1
|
Yamada R, Ohno M. Atomistic simulation model on a diffusive timescale based on the extension of the cluster-activation method to continuous space. Phys Rev E 2023; 107:045307. [PMID: 37198861 DOI: 10.1103/physreve.107.045307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Recently the phase-field crystal method has attracted considerable attention because it can simulate the atomic behavior of a system on a diffusive timescale. In this study an atomistic simulation model is proposed, which is an extension of the cluster-activation method (CAM) from discrete to continuous space. This approach, called the continuous CAM, can simulate various physical phenomena of atomistic systems on diffusive timescales and employs well-defined atomistic properties, such as interatomic interaction energies, as the main input parameters. The versatility of the continuous CAM was investigated by performing simulations of crystal growth in an undercooled melt, homogeneous nucleation during solidification, and formation of grain boundaries in pure metal.
Collapse
Affiliation(s)
- Ryo Yamada
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Munekazu Ohno
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
2
|
The Response Mechanism of Crystal Orientation to Grain Boundary Dislocation under Uniaxial Strain: A Phase-Field-Crystal Study. METALS 2022. [DOI: 10.3390/met12050712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An exploration of dislocation microstructure evolution with different misorientation angles was performed using phase field crystal method (PFC). The microcosmic evolution process of grain boundaries under external stress, as well as the corresponding energy curve and stress–strain curve, are analyzed. The relationship between the misorientation angle and the dislocations emission frequency is discussed. Three forms of dislocations reaction on the evolution process of 6°and 10° are analyzed in detail, which are respectively type I semi-annihilation, type II semi-annihilationand full-annihilation. Among them, the nature of type I semi-annihilation is a combination of dislocation and a single edge dislocation reaction with a single edge dislocation left. The essence of type II semi-annihilation is a pair of dislocation and the other pair of dislocation reaction leaving two edge dislocations. The essence of full-annihilation is that two pairs of dislocations or single edge dislocations with opposite Burger vectors react with each other and the distortion area disappears. When the misorientation angle is 10°, the dislocation reaction and the dislocation motion ability of the system are stronger than 6°. The peak of the energy curve is related to the number of dislocation proliferations in the evolution process. An emission frequency and average density of dislocations of 10° is greater than 6°. The causes of plastic deformation are revealed to a certain extent by stress–strain curves.
Collapse
|
3
|
Wang ZL, Liu Z, Duan W, Huang ZF. Control of phase ordering and elastic properties in phase field crystals through three-point direct correlation. Phys Rev E 2022; 105:044802. [PMID: 35590643 DOI: 10.1103/physreve.105.044802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Effects of three-point direct correlation on properties of the phase field crystal (PFC) modeling are examined for the control of various ordered and disordered phases and their coexistence in both three-dimensional and two-dimensional systems. Such effects are manifested via the corresponding gradient nonlinearity in the PFC free-energy functional that is derived from classical density functional theory. Their significant impacts on the stability regimes of ordered phases, phase diagrams, and elastic properties of the system, as compared to those of the original PFC model, are revealed through systematic analyses and simulations. The nontrivial contribution from three-point direct correlation leads to the variation of the critical point of order-disorder transition to which all the phase boundaries in the temperature-density phase diagram converge. It also enables the variation and control of system elastic constants over a substantial range as needed in modeling different types of materials with the same crystalline structure but different elastic properties. The capability of this PFC approach in modeling both solid and soft matter systems is further demonstrated through the effect of three-point correlation on controlling the vapor-liquid-solid coexistence and transitions for body-centered cubic phase and on achieving the liquid-stripe or liquid-lamellar phase coexistence. All these provide a valuable and efficient method for the study of structural ordering and evolution in various types of material systems.
Collapse
Affiliation(s)
- Zi-Le Wang
- Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenhui Duan
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
4
|
Efficient Fully Discrete Finite-Element Numerical Scheme with Second-Order Temporal Accuracy for the Phase-Field Crystal Model. MATHEMATICS 2022. [DOI: 10.3390/math10010155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper, we consider numerical approximations of the Cahn–Hilliard type phase-field crystal model and construct a fully discrete finite element scheme for it. The scheme is the combination of the finite element method for spatial discretization and an invariant energy quadratization method for time marching. It is not only linear and second-order time-accurate, but also unconditionally energy-stable. We prove the unconditional energy stability rigorously and further carry out various numerical examples to demonstrate the stability and the accuracy of the developed scheme numerically.
Collapse
|
5
|
Kim JH, Kim JK, Liu J, Curcio A, Jang JS, Kim ID, Ciucci F, Jung W. Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives. ACS NANO 2021; 15:81-110. [PMID: 33370099 DOI: 10.1021/acsnano.0c07105] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Supported metal catalysts represent one of the major milestones in heterogeneous catalysis. Such catalytic systems are feasible for use in a broad range of applications, including renewable energy devices, sensors, automotive emission control systems, and chemical reformers. The lifetimes of these catalytic platforms depend strongly on the stability of the supported nanoparticles. With this regard, nanoparticles synthesized via ex-solution process emphasize exceptional robustness as they are socketed in the host oxide. Ex-solution refers to a phenomenon which yields selective growth of fine and uniformly distributed metal nanocatalysts on oxide supports upon partial reduction. This type of advanced structural engineering is a game-changer in the field of heterogeneous catalysis with numerous studies showing the benefits of ex-solution process. In this review, we highlight the latest research efforts regarding the origin of the ex-solution phenomenon and the mechanism underpinning particle formation. We also propose research directions to expand the utility and functionality of the current ex-solution techniques.
Collapse
Affiliation(s)
- Jun Hyuk Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Kyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jiapeng Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Antonino Curcio
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Francesco Ciucci
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Ankudinov V, Elder KR, Galenko PK. Traveling waves of the solidification and melting of cubic crystal lattices. Phys Rev E 2020; 102:062802. [PMID: 33466054 DOI: 10.1103/physreve.102.062802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/04/2020] [Indexed: 11/07/2022]
Abstract
Using the phase field crystal model (PFC model), an analysis of slow and fast dynamics of solid-liquid interfaces in solidification and melting processes is presented. Dynamical regimes for cubic lattices invading metastable liquids (solidification) and liquids propagating into metastable crystals (melting) are described in terms of the evolving amplitudes of the density field. Dynamical equations are obtained for body-centered cubic (bcc) and face-centered cubic (fcc) crystal lattices in one- and two-mode approximations. A universal form of the amplitude equations is obtained for the three-dimensional dynamics for different crystal lattices and crystallographic directions. Dynamics of the amplitude's propagation for different lattices and PFC mode's approximations is qualitatively compared. The traveling-wave velocity is quantitatively compared with data of molecular dynamics simulation previously obtained by Mendelev et al. [Modell. Simul. Mater. Sci. Eng. 18, 074002 (2010)MSMEEU0965-039310.1088/0965-0393/18/7/074002] for solidification and melting of the aluminum fcc lattice.
Collapse
Affiliation(s)
- V Ankudinov
- Vereshchagin Institute of High Pressure Physics, Russian Academy of Sciences, 108840 Moscow (Troitsk), Russia
| | - K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309-4487, USA
| | - P K Galenko
- Friedrich Schiller University of Jena, Faculty of Physics and Astronomy, Otto Schott Institute of Materials Research, 07743 Jena, Germany.,Ural Federal University, Theoretical and Mathematical Physics Department, Laboratory of Multi-Scale Mathematical Modeling, 620000 Ekaterinburg, Russia
| |
Collapse
|
7
|
Berčič M, Kugler G. Enabling simulations of grains within a full rotation range in amplitude expansion of the phase-field crystal model. Phys Rev E 2020; 101:043309. [PMID: 32422745 DOI: 10.1103/physreve.101.043309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2020] [Indexed: 11/07/2022]
Abstract
This paper introduces improvements to the amplitude expansion of the phase-field crystal model that enable the simulation of grains within a full range of orientations. The unphysical grain boundary between grains, rotated by a crystal's symmetry rotation, is removed using a combination of the auxiliary rotation field described in our previous work and an algorithm that correctly matches the complex amplitudes according to the differences in local rotation.
Collapse
Affiliation(s)
- Matjaž Berčič
- University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Materials and Metallurgy, Ljubljana, Slovenia
| | - Goran Kugler
- University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Materials and Metallurgy, Ljubljana, Slovenia
| |
Collapse
|
8
|
Archer AJ, Ratliff DJ, Rucklidge AM, Subramanian P. Deriving phase field crystal theory from dynamical density functional theory: Consequences of the approximations. Phys Rev E 2019; 100:022140. [PMID: 31574721 DOI: 10.1103/physreve.100.022140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 06/10/2023]
Abstract
Phase field crystal (PFC) theory is extensively used for modeling the phase behavior, structure, thermodynamics, and other related properties of solids. PFC theory can be derived from dynamical density functional theory (DDFT) via a sequence of approximations. Here, we carefully identify all of these approximations and explain the consequences of each. One approximation that is made in standard derivations is to neglect a term of form ∇·[n∇Ln], where n is the scaled density profile and L is a linear operator. We show that this term makes a significant contribution to the stability of the crystal, and that dropping this term from the theory forces another approximation, that of replacing the logarithmic term from the ideal gas contribution to the free energy with its truncated Taylor expansion, to yield a polynomial in n. However, the consequences of doing this are (i) the presence of an additional spinodal in the phase diagram, so the liquid is predicted first to freeze and then to melt again as the density is increased; and (ii) other periodic structures, such as stripes, are erroneously predicted to be thermodynamic equilibrium structures. In general, L consists of a nonlocal convolution involving the pair direct correlation function. A second approximation sometimes made in deriving PFC theory is to replace L with a gradient expansion involving derivatives. We show that this leads to the possibility of the density going to zero, with its logarithm going to -∞ while being balanced by the fourth derivative of the density going to +∞. This subtle singularity leads to solutions failing to exist above a certain value of the average density. We illustrate all of these conclusions with results for a particularly simple model two-dimensional fluid, the generalized exponential model of index 4 (GEM-4), chosen because a DDFT is known to be accurate for this model. The consequences of the subsequent PFC approximations can then be examined. These include the phase diagram being both qualitatively incorrect, in that it has a stripe phase, and quantitatively incorrect (by orders of magnitude) regarding the properties of the crystal phase. Thus, although PFC models are very successful as phenomenological models of crystallization, we find it impossible to derive the PFC as a theory for the (scaled) density distribution when starting from an accurate DDFT, without introducing spurious artifacts. However, we find that making a simple one-mode approximation for the logarithm of the density distribution lnρ(x) rather than for ρ(x) is surprisingly accurate. This approach gives a tantalizing hint that accurate PFC-type theories may instead be derived as theories for the field lnρ(x), rather than for the density profile itself.
Collapse
Affiliation(s)
- Andrew J Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Daniel J Ratliff
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | | | - Priya Subramanian
- School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
9
|
Savitz S, Babadi M, Lifshitz R. Multiple-scale structures: from Faraday waves to soft-matter quasicrystals. IUCRJ 2018; 5:247-268. [PMID: 29755742 PMCID: PMC5929372 DOI: 10.1107/s2052252518001161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/18/2018] [Indexed: 06/08/2023]
Abstract
For many years, quasicrystals were observed only as solid-state metallic alloys, yet current research is now actively exploring their formation in a variety of soft materials, including systems of macromolecules, nanoparticles and colloids. Much effort is being invested in understanding the thermodynamic properties of these soft-matter quasicrystals in order to predict and possibly control the structures that form, and hopefully to shed light on the broader yet unresolved general questions of quasicrystal formation and stability. Moreover, the ability to control the self-assembly of soft quasicrystals may contribute to the development of novel photonics or other applications based on self-assembled metamaterials. Here a path is followed, leading to quantitative stability predictions, that starts with a model developed two decades ago to treat the formation of multiple-scale quasiperiodic Faraday waves (standing wave patterns in vibrating fluid surfaces) and which was later mapped onto systems of soft particles, interacting via multiple-scale pair potentials. The article reviews, and substantially expands, the quantitative predictions of these models, while correcting a few discrepancies in earlier calculations, and presents new analytical methods for treating the models. In so doing, a number of new stable quasicrystalline structures are found with octagonal, octadecagonal and higher-order symmetries, some of which may, it is hoped, be observed in future experiments.
Collapse
Affiliation(s)
- Samuel Savitz
- Condensed Matter Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mehrtash Babadi
- Condensed Matter Physics, California Institute of Technology, Pasadena, CA 91125, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ron Lifshitz
- Condensed Matter Physics, California Institute of Technology, Pasadena, CA 91125, USA
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
10
|
Xi W, Song X, Hu S, Chen Z. Phase field crystal simulation of stress induced localized solid-state amorphization in nanocrystalline materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:475902. [PMID: 28960182 DOI: 10.1088/1361-648x/aa8fee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, the phase field crystal (PFC) method is used to study the localized solid-state amorphization (SSA) and its dynamic transformation process in polycrystalline materials under the uniaxial tensile deformation with different factors. The impacts of these factors, including strain rates, temperatures and grain sizes, are analyzed. Kinetically, the ultra-high strain rate causes the lattice to be seriously distorted and the grain to gradually collapse, so the dislocation density rises remarkably. Therefore, localized SSA occurs. Thermodynamically, as high temperature increases the activation energy, the atoms are active and prefer to leave the original position, which induce atom rearrangement. Furthermore, small grain size increases the percentage of grain boundary and the interface free energy of the system. As a result, Helmholtz free energy increases. The dislocations and Helmholtz free energy act as the seed and driving force for the process of the localized SSA. Also, the critical diffusion-time step and the percentage of amorphous region areas are calculated. Through this work, the PFC method is proved to be an effective means to study localized SSA under uniaxial tensile deformation.
Collapse
Affiliation(s)
- Wen Xi
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | | | | | | |
Collapse
|
11
|
Podmaniczky F, Tóth GI, Tegze G, Gránásy L. Hydrodynamic theory of freezing: Nucleation and polycrystalline growth. Phys Rev E 2017; 95:052801. [PMID: 28618608 DOI: 10.1103/physreve.95.052801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 05/12/2023]
Abstract
Structural aspects of crystal nucleation in undercooled liquids are explored using a nonlinear hydrodynamic theory of crystallization proposed recently [G. I. Tóth et al., J. Phys.: Condens. Matter 26, 055001 (2014)JCOMEL0953-898410.1088/0953-8984/26/5/055001], which is based on combining fluctuating hydrodynamics with the phase-field crystal theory. We show that in this hydrodynamic approach not only homogeneous and heterogeneous nucleation processes are accessible, but also growth front nucleation, which leads to the formation of new (differently oriented) grains at the solid-liquid front in highly undercooled systems. Formation of dislocations at the solid-liquid interface and interference of density waves ahead of the crystallization front are responsible for the appearance of the new orientations at the growth front that lead to spherulite-like nanostructures.
Collapse
Affiliation(s)
- Frigyes Podmaniczky
- Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Gyula I Tóth
- Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- Department of Physics, University of Bergen, Allégaten 55, 7005 Bergen, Norway
| | - György Tegze
- Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
| | - László Gránásy
- Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
- BCAST, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
| |
Collapse
|
12
|
Ankudinov V, Galenko PK. The diagram of phase-field crystal structures: an influence of model parameters in a two-mode approximation. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/192/1/012019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Alster E, Elder KR, Hoyt JJ, Voorhees PW. Phase-field-crystal model for ordered crystals. Phys Rev E 2017; 95:022105. [PMID: 28297840 DOI: 10.1103/physreve.95.022105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Indexed: 05/11/2023]
Abstract
We describe a general method to model multicomponent ordered crystals using the phase-field-crystal (PFC) formalism. As a test case, a generic B2 compound is investigated. We are able to produce a line of either first-order or second-order order-disorder phase transitions, features that have not been incorporated in existing PFC approaches. Further, it is found that the only elastic constant for B2 that depends on ordering is C_{11}. This B2 model is then used to study antiphase boundaries (APBs). The APBs are shown to reproduce classical mean-field results. Dynamical simulations of ordering across small-angle grain boundaries predict that dislocation cores pin the evolution of APBs.
Collapse
Affiliation(s)
- Eli Alster
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - K R Elder
- Department of Physics, Oakland University, Rochester, Michigan 48309, USA
| | - Jeffrey J Hoyt
- Department of Materials Science and Engineering and Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada L8S-4L7
| | - Peter W Voorhees
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
14
|
Kocher G, Ofori-Opoku N, Provatas N. Incorporating Noise Quantitatively in the Phase Field Crystal Model via Capillary Fluctuation Theory. PHYSICAL REVIEW LETTERS 2016; 117:220601. [PMID: 27925716 DOI: 10.1103/physrevlett.117.220601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Indexed: 06/06/2023]
Abstract
A tacit assumption underlying most phase field models of nonequilibrium phase transformations is that of scale separation. Stochastic order parameter field theories utilize noise to separate atomic-scale fluctuations from the slowly varying fields that describe microstructure patterns. The mesoscale distribution of such stochastic variables is generally assumed to follow Gaussian statistics, with their magnitude following fluctuation-dissipation relations. However, there is still much debate about how atomic-scale fluctuations map onto the mesoscale upon coarse graining of microscopic theories. This Letter studies interface fluctuations in the phase field crystal (PFC) model and proposes a self-consistent method for relating how the effective noise strength and spectral filtering of the noise in the PFC model, and similar types of microscopic models, should be defined so as to attain the spectrum of mesoscale capillary fluctuations quantitatively.
Collapse
Affiliation(s)
- Gabriel Kocher
- Department of Physics, Centre for the Physics of Materials, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Nana Ofori-Opoku
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Center for Hierarchical Materials Design, Institute of Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Nikolas Provatas
- Department of Physics, Centre for the Physics of Materials, McGill University, Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|
15
|
Guo C, Wang J, Wang Z, Li J, Guo Y, Huang Y. Interfacial free energy adjustable phase field crystal model for homogeneous nucleation. SOFT MATTER 2016; 12:4666-4673. [PMID: 27117814 DOI: 10.1039/c6sm00774k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To describe the homogeneous nucleation process, an interfacial free energy adjustable phase-field crystal model (IPFC) was proposed by reconstructing the energy functional of the original phase field crystal (PFC) methodology. Compared with the original PFC model, the additional interface term in the IPFC model effectively can adjust the magnitude of the interfacial free energy, but does not affect the equilibrium phase diagram and the interfacial energy anisotropy. The IPFC model overcame the limitation that the interfacial free energy of the original PFC model is much less than the theoretical results. Using the IPFC model, we investigated some basic issues in homogeneous nucleation. From the viewpoint of simulation, we proceeded with an in situ observation of the process of cluster fluctuation and obtained quite similar snapshots to colloidal crystallization experiments. We also counted the size distribution of crystal-like clusters and the nucleation rate. Our simulations show that the size distribution is independent of the evolution time, and the nucleation rate remains constant after a period of relaxation, which are consistent with experimental observations. The linear relation between logarithmic nucleation rate and reciprocal driving force also conforms to the steady state nucleation theory.
Collapse
Affiliation(s)
- Can Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Junjie Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Yaolin Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| | - Yunhao Huang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, P. R. China.
| |
Collapse
|
16
|
Huang ZF. Scaling of alloy interfacial properties under compositional strain. Phys Rev E 2016; 93:022803. [PMID: 26986390 DOI: 10.1103/physreve.93.022803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Indexed: 11/07/2022]
Abstract
Complex morphologies and microstructures that emerge during materials growth and solidification are often determined by both equilibrium and kinetic properties of the interface and their crystalline anisotropies. However, limited knowledge is available on alloying and, particularly, compositionally generated elastic effects on these interface characteristics. Here we systematically investigate such compositional effects on the interfacial properties of an alloy model system based on a phase-field-crystal analysis, including the solid-liquid interfacial free energy, kinetic coefficient, and lattice pinning strength. Scaling relations for these interfacial quantities over various ranges of material parameters are identified and predicted. Our results indicate the important effects of couplings among mesoscopic and microscopic length scales of alloy structure and concentration, and the influence of compressive and tensile interface stresses induced by composition variations. The approach developed here provides an efficient way to systematically identify these key material properties beyond the traditional atomistic and continuum methods.
Collapse
Affiliation(s)
- Zhi-Feng Huang
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
17
|
Jugdutt BA, Ofori-Opoku N, Provatas N. Calculating the role of composition in the anisotropy of solid-liquid interface energy using phase-field-crystal theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042405. [PMID: 26565255 DOI: 10.1103/physreve.92.042405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 06/05/2023]
Abstract
This work uses Ginzburg-Landau theory derived from a recent structural phase-field-crystal model of binary alloys developed by the authors to study the roles of concentration, temperature, and pressure on the interfacial energy anisotropy of a solid-liquid front. It is found that the main contribution to the change in anisotropy with concentration arises from a change in preferred crystallographic orientation controlled by solute-dependent changes in the two-point density correlation function of a binary alloy, a mechanism that leads to such phenomena as solute-induced elastic strain and dislocation-assisted solute clustering. Our results are consistent with experimental observations in recent studies by Rappaz et al. [J. Fife, P. Di Napoli, and M. Rappaz, Metall. Mater. Trans. A 44, 5522 (2013)]. This is the first PFC work, to our knowledge, to incorporate temperature, pressure, and density into the thermodynamic description of alloys.
Collapse
Affiliation(s)
- Bernadine A Jugdutt
- Department of Physics, Centre for the Physics of Materials, McGill University, Montreal, QC, Canada
| | - Nana Ofori-Opoku
- Department of Physics, Centre for the Physics of Materials, McGill University, Montreal, QC, Canada
- Department of Materials Science and Engineering, McGill University, Montreal, QC, Canada
- Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, Illinois, USA
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nikolas Provatas
- Department of Physics, Centre for the Physics of Materials, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Guo C, Wang J, Wang Z, Li J, Guo Y, Tang S. Modified phase-field-crystal model for solid-liquid phase transitions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:013309. [PMID: 26274309 DOI: 10.1103/physreve.92.013309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 06/04/2023]
Abstract
A modified phase-field-crystal (PFC) model is proposed to describe solid-liquid phase transitions by reconstructing the correlation function. The effects of fitting parameters of our modified PFC model on the bcc-liquid phase diagram, numerical stability, and solid-liquid interface properties during planar interface growth are examined carefully. The results indicate that the increase of the correlation function peak width at k=k(m) will enhance the stability of the ordered phase, while the increase of peak height at k=0 will narrow the two-phase coexistence region. The third-order term in the free-energy function and the short wave-length of the correlation function have significant influences on the numerical stability of the PFC model. During planar interface growth, the increase of peak width at k=k(m) will decrease the interface width and the velocity coefficient C, but increase the anisotropy of C and the interface free energy. Finally, the feasibility of the modified phase-field-crystal model is demonstrated with a numerical example of three-dimensional dendritic growth of a body-centered-cubic structure.
Collapse
Affiliation(s)
- Can Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Zhijun Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Junjie Li
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Yaolin Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Sai Tang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| |
Collapse
|
19
|
Kocher G, Provatas N. New density functional approach for solid-liquid-vapor transitions in pure materials. PHYSICAL REVIEW LETTERS 2015; 114:155501. [PMID: 25933321 DOI: 10.1103/physrevlett.114.155501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Indexed: 05/11/2023]
Abstract
A new phase field crystal (PFC) type theory is presented, which accounts for the full spectrum of solid-liquid-vapor phase transitions within the framework of a single density order parameter. Its equilibrium properties show the most quantitative features to date in PFC modeling of pure substances, and full consistency with thermodynamics in pressure-volume-temperature space is demonstrated. A method to control either the volume or the pressure of the system is also introduced. Nonequilibrium simulations show that 2- and 3-phase growth of solid, vapor, and liquid can be achieved, while our formalism also allows for a full range of pressure-induced transformations. This model opens up a new window for the study of pressure driven interactions of condensed phases with vapor, an experimentally relevant paradigm previously missing from phase field crystal theories.
Collapse
Affiliation(s)
- Gabriel Kocher
- Department of Physics, Centre for the Physics of Materials, McGill University, Montreal, Quebec H3A 2T8, Canada
| | - Nikolas Provatas
- Department of Physics, Centre for the Physics of Materials, McGill University, Montreal, Quebec H3A 2T8, Canada
| |
Collapse
|
20
|
Gránásy L, Podmaniczky F, Tóth GI, Tegze G, Pusztai T. Heterogeneous nucleation of/on nanoparticles: a density functional study using the phase-field crystal model. Chem Soc Rev 2014; 43:2159-73. [DOI: 10.1039/c3cs60225g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Neuhaus T, Schmiedeberg M, Löwen H. Crystallization induced by multiple seeds: dynamical density functional approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062316. [PMID: 24483453 DOI: 10.1103/physreve.88.062316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 06/03/2023]
Abstract
Using microscopic dynamical density functional theory, we calculate the dynamical formation of polycrystals by following the crystal growth around multiple crystalline seeds imposed to an undercooled fluid. Depending on the undercooling and the size ratio as well as the relative crystal orientation of two neighboring seeds, three possibilities of the final state emerge, namely no crystallization at all, formation of a monocrystal, or two crystallites separated by a curved grain boundary. Our results, which are obtained for two-dimensional hard disk systems using a fundamental-measure density functional, shed new light on the particle-resolved structure and growth of polycrystalline material in general.
Collapse
Affiliation(s)
- T Neuhaus
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - M Schmiedeberg
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany and Fachbereich Physik, Universität Osnabrück, D-49076 Osnabrück, Germany
| | - H Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
22
|
Schwalbach EJ, Warren JA, Wu KA, Voorhees PW. Phase-field crystal model with a vapor phase. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:023306. [PMID: 24032965 DOI: 10.1103/physreve.88.023306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Indexed: 06/02/2023]
Abstract
Phase-field crystal (PFC) models are able to resolve atomic length scale features of materials during temporal evolution over diffusive time scales. Traditional PFC models contain solid and liquid phases, however many important materials processing phenomena involve a vapor phase as well. In this work, we add a vapor phase to an existing PFC model and show realistic interfacial phenomena near the triple point temperature. For example, the PFC model exhibits density oscillations at liquid-vapor interfaces that compare favorably to data available for interfaces in metallic systems from both experiment and molecular-dynamics simulations. We also quantify the anisotropic solid-vapor surface energy for a two-dimensional PFC hexagonal crystal and find well-defined step energies from measurements on the faceted interfaces. Additionally, the strain field beneath a stepped interface is characterized and shown to qualitatively reproduce predictions from continuum models, simulations, and experimental data. Finally, we examine the dynamic case of step-flow growth of a crystal into a supersaturated vapor phase. The ability to model such a wide range of surface and bulk defects makes this PFC model a useful tool to study processing techniques such as chemical vapor deposition or vapor-liquid-solid growth of nanowires.
Collapse
Affiliation(s)
- Edwin J Schwalbach
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | | | | | | |
Collapse
|
23
|
Mkhonta SK, Elder KR, Huang ZF. Exploring the complex world of two-dimensional ordering with three modes. PHYSICAL REVIEW LETTERS 2013; 111:035501. [PMID: 23909335 DOI: 10.1103/physrevlett.111.035501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Indexed: 05/11/2023]
Abstract
The world of two-dimensional crystals is of great significance for the design and study of structural and functional materials with novel properties. Here we examine the mechanisms governing the formation and dynamics of these crystalline or polycrystalline states and their elastic and plastic properties by constructing a generic multimode phase field crystal model. Our results demonstrate that a system with three competing length scales can order into all five Bravais lattices, and other more complex structures including honeycomb, kagome, and other hybrid phases. In addition, nonequilibrium phase transitions are examined to illustrate the complex phase behavior described by the model. This model provides a systematic path to predict the influence of lattice symmetry on both the structure and dynamics of crystalline and defected systems.
Collapse
Affiliation(s)
- S K Mkhonta
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
24
|
Adland A, Xu Y, Karma A. Unified theoretical framework for polycrystalline pattern evolution. PHYSICAL REVIEW LETTERS 2013; 110:265504. [PMID: 23848896 DOI: 10.1103/physrevlett.110.265504] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/14/2013] [Indexed: 06/02/2023]
Abstract
The rate of curvature-driven grain growth in polycrystalline materials is well known to be limited by interface dissipation. We show analytically and by simulations that, for systems forming modulated phases or nonequilibrium patterns with crystal ordering, growth is limited by bulk dissipation associated with lattice translation, which dramatically slows down grain coarsening. We also show that bulk dissipation is reduced by thermal noise and that this reduction leads to faster coarsening behavior dominated by interface dissipation for a high Peierls-Nabarro barrier to dislocation motion and high noise. Those results provide a unified theoretical framework for understanding and modeling polycrystalline pattern evolution in diverse systems over a broad range of length and time scales.
Collapse
Affiliation(s)
- Ari Adland
- Physics Department and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
25
|
|
26
|
Pisutha-Arnond N, Chan VWL, Iyer M, Gavini V, Thornton K. Classical density functional theory and the phase-field crystal method using a rational function to describe the two-body direct correlation function. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:013313. [PMID: 23410466 DOI: 10.1103/physreve.87.013313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/30/2012] [Indexed: 06/01/2023]
Abstract
We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.
Collapse
Affiliation(s)
- N Pisutha-Arnond
- Materials Science and Engineering Department, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
27
|
Oettel M, Dorosz S, Berghoff M, Nestler B, Schilling T. Description of hard-sphere crystals and crystal-fluid interfaces: a comparison between density functional approaches and a phase-field crystal model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021404. [PMID: 23005760 DOI: 10.1103/physreve.86.021404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Indexed: 06/01/2023]
Abstract
In materials science the phase-field crystal approach has become popular to model crystallization processes. Phase-field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the underlying microscopic description of the system in question. We present a study on classical density functional theory in three stages of approximation leading to a specific phase-field crystal model, and we discuss the limits of applicability of the models that result from these approximations. As a test system we have chosen the three-dimensional suspension of monodisperse hard spheres. The levels of density functional theory that we discuss are fundamental measure theory, a second-order Taylor expansion thereof, and a minimal phase-field crystal model. We have computed coexistence densities, vacancy concentrations in the crystalline phase, interfacial tensions, and interfacial order parameter profiles, and we compare these quantities to simulation results. We also suggest a procedure to fit the free parameters of the phase-field crystal model. Thereby it turns out that the order parameter of the phase-field crystal model is more consistent with a smeared density field (shifted and rescaled) than with the shifted and rescaled density itself. In brief, we conclude that fundamental measure theory is very accurate and can serve as a benchmark for the other theories. Taylor expansion strongly affects free energies, surface tensions, and vacancy concentrations. Furthermore it is phenomenologically misleading to interpret the phase-field crystal model as stemming directly from Taylor-expanded density functional theory.
Collapse
Affiliation(s)
- M Oettel
- Johannes Gutenberg-Universität Mainz, Institut für Physik, WA 331, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
28
|
Tóth GI, Pusztai T, Tegze G, Tóth G, Gránásy L. Amorphous nucleation precursor in highly nonequilibrium fluids. PHYSICAL REVIEW LETTERS 2011; 107:175702. [PMID: 22107540 DOI: 10.1103/physrevlett.107.175702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Indexed: 05/31/2023]
Abstract
Dynamical density-functional simulations reveal structural aspects of crystal nucleation in undercooled liquids: The first appearing solid is amorphous, which promotes the nucleation of bcc crystals but suppresses the appearance of the fcc and hcp phases. These findings are associated with features of the effective interaction potential deduced from the amorphous structure.
Collapse
Affiliation(s)
- Gyula I Tóth
- Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest, Hungary
| | | | | | | | | |
Collapse
|
29
|
Greenwood M, Rottler J, Provatas N. Phase-field-crystal methodology for modeling of structural transformations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:031601. [PMID: 21517507 DOI: 10.1103/physreve.83.031601] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Indexed: 05/30/2023]
Abstract
We introduce and characterize free-energy functionals for modeling of solids with different crystallographic symmetries within the phase-field-crystal methodology. The excess free energy responsible for the emergence of periodic phases is inspired by classical density-functional theory, but uses only a minimal description for the modes of the direct correlation function to preserve computational efficiency. We provide a detailed prescription for controlling the crystal structure and introduce parameters for changing temperature and surface energies, so that phase transformations between body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal-close-packed (hcp), and simple-cubic (sc) lattices can be studied. To illustrate the versatility of our free-energy functional, we compute the phase diagram for fcc-bcc-liquid coexistence in the temperature-density plane. We also demonstrate that our model can be extended to include hcp symmetry by dynamically simulating hcp-liquid coexistence from a seeded crystal nucleus. We further quantify the dependence of the elastic constants on the model control parameters in two and three dimensions, showing how the degree of elastic anisotropy can be tuned from the shape of the direct correlation functions.
Collapse
Affiliation(s)
- Michael Greenwood
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T1Z1, Canada
| | | | | |
Collapse
|
30
|
Provatas N, Majaniemi S. Phase-field-crystal calculation of crystal-melt surface tension in binary alloys. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:041601. [PMID: 21230281 DOI: 10.1103/physreve.82.041601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Indexed: 05/30/2023]
Abstract
A phase field crystal (PFC) density functional for binary mixtures is coarse grained and a formalism for calculating the simultaneous concentration, temperature, and density dependence of the surface energy anisotropy of a solid-liquid interface is developed. The methodology systematically relates bulk free energy coefficients arising from coarse graining to thermodynamic data, while gradient energy coefficients are related to molecular properties. Our coarse-grained formalism is applied to the determination of surface energy anisotropy in two-dimensional Zn-Al films, a situation relevant for quantitative phase field simulations of dendritic solidification in zinc coatings.
Collapse
Affiliation(s)
- Nikolas Provatas
- Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7.
| | | |
Collapse
|