1
|
Chen Y, Zhang Q, Ramakrishnan S, Leheny RL. Memory in aging colloidal gels with time-varying attraction. J Chem Phys 2023; 158:024906. [PMID: 36641382 DOI: 10.1063/5.0126432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We report a combined rheology, x-ray photon correlation spectroscopy, and modeling study of gel formation and aging in suspensions of nanocolloidal spheres with volume fractions of 0.20 and 0.43 and with a short-range attraction whose strength is tuned by changing temperature. Following a quench from high temperature, where the colloids are essentially hard spheres, to a temperature below the gel point, the suspensions form gels that undergo aging characterized by a steadily increasing elastic shear modulus and slowing, increasingly constrained microscopic dynamics. The aging proceeds at a faster rate for stronger attraction strength. When the attraction strength is suddenly lowered during aging, the gel properties evolve non-monotonically in a manner resembling the Kovacs effect in glasses, in which the modulus decreases and the microscopic dynamics become less constrained for a period before more conventional aging resumes. Eventually, the properties of the gel following the decrease in attraction strength converge to those of a gel that has undergone aging at the lower attraction strength throughout. The time scale of this convergence increases as a power law with the age at which the attraction strength is decreased and decreases exponentially with the magnitude of the change in attraction. A model for gel aging in which particles attach and detach from the gel at rates that depend on their contact number reproduces these trends and reveals that the non-monotonic behavior results from the dispersion in the rates that the populations of particles with different contact number adjust to the new attraction strength.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Qingteng Zhang
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
2
|
Ragulskaya A, Starostin V, Begam N, Girelli A, Rahmann H, Reiser M, Westermeier F, Sprung M, Zhang F, Gutt C, Schreiber F. Reverse-engineering method for XPCS studies of non-equilibrium dynamics. IUCRJ 2022; 9:439-448. [PMID: 35844477 PMCID: PMC9252156 DOI: 10.1107/s2052252522004560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS) is a powerful tool in the investigation of dynamics covering a broad time and length scale. It has been widely used to probe dynamics for systems in both equilibrium and non-equilibrium states; in particular, for systems undergoing a phase transition where the structural growth kinetics and the microscopic dynamics are strongly intertwined. The resulting time-dependent dynamic behavior can be described using the two-time correlation function (TTC), which, however, often contains more interesting features than the component along the diagonal, and cannot be easily interpreted via the classical simulation methods. Here, a reverse engineering (RE) approach is proposed based on particle-based heuristic simulations. This approach is applied to an XPCS measurement on a protein solution undergoing a liquid-liquid phase separation. It is demonstrated that the rich features of experimental TTCs can be well connected with the key control parameters including size distribution, concentration, viscosity and mobility of domains. The dynamic information obtained from this RE analysis goes beyond the existing theory. The RE approach established in this work is applicable for other processes such as film growth, coarsening or evolving systems.
Collapse
Affiliation(s)
- Anastasia Ragulskaya
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Vladimir Starostin
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Nafisa Begam
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Anita Girelli
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Hendrik Rahmann
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
| | - Mario Reiser
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
- European X-ray free-electron laser GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Fajun Zhang
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Christian Gutt
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
3
|
Suman K, Wagner NJ. Anomalous rheological aging of a model thermoreversible colloidal gel following a thermal quench. J Chem Phys 2022; 157:024901. [DOI: 10.1063/5.0094237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We investigate the aging behavior in a well-studied model system comprised of a colloidal suspension of thermoreversible adhesive hard spheres (AHS) but thermally quenched below the gel transition to much larger depths than previously studied. The aging behavior in the model AHS system is monitored by small amplitude oscillatory shear rheology measurements conducted while rapidly quenching from liquid state at 40{degree sign}C to a temperature below the gel temperature and new, anomalous aging behaviors are observed. Shallow quenches lead to monotonic development of the elastic modulus with time consistent with prior reports for the development of a homogeneous gel (Gordon et al., Journal of Rheology 2017). However, for deeper quenches, a unique and new phenomenon is reported - namely after an initial rise in the modulus, a reproducible drop in modulus is observed, followed by a plateau in modulus value. This drop can be gradual or sudden, and the extent of the drop, both depends on quench depth. After this drop in modulus, AHS gel evolves toward a quench-path independent state over the experimental timescale. These effects of the extent of quenching on aging behavior is hypothesized to be a consequence of quenching into different underlying thermodynamic states of colloidal gels and the possible influence of the adhesive glass dynamical arrest for the deepest quenches. The research connects homogeneous gelation with heterogeneous gel formation due to phase separation and shows that the extent of quench can be used as an independent parameter to govern the rheological response of the arrested gel.
Collapse
Affiliation(s)
- Khushboo Suman
- Department of Chemical and Biomolecular Engineering, University of Delaware, United States of America
| | - Norman J Wagner
- Chemical & Bimolecular Engineering Department, University of Delaware Department of Chemical and Biomolecular Engineering, United States of America
| |
Collapse
|
4
|
Chen Y, Rogers SA, Narayanan S, Harden JL, Leheny RL. Microscopic ergodicity breaking governs the emergence and evolution of elasticity in glass-forming nanoclay suspensions. Phys Rev E 2020; 102:042619. [PMID: 33212706 DOI: 10.1103/physreve.102.042619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/10/2020] [Indexed: 11/07/2022]
Abstract
We report a study combining x-ray photon correlation spectroscopy (XPCS) with in situ rheology to investigate the microscopic dynamics and mechanical properties of aqueous suspensions of the synthetic hectorite clay Laponite, which is composed of charged, nanometer-scale, disk-shaped particles. The suspensions, with particle concentrations ranging from 3.25 to 3.75 wt %, evolve over time from a fluid to a soft glass that displays aging behavior. The XPCS measurements characterize the localization of the particles during the formation and aging of the soft-glass state. The fraction of localized particles, f_{0}, increases rapidly during the early formation stage and grows more slowly during subsequent aging, while the characteristic localization length r_{loc} steadily decreases. Despite the strongly varying rates of aging at different concentrations, both f_{0} and r_{loc} scale with the elastic shear modulus G^{'} in a manner independent of concentration. During the later aging stage, the scaling between r_{loc} and G^{'} agrees quantitatively with a prediction of naive mode coupling theory. Breakdown of agreement with the theory during the early formation stage indicates the prevalence of dynamic heterogeneity, suggesting the soft solid forms through precursors of dynamically localized clusters.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Simon A Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Champaign, Illinois 61801, USA
| | - Suresh Narayanan
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - James L Harden
- Department of Physics & CAMaR, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
5
|
Hill J, Campbell S, Carini G, Chen-Wiegart YCK, Chu Y, Fluerasu A, Fukuto M, Idir M, Jakoncic J, Jarrige I, Siddons P, Tanabe T, Yager KG. Future trends in synchrotron science at NSLS-II. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:374008. [PMID: 32568740 DOI: 10.1088/1361-648x/ab7b19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
In this paper, we summarize briefly some of the future trends in synchrotron science as seen at the National Synchrotron Light Source II, a new, low emittance source recently commissioned at Brookhaven National Laboratory. We touch upon imaging techniques, the study of dynamics, the increasing use of multimodal approaches, the vital importance of data science, and other enabling technologies. Each are presently undergoing a time of rapid change, driving the field of synchrotron science forward at an ever increasing pace. It is truly an exciting time and one in which Roger Cowley, to whom this journal issue is dedicated, would surely be both invigorated by, and at the heart of.
Collapse
Affiliation(s)
- John Hill
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Stuart Campbell
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Gabriella Carini
- Instrumentation Division (IO), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Yu-Chen Karen Chen-Wiegart
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
- Materials Science & Chemical Engineering, Stony Brook University, Stony Brook, NY, United States of America
| | - Yong Chu
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Andrei Fluerasu
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Masafumi Fukuto
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Mourad Idir
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Jean Jakoncic
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Ignace Jarrige
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Peter Siddons
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Toshi Tanabe
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, United States of America
| | - Kevin G Yager
- Center for Functional Nanomaterials (CFN), Brookhaven National Laboratory, Upton, NY, United States of America
| |
Collapse
|
6
|
Bahadur D, Zhang Q, Dufresne EM, Grybos P, Kmon P, Leheny RL, Maj P, Narayanan S, Szczygiel R, Swan JW, Sandy A, Ramakrishnan S. Evolution of structure and dynamics of thermo-reversible nanoparticle gels—A combined XPCS and rheology study. J Chem Phys 2019; 151:104902. [DOI: 10.1063/1.5111521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Divya Bahadur
- Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| | - Qingteng Zhang
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Eric M. Dufresne
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Pawel Grybos
- AGH University of Science and Technology, av. Mickiewicza 30, Krakow 30-059, Poland
| | - Piotr Kmon
- AGH University of Science and Technology, av. Mickiewicza 30, Krakow 30-059, Poland
| | - Robert L. Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Piotr Maj
- AGH University of Science and Technology, av. Mickiewicza 30, Krakow 30-059, Poland
| | - Suresh Narayanan
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Robert Szczygiel
- AGH University of Science and Technology, av. Mickiewicza 30, Krakow 30-059, Poland
| | - James W. Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alec Sandy
- X-Ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Subramanian Ramakrishnan
- Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| |
Collapse
|
7
|
Jahandideh H, Ganjeh-Anzabi P, Bryant SL, Trifkovic M. The Significance of Graphene Oxide-Polyacrylamide Interactions on the Stability and Microstructure of Oil-in-Water Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12870-12881. [PMID: 30266070 DOI: 10.1021/acs.langmuir.8b02288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The emulsification of oil in water by nanoparticles can be facilitated by the addition of costabilizers, such as polymers and surfactants. The enhanced properties of the resulting emulsions are usually attributed to nanoparticle/costabilizer synergy; however, the mechanism of this synergistic effect and its impacts on emulsion stability and microstructure remain unclear. Here, we study the synergistic interaction of graphene oxide (GO) and a high molecular weight anionic polyacrylamide (PAM) in stabilization of paraffin oil/water emulsion systems. We show that the addition of PAM reduces the amount of GO required to stabilize an emulsion significantly. In order to probe the synergistic effect of GO and PAM, we analytically analyze the oil-free GO and GO-PAM dispersions and directly image their morphology via Cryo-TEM and atomic force microscopy (AFM). X-ray diffraction results confirm the adsorption of PAM molecules onto GO sheets resulting in the formation of ultimate GO-PAM complexes. The adsorption phenomenon is a consequence of hydrogen bonding and acid-base interactions, conceivably leading to a resilient electron-donor-acceptor complex. The microstructure of emulsions is captured with two-color fluorescent microscopy and Cryo-TEM. The acquired images display the localization of GO-PAM complexes at the interface while large amount of GO-PAM flocs coexist at the interface and in between oil droplets. Localization of such complexes and flocs at the interface is found to be responsible for their slow creaming rates compared to their GO counterparts. Mechanical properties of both dispersions and emulsions are studied by shear rheology. Rheological measurements confirm that GO-PAM complexes have a higher desorption energy from the interface resulting in higher critical shear strain of GO-PAM emulsions. The results, with insights into both structure and rheology, form a foundational understanding for integration of other polymers and nanoparticles in emulsion systems, which enables efficient design of these systems for an application of interest.
Collapse
Affiliation(s)
- Heidi Jahandideh
- Department of Chemical and Petroleum Engineering , University of Calgary , 2500 University Drive N.W. , Calgary , Canada
| | - Pejman Ganjeh-Anzabi
- Department of Chemical and Petroleum Engineering , University of Calgary , 2500 University Drive N.W. , Calgary , Canada
| | - Steven L Bryant
- Department of Chemical and Petroleum Engineering , University of Calgary , 2500 University Drive N.W. , Calgary , Canada
| | - Milana Trifkovic
- Department of Chemical and Petroleum Engineering , University of Calgary , 2500 University Drive N.W. , Calgary , Canada
| |
Collapse
|
8
|
Harden JL, Guo H, Bertrand M, Shendruk TN, Ramakrishnan S, Leheny RL. Enhanced gel formation in binary mixtures of nanocolloids with short-range attraction. J Chem Phys 2018; 148:044902. [DOI: 10.1063/1.5007038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James L. Harden
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Hongyu Guo
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Martine Bertrand
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Tyler N. Shendruk
- Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32312, USA
| | - Robert L. Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
9
|
Senses E, Narayanan S, Mao Y, Faraone A. Nanoscale Particle Motion in Attractive Polymer Nanocomposites. PHYSICAL REVIEW LETTERS 2017; 119:237801. [PMID: 29286700 DOI: 10.1103/physrevlett.119.237801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 05/26/2023]
Abstract
Using x-ray photon correlation spectroscopy, we examined the slow nanoscale motion of silica nanoparticles individually dispersed in an entangled poly (ethylene oxide) melt at particle volume fractions up to 42%. The nanoparticles, therefore, serve as both fillers for the resulting attractive polymer nanocomposites and probes for the network dynamics therein. The results show that the particle relaxation closely follows the mechanical reinforcement in the nanocomposites only at the intermediate concentrations below the critical value for the chain confinement. Quite unexpectedly, the relaxation time of the particles does not further slow down at higher volume fractions-when all chains are practically on the nanoparticle interface-and decouples from the elastic modulus of the nanocomposites that further increases orders of magnitude.
Collapse
Affiliation(s)
- Erkan Senses
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg, Maryland 20899-8562 USA
- Department of Materials Science and Engineering, University of Maryland College Park, Maryland 20742-2115 USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yimin Mao
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg, Maryland 20899-8562 USA
- Department of Materials Science and Engineering, University of Maryland College Park, Maryland 20742-2115 USA
| | - Antonio Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology Gaithersburg, Maryland 20899-8562 USA
| |
Collapse
|
10
|
Chaudhuri P, Berthier L. Ultra-long-range dynamic correlations in a microscopic model for aging gels. Phys Rev E 2017; 95:060601. [PMID: 28709225 DOI: 10.1103/physreve.95.060601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Indexed: 06/07/2023]
Abstract
We use large-scale computer simulations to explore the nonequilibrium aging dynamics in a microscopic model for colloidal gels. We find that gelation resulting from a kinetically arrested phase separation is accompanied by "anomalous" particle dynamics revealed by superdiffusive particle motion and compressed exponential relaxation of time correlation functions. Spatiotemporal analysis of the dynamics reveals intermittent heterogeneities producing spatial correlations over extremely large length scales. Our study is a microscopically resolved model reproducing all features of the spontaneous aging dynamics observed experimentally in soft materials.
Collapse
Affiliation(s)
- Pinaki Chaudhuri
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600 113, India
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, Université Montpellier and CNRS, 34095 Montpellier, France
| |
Collapse
|
11
|
The rheological state of suspensions in varying the surface area of nano-silica particles and molecular weight of the poly(ethylene oxide) matrix. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4046-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Malkin AY, Kulichikhin VG. Structure and rheology of highly concentrated emulsions: a modern look. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4499] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Tajuelo J, Pastor JM, Martínez-Pedrero F, Vázquez M, Ortega F, Rubio RG, Rubio MA. Magnetic microwire probes for the magnetic rod interfacial stress rheometer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1410-1420. [PMID: 25495270 DOI: 10.1021/la5038316] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The magnetic needle interfacial shear rheometer is a valuable tool for the study of the mechanical properties of thin fluid films or monolayers. However, it is difficult to differentiate the interfacial and subphase contributions to the drag on the needle. In principle, the problem can be addressed by decreasing the needle diameter, which decreases the bulk contribution while the interfacial contribution remains essentially the same. Here we show the results obtained when using a new type of needle, that of magnetic microwires with diameter approximately 10 times thinner than for commercial needles. We show that the lower inertia of the microwires calls for a new calibration procedure. We propose such a new calibration procedure based on the flow field solution around the needle introduced in refs 1 and 2. By measuring thin silicone oil films with well-controlled interfacial viscosities as well as eicosanol (C20) and pentadecanoic acid (PDA, C15) Langmuir monolayers, we show that the new calibration method works well for standard needles as well as for the microwire probes. Moreover, we show that the analysis of the force terms contributing to the force on the needle helps to ascertain whether the measurements obtained are reliable for given surface shear viscosity values. We also show that the microwire probes have at least a 10-fold-lower resolution limit, allowing one to measure interfacial viscosities as low as 10(-7) N·m/s.
Collapse
Affiliation(s)
- J Tajuelo
- Departamento de Física Fundamental, Universidad Nacional de Educación a Distancia , 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Hsiao LC, Kang H, Ahn KH, Solomon MJ. Role of shear-induced dynamical heterogeneity in the nonlinear rheology of colloidal gels. SOFT MATTER 2014; 10:9254-9259. [PMID: 25323049 DOI: 10.1039/c4sm01375a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the effect of flow-induced dynamical heterogeneity on the nonlinear elastic modulus of weakly aggregated colloidal gels that have undergone yielding by an imposed step strain deformation. The gels are comprised of sterically stabilized poly(methyl methacrylate) colloids interacting through short-ranged depletion attractions. When a step strain of magnitude varying from γ = 0.1 to 80.0 is applied to the quiescent gels, we observe the development of a bimodal distribution in the single-particle van Hove self-correlation function. This distribution is consistent with the existence of a fast and slow subpopulation of colloids within sheared gels. We evaluate the effect of incorporating the properties of the slow, rigid subpopulation of the colloids into a recent mode coupling theory for the nonlinear elasticity of colloidal gels.
Collapse
Affiliation(s)
- Lilian C Hsiao
- Department of Chemical Engineering, University of Michigan, MI, USA.
| | | | | | | |
Collapse
|
15
|
Dudukovic NA, Zukoski CF. Nanoscale dynamics and aging of fibrous peptide-based gels. J Chem Phys 2014; 141:164905. [DOI: 10.1063/1.4899905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nikola A. Dudukovic
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles F. Zukoski
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14222, USA
| |
Collapse
|
16
|
Angelini R, Madsen A, Fluerasu A, Ruocco G, Ruzicka B. Aging behavior of the localization length in a colloidal glass. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.03.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Orsi D, Ruta B, Chushkin Y, Pucci A, Ruggeri G, Baldi G, Rimoldi T, Cristofolini L. Controlling the dynamics of a bidimensional gel above and below its percolation transition. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042308. [PMID: 24827252 DOI: 10.1103/physreve.89.042308] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 06/03/2023]
Abstract
The morphology and the microscopic internal dynamics of a bidimensional gel formed by spontaneous aggregation of gold nanoparticles confined at the water surface are investigated by a suite of techniques, including grazing-incidence x-ray photon correlation spectroscopy (GI-XPCS). The range of concentrations studied spans across the percolation transition for the formation of the gel. The dynamical features observed by GI-XPCS are interpreted in view of the results of microscopic imaging; an intrinsic link between the mechanical modulus and internal dynamics is demonstrated for all the concentrations. Our work presents an example of a transition from a stretched to a compressed correlation function actively controlled by quasistatically varying the relevant thermodynamic variable. Moreover, by applying a model proposed some time ago by Duri and Cipelletti [Europhys. Lett. 76, 972 (2006)] we are able to build a master curve for the shape parameter, whose scaling factor allows us to quantify a "long-time displacement length." This characteristic length is shown to converge, as the concentration is increased, to the "short-time localization length" determined by pseudo-Debye-Waller analysis of the initial contrast. Finally, the intrinsic dynamics of the system is then compared with that induced by means of a delicate mechanical perturbation applied to the interface.
Collapse
Affiliation(s)
- D Orsi
- Department of Physics and Earth Sciences, University of Parma, Viale Usberti 7/A, I-43124 Parma, Italy
| | - B Ruta
- European Synchrotron Radiation Facility, Boîte Postale 220, F-38043 Grenoble, France
| | - Y Chushkin
- European Synchrotron Radiation Facility, Boîte Postale 220, F-38043 Grenoble, France
| | - A Pucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, I-56126 Pisa, Italy
| | - G Ruggeri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, I-56126 Pisa, Italy
| | - G Baldi
- IMEM-CNR Institute, Parma Science Park, I-43124 Parma, Italy
| | - T Rimoldi
- Department of Physics and Earth Sciences, University of Parma, Viale Usberti 7/A, I-43124 Parma, Italy
| | - L Cristofolini
- Department of Physics and Earth Sciences, University of Parma, Viale Usberti 7/A, I-43124 Parma, Italy
| |
Collapse
|
18
|
Shin H, Schweizer KS. Self-consistent phonon theory of the crystallization and elasticity of attractive hard spheres. J Chem Phys 2013; 138:084510. [DOI: 10.1063/1.4792440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Jadrich R, Schweizer KS. Theory of kinetic arrest, elasticity, and yielding in dense binary mixtures of rods and spheres. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061503. [PMID: 23367954 DOI: 10.1103/physreve.86.061503] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 06/01/2023]
Abstract
We extend the quiescent and stressed versions of naïve mode coupling theory to treat the dynamical arrest, shear modulus, and absolute yielding of particle mixtures where one or more species is a nonrotating nonspherical object. The theory is applied in detail to dense isotropic "chemically matched" mixtures of variable aspect ratio rods and spheres that interact via repulsive and short range attractive site-site pair potentials. A remarkably rich ideal kinetic arrest behavior is predicted with up to eight "dynamical phases" emerging: an ergodic fluid, partially localized states where the spheres remain fluid but the rods can be a gel, repulsive glass or attractive glass, doubly localized glasses and gels, a porous rod gel plus sphere glass, and a narrow window where a type of rod glass and gel localization coexist. Dynamical complexity increases with rod length and the introduction of attractive forces between all species which both enhance gel network formation. Multiple dynamic reentrant features and triple points are predicted, and each dynamic phase has unique particle localization characteristics and mechanical properties. Orders of magnitude variation of the linear shear modulus and absolute yield stress are found as rod length, mixture composition and the detailed nature of interparticle attractions are varied. The interplay of total (high) mixture packing fraction and composition at fixed temperature is also briefly studied. The present work provides a foundation to study more complex rod-sphere mixtures of both biological and synthetic interest that include physical features such as interaction site size asymmetry, rod-sphere specific attractions, and/or Coulomb repulsion.
Collapse
Affiliation(s)
- Ryan Jadrich
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
20
|
Ehrburger-Dolle F, Morfin I, Bley F, Livet F, Heinrich G, Richter S, Piché L, Sutton M. XPCS Investigation of the Dynamics of Filler Particles in Stretched Filled Elastomers. Macromolecules 2012. [DOI: 10.1021/ma3013674] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Isabelle Morfin
- Univ. Grenoble 1/CNRS, LIPhy UMR 5588, Grenoble F-38041,
France
| | - Françoise Bley
- SIMaP, UMR 5266 Grenoble INP/CNRS/UJF, 38402 Saint Martin d’Hères,
France
| | - Frédéric Livet
- SIMaP, UMR 5266 Grenoble INP/CNRS/UJF, 38402 Saint Martin d’Hères,
France
| | - Gert Heinrich
- Leibniz-Institut für Polymerforschung Dresden, 010169 Dresden, Germany
| | - Sven Richter
- Leibniz-Institut für Polymerforschung Dresden, 010169 Dresden, Germany
| | - Luc Piché
- Physics Department, McGill University,
Montreal, Quebec H3A 2T8, Canada
| | - Mark Sutton
- Physics Department, McGill University,
Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|
21
|
|
22
|
Guo H, Ramakrishnan S, Harden JL, Leheny RL. Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations. J Chem Phys 2011; 135:154903. [DOI: 10.1063/1.3653380] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Yang J, Schweizer KS. Glassy dynamics and mechanical response in dense fluids of soft repulsive spheres. II. Shear modulus, relaxation-elasticity connections, and rheology. J Chem Phys 2011; 134:204909. [PMID: 21639479 DOI: 10.1063/1.3592565] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We apply the quiescent and mechanically driven versions of nonlinear Langevin equation theory to study how particle softness influences the shear modulus, the connection between shear elasticity and activated relaxation, and nonlinear rheology of the repulsive Hertzian contact model of dense soft sphere fluids. Below the soft jamming threshold, the shear modulus follows a power law dependence on volume fraction over a narrow interval with an apparent exponent that grows with particle stiffness. To a first approximation, the elastic modulus and transient localization length are controlled by a single coupling constant determined by local fluid structure. In contrast to the behavior of hard spheres, an approximately linear relation between the shear modulus and activation barrier is predicted. This connection has recently been observed for microgel suspensions and provides a microscopic realization of the elastic shoving model. Yielding, shear and stress thinning of the alpha relaxation time and viscosity, and flow curves are also studied. Yield strains are relatively weakly dependent on volume fraction and particle stiffness. Shear thinning commences at values of the effective Peclet number far less than unity, a signature of stress-assisted activated relaxation when barriers are high. Apparent power law reduction of the viscosity with shear rate is predicted with a thinning exponent less than unity. In the vicinity of the soft jamming threshold, a power law flow curve occurs over an intermediate reduced shear rate range with an apparent exponent that decreases as fluid volume fraction and/or repulsion strength increase.
Collapse
Affiliation(s)
- Jian Yang
- Department of Materials Science and Frederick Seitz Materials Research Laboratory, University of Illinois, 1304 W. Green Street, Urbana, Illinois 61801, USA
| | | |
Collapse
|