
|
28
|
Majumder S, Das SK. Effects of density conservation and hydrodynamics on aging in nonequilibrium processes. PHYSICAL REVIEW LETTERS 2013; 111:055503. [PMID: 23952418 DOI: 10.1103/physrevlett.111.055503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 06/02/2023]
Abstract
Aging in kinetics of three different phase transitions, viz., magnetic, a binary solid, and a single component fluid, are studied via Monte Carlo and molecular dynamics simulations in three space dimensions with the objective of identifying the effects of order-parameter conservation and hydrodynamics. We observe that the relevant autocorrelations exhibit power-law decay in a ferromagnet and binary solid but with different exponents. At early time the fluid autocorrelation function nicely follows that of the binary solid, the order parameter being conserved for both of them, as opposed to a ferromagnet. At a late time the fluid data crosses over to an exponential decay which we identify as a hydrodynamic effect and we provide analytical justification for this behavior.
Collapse
Affiliation(s)
- Suman Majumder
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India
| | | |
Collapse
|
29
|
Roy S, Das SK. Effects of domain morphology on kinetics of fluid phase separation. J Chem Phys 2013; 139:044911. [PMID: 23902023 DOI: 10.1063/1.4816372] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sutapa Roy
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | | |
Collapse
|
30
|
Das SK. Unlocking of frozen dynamics in the complex Ginzburg-Landau equation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012135. [PMID: 23410311 DOI: 10.1103/physreve.87.012135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/20/2012] [Indexed: 06/01/2023]
Abstract
We present results for pattern formation and related dynamics in the two-dimensional complex Ginzburg-Landau equation. Both single and multispiral morphologies have been considered. For the former, Hagan's solution has been tested. In case of the multispiral morphology, at a late time, depending upon certain parameter values, the dynamics is found to be frozen. However, upon introduction of disorder in these parameters the frozen dynamics is observed to be unlocked. This latter result is counterintuitive considering our current knowledge of dynamics in disorder systems. We also present results for the role of shocks (the regions where Hagan's solution is violated) in the multispiral dynamics. It is observed that the suppression of the order-parameter amplitude, in this region, to the value allowed by Hagan's single-spiral solution, also unlocks the dynamical freezing. In this case, both the pattern and dynamics are observed to be very similar to the the dynamical XY model.
Collapse
Affiliation(s)
- Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.
| |
Collapse
|
31
|
Majumder S, Das SK. Temperature and composition dependence of kinetics of phase separation in solid binary mixtures. Phys Chem Chem Phys 2013; 15:13209-18. [DOI: 10.1039/c3cp50612f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Ahmad S, Corberi F, Das SK, Lippiello E, Puri S, Zannetti M. Aging and crossovers in phase-separating fluid mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061129. [PMID: 23367915 DOI: 10.1103/physreve.86.061129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/22/2012] [Indexed: 06/01/2023]
Abstract
We use state-of-the-art molecular dynamics simulations to study hydrodynamic effects on aging during kinetics of phase separation in a fluid mixture. The domain growth law shows a crossover from a diffusive regime to a viscous hydrodynamic regime. There is a corresponding crossover in the autocorrelation function from a power-law behavior to an exponential decay. While the former is consistent with theories for diffusive domain growth, the latter results as a consequence of faster advective transport in fluids for which an analytical justification has been provided.
Collapse
Affiliation(s)
- Shaista Ahmad
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India
| | | | | | | | | | | |
Collapse
|
33
|
Roy S, Das SK. Nucleation and growth of droplets in vapor-liquid transitions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:050602. [PMID: 23004695 DOI: 10.1103/physreve.85.050602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 06/01/2023]
Abstract
Results for the kinetics of vapor-liquid transitions, following temperature quenches with different densities, are presented from molecular dynamics simulations of a Lennard-Jones system. For a critical density, bicontinuous liquid and vapor domains are observed which grow with time, obeying the predictions for the hydrodynamic mechanism. On the other hand, for quenches with density significantly below the critical one, phase separation progresses via nucleation and growth of liquid droplets. In the latter case, the Brownian diffusion and collision mechanism for the droplet growth is confirmed. We also discuss the possibility of interdroplet interaction leading to a different amplitude in the growth law. Arguments for faster growth, observed at early times, are also provided.
Collapse
Affiliation(s)
- Sutapa Roy
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India
| | | |
Collapse
|
34
|
Jaiswal PK, Puri S, Das SK. Surface-directed spinodal decomposition: a molecular dynamics study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:051137. [PMID: 23004733 DOI: 10.1103/physreve.85.051137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Indexed: 06/01/2023]
Abstract
We use molecular dynamics simulations to study surface-directed spinodal decomposition in unstable binary AB fluid mixtures at wetting surfaces. The thickness of the wetting layer R1 grows with time t as a power law (R1∼tθ). We find that hydrodynamic effects result in a crossover of the growth exponent from θ≃1/3 to 1. We also present results for the layerwise correlation functions and domain length scales.
Collapse
Affiliation(s)
- Prabhat K Jaiswal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
35
|
Ahmad S, Das SK, Puri S. Crossover in growth laws for phase-separating binary fluids: molecular dynamics simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031140. [PMID: 22587071 DOI: 10.1103/physreve.85.031140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Pattern and dynamics during phase separation in a symmetrical binary (A+B) Lennard-Jones fluid are studied via molecular dynamics simulations after quenching homogeneously mixed critical (50:50) systems to temperatures below the critical one. The morphology of the domains, rich in A or B particles, is observed to be bicontinuous. The early-time growth of the average domain size is found to be consistent with the Lifshitz-Slyozov law for diffusive domain coarsening. After a characteristic time, dependent on the temperature, we find a clear crossover to an extended viscous hydrodynamic regime where the domains grow linearly with time. Pattern formation in the present system is compared with that in solid binary mixtures, as a function of temperature. Important results for the finite-size and temperature effects on the small-wave-vector behavior of the scattering function are also presented.
Collapse
Affiliation(s)
- Shaista Ahmad
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post Office, Bangalore, India
| | | | | |
Collapse
|
36
|
Majumder S, Das SK. Diffusive domain coarsening: early time dynamics and finite-size effects. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021110. [PMID: 21928952 DOI: 10.1103/physreve.84.021110] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/21/2011] [Indexed: 05/31/2023]
Abstract
We study the diffusive dynamics of phase separation in a symmetric binary (A + B) mixture with a 50:50 composition of A and B particles, following a quench below the demixing critical temperature, both in spatial dimensions d=2 and d=3. The particular focus of this work is to obtain information about the effects of system size and correction to the growth law via the appropriate application of the finite-size scaling method to the results obtained from the Kawasaki exchange Monte Carlo simulation of the Ising model. Observations of only weak size effects and a very small correction to scaling in the growth law are significant. The methods used in this work and information thus gathered will be useful in the study of the kinetics of phase separation in fluids and other problems of growing length scale. We also provide a detailed discussion of the standard methods of understanding simulation results which may lead to inappropriate conclusions.
Collapse
Affiliation(s)
- Suman Majumder
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | | |
Collapse
|
37
|
Ahmad S, Das SK, Puri S. Kinetics of phase separation in fluids: a molecular dynamics study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:040107. [PMID: 21230227 DOI: 10.1103/physreve.82.040107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Indexed: 05/30/2023]
Abstract
We present results from extensive three-dimensional molecular dynamics (MD) simulations of phase separation kinetics in fluids. A coarse-graining procedure is used to obtain state-of-the-art MD results. We observe an extended period of temporally linear growth in the viscous hydrodynamic regime. The morphological similarity of coarsening in fluids and solids is also quantified. The velocity field is characterized by the presence of monopolelike defects, which yield a generalized Porod tail in the corresponding structure factor.
Collapse
Affiliation(s)
- Shaista Ahmad
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | | | | |
Collapse
|