1
|
Rassier DE, Månsson A. Mechanisms of myosin II force generation: insights from novel experimental techniques and approaches. Physiol Rev 2025; 105:1-93. [PMID: 38451233 DOI: 10.1152/physrev.00014.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Myosin II is a molecular motor that converts chemical energy derived from ATP hydrolysis into mechanical work. Myosin II isoforms are responsible for muscle contraction and a range of cell functions relying on the development of force and motion. When the motor attaches to actin, ATP is hydrolyzed and inorganic phosphate (Pi) and ADP are released from its active site. These reactions are coordinated with changes in the structure of myosin, promoting the so-called "power stroke" that causes the sliding of actin filaments. The general features of the myosin-actin interactions are well accepted, but there are critical issues that remain poorly understood, mostly due to technological limitations. In recent years, there has been a significant advance in structural, biochemical, and mechanical methods that have advanced the field considerably. New modeling approaches have also allowed researchers to understand actomyosin interactions at different levels of analysis. This paper reviews recent studies looking into the interaction between myosin II and actin filaments, which leads to power stroke and force generation. It reviews studies conducted with single myosin molecules, myosins working in filaments, muscle sarcomeres, myofibrils, and fibers. It also reviews the mathematical models that have been used to understand the mechanics of myosin II in approaches focusing on single molecules to ensembles. Finally, it includes brief sections on translational aspects, how changes in the myosin motor by mutations and/or posttranslational modifications may cause detrimental effects in diseases and aging, among other conditions, and how myosin II has become an emerging drug target.
Collapse
Affiliation(s)
- Dilson E Rassier
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Alf Månsson
- Physiology, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Kimmig F, Caruel M, Chapelle D. Varying thin filament activation in the framework of the Huxley'57 model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3655. [PMID: 36210493 DOI: 10.1002/cnm.3655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/29/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Muscle contraction is triggered by the activation of the actin sites of the thin filament by calcium ions. It results that the thin filament activation level varies over time. Moreover, this activation process is also used as a regulation mechanism of the developed force. Our objective is to build a model of varying actin site activation level within the classical Huxley'57 two-state framework. This new model is obtained as an enhancement of a previously proposed formulation of the varying thick filament activation within the same framework. We assume that the state of an actin site depends on whether it is activated and whether it forms a cross-bridge with the associated myosin head, which results in four possible states. The transitions between the actin site states are controlled by the global actin sites activation level and the dynamics of these transitions is coupled with the attachment-detachment process. A preliminary calibration of the model with experimental twitch contraction data obtained at varying sarcomere lengths is performed.
Collapse
Affiliation(s)
- François Kimmig
- LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Palaiseau, France
| | - Matthieu Caruel
- CNRS, UMR 8208, MSME, Univ Paris Est Creteil, Univ Gustave Eiffel, Créteil, France
| | - Dominique Chapelle
- LMS, École Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France
- Inria, Palaiseau, France
| |
Collapse
|
3
|
Staniscia F, Truskinovsky L. Passive viscoelastic response of striated muscles. SOFT MATTER 2022; 18:3226-3233. [PMID: 35388379 DOI: 10.1039/d1sm01527c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Muscle cells with sarcomeric structure exhibit highly non trivial passive mechanical response. The difficulty of its continuum modeling is due to the presence of long-range interactions transmitted by extended protein skeleton. To build a rheological model for muscle 'material', we use a stochastic micromodel, and derive a linear response theory for a half-sarcomere, which can be extended to the whole fibre. Instead of the first order rheological equation, anticipated by Hill on the phenomenological grounds, we obtain a novel second order equation which shows that tension depends not only on its current length and the velocity of stretching, but also on its acceleration. Expressing the model in terms of elementary rheological elements, we show that one contribution to the visco-elastic properties of the fibre originates in cross-bridges, while the other can be linked to inert elements which move in the sarcoplasm. We apply this model to explain the striking qualitative difference between the relaxation in experiments involving perturbation of length vs. those involving perturbation of force, and we use the values of the microscopic parameters for frog muscles to show that the model is in excellent quantitative agreement with physiological experiments.
Collapse
Affiliation(s)
| | - Lev Truskinovsky
- PMMH, CNRS - UMR 7636 PSL-ESPCI, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
4
|
Marcucci L, Fukunaga H, Yanagida T, Iwaki M. The Synergic Role of Actomyosin Architecture and Biased Detachment in Muscle Energetics: Insights in Cross Bridge Mechanism Beyond the Lever-Arm Swing. Int J Mol Sci 2021; 22:ijms22137037. [PMID: 34210098 PMCID: PMC8269045 DOI: 10.3390/ijms22137037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 02/04/2023] Open
Abstract
Muscle energetics reflects the ability of myosin motors to convert chemical energy into mechanical energy. How this process takes place remains one of the most elusive questions in the field. Here, we combined experimental measurements of in vitro sliding velocity based on DNA-origami built filaments carrying myosins with different lever arm length and Monte Carlo simulations based on a model which accounts for three basic components: (i) the geometrical hindrance, (ii) the mechano-sensing mechanism, and (iii) the biased kinetics for stretched or compressed motors. The model simulations showed that the geometrical hindrance due to acto-myosin spatial mismatching and the preferential detachment of compressed motors are synergic in generating the rapid increase in the ATP-ase rate from isometric to moderate velocities of contraction, thus acting as an energy-conservation strategy in muscle contraction. The velocity measurements on a DNA-origami filament that preserves the motors’ distribution showed that geometrical hindrance and biased detachment generate a non-zero sliding velocity even without rotation of the myosin lever-arm, which is widely recognized as the basic event in muscle contraction. Because biased detachment is a mechanism for the rectification of thermal fluctuations, in the Brownian-ratchet framework, we predict that it requires a non-negligible amount of energy to preserve the second law of thermodynamics. Taken together, our theoretical and experimental results elucidate less considered components in the chemo-mechanical energy transduction in muscle.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Center for Biosystems Dynamics Research, RIKEN, Suita 5650874, Japan; (T.Y.); (M.I.)
- Correspondence:
| | - Hiroki Fukunaga
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan;
| | - Toshio Yanagida
- Center for Biosystems Dynamics Research, RIKEN, Suita 5650874, Japan; (T.Y.); (M.I.)
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan;
- Center for Information and Neural Networks, NICT, Suita 5650871, Japan
| | - Mitsuhiro Iwaki
- Center for Biosystems Dynamics Research, RIKEN, Suita 5650874, Japan; (T.Y.); (M.I.)
- Graduate School of Frontier Biosciences, Osaka University, Suita 5650871, Japan;
| |
Collapse
|
5
|
Regazzoni F, Dedè L, Quarteroni A. Biophysically detailed mathematical models of multiscale cardiac active mechanics. PLoS Comput Biol 2020; 16:e1008294. [PMID: 33027247 PMCID: PMC7571720 DOI: 10.1371/journal.pcbi.1008294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/19/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
We propose four novel mathematical models, describing the microscopic mechanisms of force generation in the cardiac muscle tissue, which are suitable for multiscale numerical simulations of cardiac electromechanics. Such models are based on a biophysically accurate representation of the regulatory and contractile proteins in the sarcomeres. Our models, unlike most of the sarcomere dynamics models that are available in the literature and that feature a comparable richness of detail, do not require the time-consuming Monte Carlo method for their numerical approximation. Conversely, the models that we propose only require the solution of a system of PDEs and/or ODEs (the most reduced of the four only involving 20 ODEs), thus entailing a significant computational efficiency. By focusing on the two models that feature the best trade-off between detail of description and identifiability of parameters, we propose a pipeline to calibrate such parameters starting from experimental measurements available in literature. Thanks to this pipeline, we calibrate these models for room-temperature rat and for body-temperature human cells. We show, by means of numerical simulations, that the proposed models correctly predict the main features of force generation, including the steady-state force-calcium and force-length relationships, the length-dependent prolongation of twitches and increase of peak force, the force-velocity relationship. Moreover, they correctly reproduce the Frank-Starling effect, when employed in multiscale 3D numerical simulation of cardiac electromechanics.
Collapse
Affiliation(s)
- Francesco Regazzoni
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Dedè
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alfio Quarteroni
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
- Mathematics Institute, École Polytechnique Fédérale de Lausanne, Av. Piccard, CH-1015 Lausanne, Switzerland (Professor Emeritus)
| |
Collapse
|
6
|
Regazzoni F, Dedè L, Quarteroni A. Active Force Generation in Cardiac Muscle Cells: Mathematical Modeling and Numerical Simulation of the Actin-Myosin Interaction. VIETNAM JOURNAL OF MATHEMATICS 2020; 49:87-118. [PMID: 34722731 PMCID: PMC8549950 DOI: 10.1007/s10013-020-00433-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/21/2020] [Indexed: 06/13/2023]
Abstract
Cardiac in silico numerical simulations are based on mathematical models describing the physical processes involved in the heart function. In this review paper, we critically survey biophysically-detailed mathematical models describing the subcellular mechanisms behind the generation of active force, that is the process by which the chemical energy of ATP (adenosine triphosphate) is transformed into mechanical work, thus making the muscle tissue contract. While presenting these models, that feature different levels of biophysical detail, we analyze the trade-off between the accuracy in the description of the subcellular mechanisms and the number of parameters that need to be estimated from experiments. Then, we focus on a generalized version of the classic Huxley model, built on the basis of models available in the literature, that is able to reproduce the main experimental characterizations associated to the time scales typical of a heartbeat-such as the force-velocity relationship and the tissue stiffness in response to small steps-featuring only four independent parameters. Finally, we show how those parameters can be calibrated starting from macroscopic measurements available from experiments.
Collapse
Affiliation(s)
- Francesco Regazzoni
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Dedè
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alfio Quarteroni
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
- Mathematics Institute, École Polytechnique Fédérale de Lausanne (EPFL), Av. Piccard, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Kimmig F, Caruel M. Hierarchical modeling of force generation in cardiac muscle. Biomech Model Mechanobiol 2020; 19:2567-2601. [PMID: 32681201 DOI: 10.1007/s10237-020-01357-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/10/2020] [Indexed: 11/25/2022]
Abstract
Performing physiologically relevant simulations of the beating heart in clinical context requires to develop detailed models of the microscale force generation process. These models, however, may reveal difficult to implement in practice due to their high computational costs and complex calibration. We propose a hierarchy of three interconnected muscle contraction models-from the more refined to the more simplified-that are rigorously and systematically related to each other, offering a way to select, for a specific application, the model that yields a good trade-off between physiological fidelity, computational cost and calibration complexity. The three model families are compared to the same set of experimental data to systematically assess what physiological indicators can be reproduced or not and how these indicators constrain the model parameters. Finally, we discuss the applicability of these models for heart simulation.
Collapse
Affiliation(s)
- François Kimmig
- LMS, CNRS, École polytechnique, Institut Polytechnique de Paris, Paris, France.
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France.
| | | |
Collapse
|
8
|
Maffei M, Beneventi D, Canepari M, Bottinelli R, Pavone FS, Capitanio M. Ultra-fast force-clamp spectroscopy data on the interaction between skeletal muscle myosin and actin. Data Brief 2019; 25:104017. [PMID: 31223637 PMCID: PMC6565606 DOI: 10.1016/j.dib.2019.104017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 11/18/2022] Open
Abstract
Ultrafast force-clamp spectroscopy is a single molecule technique based on laser tweezers with sub-millisecond and sub-nanometer resolution. The technique has been successfully applied to investigate the rapid conformational changes that occur when a myosin II motor from skeletal muscle interacts with an actin filament. Here, we share data on the kinetics of such interaction and experimental records collected under different forces [1]. The data can be valuable for researchers interested in the mechanosensitive properties of myosin II, both from an experimental and modeling point of view. The data is related to the research article “ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke” [2].
Collapse
Affiliation(s)
- Manuela Maffei
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Diego Beneventi
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Francesco Saverio Pavone
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics–National Research Council, Largo Fermi 6, 50125 Florence, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
- Corresponding author. LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
9
|
Borja da Rocha H, Truskinovsky L. Functionality of Disorder in Muscle Mechanics. PHYSICAL REVIEW LETTERS 2019; 122:088103. [PMID: 30932585 DOI: 10.1103/physrevlett.122.088103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 01/12/2018] [Indexed: 06/09/2023]
Abstract
A salient feature of skeletal muscles is their ability to take up an applied slack in a microsecond timescale. Behind this fast adaptation is a collective folding in a bundle of elastically interacting bistable elements. Since this interaction has a long-range character, the behavior of the system in force and length controlled ensembles is different; in particular, it can have two distinct order-disorder-type critical points. We show that the account of the disregistry between myosin and actin filaments places the elementary force-producing units of skeletal muscles close to both such critical points. The ensuing "double criticality" contributes to the system's ability to perform robustly and suggests that the disregistry is functional.
Collapse
Affiliation(s)
- Hudson Borja da Rocha
- LMS, CNRS-UMR 7649, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau, France
- PMMH, CNRS-UMR 7636 PSL-ESPCI, 10 Rue Vauquelin, 75005 Paris, France
| | - Lev Truskinovsky
- PMMH, CNRS-UMR 7636 PSL-ESPCI, 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
10
|
Caruel M, Moireau P, Chapelle D. Stochastic modeling of chemical–mechanical coupling in striated muscles. Biomech Model Mechanobiol 2019; 18:563-587. [DOI: 10.1007/s10237-018-1102-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/21/2018] [Indexed: 01/15/2023]
|
11
|
Including Thermal Fluctuations in Actomyosin Stable States Increases the Predicted Force per Motor and Macroscopic Efficiency in Muscle Modelling. PLoS Comput Biol 2016; 12:e1005083. [PMID: 27626630 PMCID: PMC5023195 DOI: 10.1371/journal.pcbi.1005083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/27/2016] [Indexed: 11/19/2022] Open
Abstract
Muscle contractions are generated by cyclical interactions of myosin heads with actin filaments to form the actomyosin complex. To simulate actomyosin complex stable states, mathematical models usually define an energy landscape with a corresponding number of wells. The jumps between these wells are defined through rate constants. Almost all previous models assign these wells an infinite sharpness by imposing a relatively simple expression for the detailed balance, i.e., the ratio of the rate constants depends exponentially on the sole myosin elastic energy. Physically, this assumption corresponds to neglecting thermal fluctuations in the actomyosin complex stable states. By comparing three mathematical models, we examine the extent to which this hypothesis affects muscle model predictions at the single cross-bridge, single fiber, and organ levels in a ceteris paribus analysis. We show that including fluctuations in stable states allows the lever arm of the myosin to easily and dynamically explore all possible minima in the energy landscape, generating several backward and forward jumps between states during the lifetime of the actomyosin complex, whereas the infinitely sharp minima case is characterized by fewer jumps between states. Moreover, the analysis predicts that thermal fluctuations enable a more efficient contraction mechanism, in which a higher force is sustained by fewer attached cross-bridges. Mathematical models are of fundamental importance in the quantitative verification of biological hypotheses. Muscle contraction models assume the existence of several stable states for the myosin head, whereas the transition rates between states are defined to fit experimental data. The ratio of the forward and backward rates is linked to the ratio of the probabilities of being in one or other stable state at equilibrium through a detailed balance condition. A commonly used assumption leads to a relatively simple expression for this balance condition that depends only on the values of the energy at the minima and not on the minima shape. Mathematically, this hypothesis corresponds to infinite sharpness at these minima; physically, it neglects the small thermal fluctuations within actomyosin stable states. In this work, we compare this classical approach with a model that includes thermal fluctuations within wide minima, and quantitatively assess how much this hypothesis affects the model outcomes at the single molecule, single fiber, and whole heart levels. It is shown that, using parameters compatible with known behavior in muscle mechanics, relaxing the infinitely sharp minima hypothesis improves the predicted force generation and efficiency at the macroscopic level.
Collapse
|
12
|
Caruel M, Truskinovsky L. Statistical mechanics of the Huxley-Simmons model. Phys Rev E 2016; 93:062407. [PMID: 27415298 DOI: 10.1103/physreve.93.062407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Indexed: 06/06/2023]
Abstract
The chemomechanical model of Huxley and Simmons (HS) [A. F. Huxley and R. M. Simmons, Nature 233, 533 (1971)NATUAS0028-083610.1038/233533a0] provides a paradigmatic description of mechanically induced collective conformational changes relevant in a variety of biological contexts, from muscles power stroke and hair cell gating to integrin binding and hairpin unzipping. We develop a statistical mechanical perspective on the HS model by exploiting a formal analogy with a paramagnetic Ising model. We first study the equilibrium HS model with a finite number of elements and compute explicitly its mechanical and thermal properties. To model kinetics, we derive a master equation and solve it for several loading protocols. The developed formalism is applicable to a broad range of allosteric systems with mean-field interactions.
Collapse
Affiliation(s)
- M Caruel
- MSME, CNRS-UMR 8208, 61 Avenue du Général de Gaulle, 94010 Créteil, France
| | - L Truskinovsky
- LMS, CNRS-UMR 7649, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| |
Collapse
|
13
|
Sheshka R, Recho P, Truskinovsky L. Rigidity generation by nonthermal fluctuations. Phys Rev E 2016; 93:052604. [PMID: 27300948 DOI: 10.1103/physreve.93.052604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Indexed: 06/06/2023]
Abstract
Active stabilization in systems with zero or negative stiffness is an essential element of a wide variety of biological processes. We study a prototypical example of this phenomenon and show how active rigidity, interpreted as a formation of a pseudowell in the effective energy landscape, can be generated in an overdamped stochastic system. We link the transition from negative to positive rigidity with time correlations in the additive noise, and we show that subtle differences in the out-of-equilibrium driving may compromise the emergence of a pseudowell.
Collapse
Affiliation(s)
- R Sheshka
- LITEN, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble, France
| | - P Recho
- Mathematical Institute, University of Oxford, Oxford OX26GG, United Kingdom
- Engineering Department, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - L Truskinovsky
- LMS, CNRS-UMR 7649, École Polytechnique, 91128 Palaiseau, France
- Physique et Mecanique des Milieux Heterogenes CNRS -- UMR 7636 ESPCI ParisTech 10 Rue Vauquelin, 75005 Paris, France
| |
Collapse
|
14
|
Chabiniok R, Wang VY, Hadjicharalambous M, Asner L, Lee J, Sermesant M, Kuhl E, Young AA, Moireau P, Nash MP, Chapelle D, Nordsletten DA. Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus 2016; 6:20150083. [PMID: 27051509 PMCID: PMC4759748 DOI: 10.1098/rsfs.2015.0083] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
With heart and cardiovascular diseases continually challenging healthcare systems worldwide, translating basic research on cardiac (patho)physiology into clinical care is essential. Exacerbating this already extensive challenge is the complexity of the heart, relying on its hierarchical structure and function to maintain cardiovascular flow. Computational modelling has been proposed and actively pursued as a tool for accelerating research and translation. Allowing exploration of the relationships between physics, multiscale mechanisms and function, computational modelling provides a platform for improving our understanding of the heart. Further integration of experimental and clinical data through data assimilation and parameter estimation techniques is bringing computational models closer to use in routine clinical practice. This article reviews developments in computational cardiac modelling and how their integration with medical imaging data is providing new pathways for translational cardiac modelling.
Collapse
Affiliation(s)
- Radomir Chabiniok
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas’ Hospital, London SE1 7EH, UK
- Inria and Paris-Saclay University, Bâtiment Alan Turing, 1 rue Honoré d'Estienne d'Orves, Campus de l'Ecole Polytechnique, Palaiseau 91120, France
| | - Vicky Y. Wang
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds Street, Auckland, New Zealand
| | - Myrianthi Hadjicharalambous
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas’ Hospital, London SE1 7EH, UK
| | - Liya Asner
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas’ Hospital, London SE1 7EH, UK
| | - Jack Lee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas’ Hospital, London SE1 7EH, UK
| | - Maxime Sermesant
- Inria, Asclepios team, 2004 route des Lucioles BP 93, Sophia Antipolis Cedex 06902, France
| | - Ellen Kuhl
- Departments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford University, 496 Lomita Mall, Durand 217, Stanford, CA 94306, USA
| | - Alistair A. Young
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds Street, Auckland, New Zealand
| | - Philippe Moireau
- Inria and Paris-Saclay University, Bâtiment Alan Turing, 1 rue Honoré d'Estienne d'Orves, Campus de l'Ecole Polytechnique, Palaiseau 91120, France
| | - Martyn P. Nash
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds Street, Auckland, New Zealand
- Department of Engineering Science, University of Auckland, 70 Symonds Street, Auckland, New Zealand
| | - Dominique Chapelle
- Inria and Paris-Saclay University, Bâtiment Alan Turing, 1 rue Honoré d'Estienne d'Orves, Campus de l'Ecole Polytechnique, Palaiseau 91120, France
| | - David A. Nordsletten
- Division of Imaging Sciences and Biomedical Engineering, King's College London, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
15
|
Caruel M, Allain JM, Truskinovsky L. Muscle as a metamaterial operating near a critical point. PHYSICAL REVIEW LETTERS 2013; 110:248103. [PMID: 25165964 DOI: 10.1103/physrevlett.110.248103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Indexed: 06/03/2023]
Abstract
The passive mechanical response of skeletal muscles at fast time scales is dominated by long range interactions inducing cooperative behavior without breaking the detailed balance. This leads to such unusual "material properties" as negative equilibrium stiffness and different behavior in force and displacement controlled loading conditions. Our fitting of experimental data suggests that "muscle material" is finely tuned to perform close to a critical point which explains large fluctuations observed in muscles close to the stall force.
Collapse
Affiliation(s)
- M Caruel
- Inria, 1 rue Honoré d'Estienne d'Orves, 91120 Palaiseau, France and LMS, CNRS-UMR 7649, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - J-M Allain
- LMS, CNRS-UMR 7649, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - L Truskinovsky
- LMS, CNRS-UMR 7649, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| |
Collapse
|
16
|
Chen B, Gao H. Motor force homeostasis in skeletal muscle contraction. Biophys J 2011; 101:396-403. [PMID: 21767492 PMCID: PMC3136795 DOI: 10.1016/j.bpj.2011.05.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/09/2011] [Accepted: 05/31/2011] [Indexed: 01/13/2023] Open
Abstract
In active biological contractile processes such as skeletal muscle contraction, cellular mitosis, and neuronal growth, an interesting common observation is that multiple motors can perform coordinated and synchronous actions, whereas individual myosin motors appear to randomly attach to and detach from actin filaments. Recent experiment has demonstrated that, during skeletal muscle shortening at a wide range of velocities, individual myosin motors maintain a force of ~6 pN during a working stroke. To understand how such force-homeostasis can be so precisely regulated in an apparently chaotic system, here we develop a molecular model within a coupled stochastic-elastic theoretical framework. The model reveals that the unique force-stretch relation of myosin motor and the stochastic behavior of actin-myosin binding cause the average number of working motors to increase in linear proportion to the filament load, so that the force on each working motor is regulated at ~6 pN, in excellent agreement with experiment. This study suggests that it might be a general principle to use catch bonds together with a force-stretch relation similar to that of myosin motors to regulate force homeostasis in many biological processes.
Collapse
Affiliation(s)
- Bin Chen
- Engineering Mechanics, Institute of High Performance Computing, A∗STAR, Singapore
| | - Huajian Gao
- School of Engineering, Brown University, Providence, Rhode Island
| |
Collapse
|
17
|
Marcucci L, Truskinovsky L. Muscle contraction: A mechanical perspective. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 32:411-418. [PMID: 20821341 DOI: 10.1140/epje/i2010-10641-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 07/13/2010] [Indexed: 05/29/2023]
Abstract
In this paper we present a purely mechanical analog of the conventional chemo-mechanical modeling of muscle contraction. We abandon the description of kinetics of the power stroke in terms of jump processes and instead resolve the continuous stochastic evolution on an appropriate energy landscape. In general physical terms, we replace hard spin chemical variables by soft spin variables representing mechanical snap-springs. This allows us to treat the case of small and even disappearing barriers and, more importantly, to incorporate the mechanical representation of the power stroke into the theory of Brownian ratchets. The model provides the simplest non-chemical description for the main stages of the biochemical Lymn-Taylor cycle and may be used as a basis for the artificial micro-mechanical reproduction of the muscle contraction mechanism.
Collapse
Affiliation(s)
- L Marcucci
- CNRS-UMR, Ecole Polytechnique, Palaiseau, France.
| | | |
Collapse
|