1
|
Castelletto V, Seitsonen J, Pollitt A, Hamley IW. Minimal Peptide Sequences That Undergo Liquid-Liquid Phase Separation via Self-Coacervation or Complex Coacervation with ATP. Biomacromolecules 2024; 25:5321-5331. [PMID: 39066731 PMCID: PMC11323023 DOI: 10.1021/acs.biomac.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The simple (self-)coacervation of the minimal tryptophan/arginine peptide sequences W2R2 and W3R3 was observed in salt-free aqueous solution. The phase diagrams were mapped using turbidimetry and optical microscopy, and the coacervate droplets were imaged using confocal microscopy complemented by cryo-TEM to image smaller droplets. The droplet size distribution and stability were probed using dynamic light scattering, and the droplet surface potential was obtained from zeta potential measurements. SAXS was used to elucidate the structure within the coacervate droplets, and circular dichroism spectroscopy was used to probe the conformation of the peptides, a characteristic signature for cation-π interactions being present under conditions of coacervation. These observations were rationalized using a simple model for the Rayleigh stability of charged coacervate droplets, along with atomistic molecular dynamics simulations which provide insight into stabilizing π-π stacking interactions of tryptophan as well as arginine-tryptophan cation-π interactions (which modulate the charge of the tryptophan π-electron system). Remarkably, the dipeptide WR did not show simple coacervation under the conditions examined, but complex coacervation was observed in mixtures with ATP (adenosine triphosphate). The electrostatically stabilized coacervation in this case provides a minimal model for peptide/nucleotide membraneless organelle formation. These are among the simplest model peptide systems observed to date able to undergo either simple or complex coacervation and are of future interest as protocell systems.
Collapse
Affiliation(s)
- Valeria Castelletto
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| | - Jani Seitsonen
- Nanomicroscopy
Center, Aalto University, Puumiehenkuja 2, Espoo 02150, Finland
| | - Alice Pollitt
- Institute
for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading RG6 6AS, U.K.
| | - Ian W. Hamley
- School
of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, U.K.
| |
Collapse
|
2
|
Robles-Hernández B, González-Burgos M, Malo de Molina P, Asenjo-Sanz I, Radulescu A, Pomposo JA, Arbe A, Colmenero J. Structure of Single-Chain Nanoparticles under Crowding Conditions: A Random Phase Approximation Approach. Macromolecules 2023; 56:8971-8979. [PMID: 38024156 PMCID: PMC10654932 DOI: 10.1021/acs.macromol.3c01333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
The conformation of poly(methyl methacrylate) (PMMA)-based single-chain nanoparticles (SCNPs) and their corresponding linear precursors in the presence of deuterated linear PMMA in deuterated dimethylformamide (DMF) solutions has been studied by small-angle neutron scattering (SANS). The SANS profiles were analyzed in terms of a three-component random phase approximation (RPA) model. The RPA approach described well the scattering profiles in dilute and crowded solutions. Considering all the contributions of the RPA leads to an accurate estimation of the single chain form factor parameters and the Flory-Huggins interaction parameter between PMMA and DMF. The value of the latter in the dilute regime indicates that the precursors and the SCNPs are in good solvent conditions, while in crowding conditions, the polymer becomes less soluble.
Collapse
Affiliation(s)
| | - Marina González-Burgos
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
| | - Paula Malo de Molina
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
- IKERBASQUE—Basque
Foundation for Science, 48009 Bilbao, Spain
| | - Isabel Asenjo-Sanz
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
| | - Aurel Radulescu
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, 85748 Garching, Germany
| | - José A. Pomposo
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
- IKERBASQUE—Basque
Foundation for Science, 48009 Bilbao, Spain
- Department
of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, 20018 Donostia-San
Sebastián, Spain
| | - Arantxa Arbe
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
| | - Juan Colmenero
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Centro
de Física de Materiales/Materials Physics Center (CFM/MPC), 20018 Donostia-San
Sebastián, Spain
- Department
of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, 20018 Donostia-San
Sebastián, Spain
| |
Collapse
|
3
|
Biswas S, Hecht AL, Noble SA, Huang Q, Gillilan RE, Xu AY. Understanding the Impacts of Molecular and Macromolecular Crowding Agents on Protein-Polymer Complex Coacervates. Biomacromolecules 2023; 24:4771-4782. [PMID: 37815312 PMCID: PMC10646951 DOI: 10.1021/acs.biomac.3c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Complex coacervation refers to the liquid-liquid phase separation (LLPS) process occurring between charged macromolecules. The study of complex coacervation is of great interest due to its implications in the formation of membraneless organelles (MLOs) in living cells. However, the impacts of the crowded intracellular environment on the behavior and interactions of biomolecules involved in MLO formation are not fully understood. To address this knowledge gap, we investigated the effects of crowding on a model protein-polymer complex coacervate system. Specifically, we examined the influence of sucrose as a molecular crowder and polyethylene glycol (PEG) as a macromolecular crowder. Our results reveal that the presence of crowders led to the formation of larger coacervate droplets that remained stable over a 25-day period. While sucrose had a minimal effect on the physical properties of the coacervates, PEG led to the formation of coacervates with distinct characteristics, including higher density, increased protein and polymer content, and a more compact internal structure. These differences in coacervate properties can be attributed to the effects of crowders on individual macromolecules, such as the conformation of model polymers, and nonspecific interactions among model protein molecules. Moreover, our results show that sucrose and PEG have different partition behaviors: sucrose was present in both the coacervate and dilute phases, while PEG was observed to be excluded from the coacervate phase. Collectively, our findings provide insights into the understanding of crowding effects on complex coacervation, shedding light on the formation and properties of coacervates in the context of MLOs.
Collapse
Affiliation(s)
- Shanta Biswas
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alison L Hecht
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sadie A Noble
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Richard E Gillilan
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Amy Y Xu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Raina N, Hassan MI, Ahmad F, Islam A, Singh AK. PEG mediated destabilization of holo α-lactalbumin probed by in silico and in vitro studies: deviation from excluded volume effect. J Biomol Struct Dyn 2022; 40:13265-13277. [PMID: 34726117 DOI: 10.1080/07391102.2021.1987990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crowded and confined macromolecular milieus surround proteins, and both are stabilizing if the nature of the interaction between crowder and proteins are considered hard-core repulsive interactions. However, non-specific chemical interactions between a protein and its surroundings also play a significant role and the sum effect of both hard-core repulsion and soft interaction balances the overall effect of crowding/confinement. Previous studies showing the effect of polyethylene glycol (PEG) on protein and nucleic acid may be interpreted as either primarily excluded volume effect or, in some cases, chemical effect by changing solvent properties. In case of destabilizing interactions, charge-charge and hydrophobic contact have to gain more attention. For instance, in vitro and in vivo studies using protein as crowding agent revealed the destabilization of proteins induced by charge-charge interactions. To investigate the effect of PEG 10 kDa on holo α-lactalbumin (holo α-LA), structure and thermal stability of the protein were measured at different pH values using several techniques. Structural characterization by Trp-fluorescence, near-UV CD and far-UV measurements at different pH values clearly shows perturbation of tertiary and secondary structure of holo α-LA by PEG 10 kDa. Furthermore, the dynamic light scattering measurement shows that the protein is homogeneous under all experimental conditions. Analysis of the heat-induced denaturation profile in the presence of the crowder shows destabilization of the protein in terms of Tm (midpoint of denaturation) and ΔGD0 (Gibbs free energy change at 25 °C). To evaluate the interaction of PEG 10 kDa with holo α-LA and stability of PEG-α-LA complex, docking and molecular dynamic simulation were carried out for 100 ns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neha Raina
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Faizan Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Amit Kumar Singh
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Berret JF, Graillot A. Versatile Coating Platform for Metal Oxide Nanoparticles: Applications to Materials and Biological Science. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5323-5338. [PMID: 35483044 DOI: 10.1021/acs.langmuir.2c00338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this feature article, we provide an overview of our research on statistical copolymers as a coating material for metal oxide nanoparticles and surfaces. These copolymers contain functional groups enabling noncovalent binding to oxide surfaces and poly(ethylene glycol) (PEG) polymers for colloidal stability and stealthiness. The functional groups are organic derivatives of phosphorous acid compounds R-H2PO3, also known as phosphonic acids that have been screened for their strong affinity to metals and for their multidentate binding ability. Herein we develop a polymer-based coating platform that shares features with the self-assembled monolayer (SAM) and layer-by-layer (L-b-L) deposition techniques. The milestones of this endeavor are the synthesis of PEG-based copolymers containing multiple phosphonic acid groups, the implementation of simple protocols combining versatility with high particle production yields, and the experimental evidence of the colloidal stability of the coated particles. As a demonstration, coating studies are conducted on cerium (CeO2), iron (γ-Fe2O3), aluminum (Al2O3), and titanium (TiO2) oxides of different sizes and morphologies. We finally discuss applications in the domain of nanomaterials and nanomedicine. We evaluate the beneficial effects of coatings on redispersible nanopowders, contrast agents for in vitro/vivo assays, and stimuli-responsive particles.
Collapse
Affiliation(s)
| | - Alain Graillot
- Specific Polymers, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| |
Collapse
|
7
|
Denton AR, Davis WJ. Influence of solvent quality on depletion potentials in colloid-polymer mixtures. J Chem Phys 2021; 155:084904. [PMID: 34470346 DOI: 10.1063/5.0061370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As first explained by the classic Asakura-Oosawa (AO) model, effective attractive forces between colloidal particles induced by depletion of nonadsorbing polymers can drive demixing of colloid-polymer mixtures into colloid-rich and colloid-poor phases, with practical relevance for purification of water, stability of foods and pharmaceuticals, and macromolecular crowding in biological cells. By idealizing polymer coils as effective penetrable spheres, the AO model qualitatively captures the influence of polymer depletion on thermodynamic phase behavior of colloidal suspensions. In previous work, we extended the AO model to incorporate aspherical polymer conformations and showed that fluctuating shapes of random-walk coils can significantly modify depletion potentials [W. K. Lim and A. R. Denton, Soft Matter 12, 2247 (2016); J. Chem. Phys. 144, 024904 (2016)]. We further demonstrated that the shapes of polymers in crowded environments sensitively depend on solvent quality [W. J. Davis and A. R. Denton, J. Chem. Phys. 149, 124901 (2018)]. Here, we apply Monte Carlo simulation to analyze the influence of solvent quality on depletion potentials in mixtures of hard-sphere colloids and nonadsorbing polymer coils, modeled as ellipsoids whose principal radii fluctuate according to random-walk statistics. We consider both self-avoiding and non-self-avoiding random walks, corresponding to polymers in good and theta solvents, respectively. Our simulation results demonstrate that depletion of polymers of equal molecular weight induces much stronger attraction between colloids in good solvents than in theta solvents and confirm that depletion interactions are significantly influenced by aspherical polymer conformations.
Collapse
Affiliation(s)
- Alan R Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Wyatt J Davis
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
8
|
Sherck N, Webber T, Brown DR, Keller T, Barry M, DeStefano A, Jiao S, Segalman RA, Fredrickson GH, Shell MS, Han S. End-to-End Distance Probability Distributions of Dilute Poly(ethylene oxide) in Aqueous Solution. J Am Chem Soc 2020; 142:19631-19641. [DOI: 10.1021/jacs.0c08709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nicholas Sherck
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Thomas Webber
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Dennis Robinson Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Timothy Keller
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Mikayla Barry
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - Audra DeStefano
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Sally Jiao
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Materials, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - M. Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Songi Han
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
9
|
Pittas T, Zuo W, Boersma AJ. Engineering crowding sensitivity into protein linkers. Methods Enzymol 2020; 647:51-81. [PMID: 33482994 DOI: 10.1016/bs.mie.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The intracellular environment contains a high concentration of biomacromolecules that present steric barriers and ample surface area for weak chemical interactions. Consequently, these forces influence protein conformations and protein self-assembly, with an outcome that depends on the sum of the effects resulting from crowding. Linkers are disordered domains that lack tertiary structure, and this flexible nature would render them susceptible to compression or extension under crowded conditions, compared to the equilibrium conformation in a dilute buffer. The change in distance between the linked proteins can become essential where it attenuates protein activity. In this chapter, we first discuss the experimental findings in vitro and in the cell on how linkers and other relevant macromolecules are affected by crowding. We focus on the dependence on the linker's size, flexibility, and the intra- and intermolecular interactions. Although the experimental data on the systematic variation of proteins in a buffer and cells is limited, extrapolating the available insights allows us to propose a protocol on how to engineer the directionality of crowding effects in the linker. Finally, we describe a straightforward experimental protocol on the determination of crowding sensitivity in a buffer and cell.
Collapse
Affiliation(s)
- Theodoros Pittas
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Weiyan Zuo
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
10
|
Influence of crowding agents on the dynamics of a multidomain protein in its denatured state: a solvation approach. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:289-305. [PMID: 32399581 DOI: 10.1007/s00249-020-01435-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/26/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
Abstract
It is now well appreciated that the crowded intracellular environment significantly modulates an array of physiological processes including protein folding-unfolding, aggregation, and dynamics to name a few. In this work we have studied the dynamics of domain I of the protein human serum albumin (HSA) in its urea-induced denatured states, in the presence of a series of commonly used macromolecular crowding agents. HSA was labeled at Cys-34 (a free cysteine) in domain I with the fluorophore 6-bromoacetyl-2-dimethylaminonaphthalene (BADAN) to act as a solvation probe. In partially denatured states (2-6 M urea), lower crowder concentrations (~ < 125 g/L) induced faster dynamics, while the dynamics became slower beyond 150 g/L of crowders. We propose that this apparent switch in dynamics is an evidence of a crossover from soft (enthalpic) to hard-core (entropic) interactions between the protein and crowder molecules. That soft interactions are also important for the crowders used here was further confirmed by the appreciable shift in the wavelength of the emission maximum of BADAN, in particular for PEG8000 and Ficoll 70 at concentrations where the excluded volume effect is not dominant.
Collapse
|
11
|
Le Coeur C, Teixeira J, Longeville S. Comment on "Combining Diffusion NMR and Small-Angle Neutron Scattering Enables Precise Measurements of Polymer Chain Compression in a Crowded Environment". PHYSICAL REVIEW LETTERS 2019; 123:239801. [PMID: 31868507 DOI: 10.1103/physrevlett.123.239801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 06/10/2023]
Affiliation(s)
- C Le Coeur
- Laboratoire Léon Brillouin, CEA-CNRS, Université de Paris-Saclay, CEA-Saclay, F91191 Gif-sur-Yvette, France
| | - J Teixeira
- Laboratoire Léon Brillouin, CEA-CNRS, Université de Paris-Saclay, CEA-Saclay, F91191 Gif-sur-Yvette, France
| | - S Longeville
- Laboratoire Léon Brillouin, CEA-CNRS, Université de Paris-Saclay, CEA-Saclay, F91191 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Fernández C, Fodeke AA, Minton AP. Quantitative characterization of the concentration-dependent interaction between molecules of Dextran 70 in aqueous solution: Measurement and analysis in the context of thermodynamic and compressible sphere models. Biopolymers 2019; 110:e23284. [PMID: 31059131 PMCID: PMC6815238 DOI: 10.1002/bip.23284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/08/2022]
Abstract
The static light scattering and sedimentation equilibrium of solutions of Dextran 70 were measured as functions of concentration up to 100 g/L in pH 7.4 phosphate-buffered saline at temperatures between 5 and 37 °C. The concentration dependence of scattering intensity and the apparent molar mass obtained from sedimentation equilibrium were found to be nearly independent of temperature over this range to within the uncertainty of measurement. Global analysis of the concentration dependence of both properties yielded a reliable estimate of the concentration-dependent thermodynamic activity coefficient, a quantitative measure of the free energy of self-interaction. The self-interaction between Dextran molecules is compared with that of a globular protein (BSA) and a highly crosslinked polymer of similar molar mass (Ficoll 70). The observed concentration dependence of the free energy of Dextran self-interaction may be quantitatively accounted for by a semi-empirical model in which the polymer molecule is represented by a compressible sphere.
Collapse
Affiliation(s)
| | | | - Allen P. Minton
- Laboratory of Biochemistry & Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, United States Public Health Service, Bethesda MD 20892 USA
| |
Collapse
|
13
|
Oberdisse J, González-Burgos M, Mendia A, Arbe A, Moreno AJ, Pomposo JA, Radulescu A, Colmenero J. Effect of Molecular Crowding on Conformation and Interactions of Single-Chain Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Julian Oberdisse
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, 34095 Montpellier, France
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Marina González-Burgos
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Ander Mendia
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Arantxa Arbe
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - Angel J. Moreno
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - José A. Pomposo
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastian, Spain
- IKERBASQUE—Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Aurel Radulescu
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum MLZ, 85748 Garching, Germany
| | - Juan Colmenero
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
- Materials Physics Center (MPC), Centro de Física de Materiales (CFM) (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU), Apartado 1072, 20080 San Sebastian, Spain
| |
Collapse
|
14
|
Intrinsically Disordered Protein Exhibits Both Compaction and Expansion under Macromolecular Crowding. Biophys J 2019. [PMID: 29539394 DOI: 10.1016/j.bpj.2018.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Conformational malleability allows intrinsically disordered proteins (IDPs) to respond agilely to their environments, such as nonspecifically interacting with in vivo bystander macromolecules (or crowders). Previous studies have emphasized conformational compaction of IDPs due to steric repulsion by macromolecular crowders, but effects of soft attraction are largely unexplored. Here we studied the conformational ensembles of the IDP FlgM in both polymer and protein crowders by small-angle neutron scattering. As crowder concentrations increased, the mean radius of gyration of FlgM first decreased but then exhibited an uptick. Ensemble optimization modeling indicated that FlgM conformations under protein crowding segregated into two distinct populations, one compacted and one extended. Coarse-grained simulations showed that compacted conformers fit into an interstitial void and occasionally bind to a surrounding crowder, whereas extended conformers snake through interstitial crevices and bind multiple crowders simultaneously. Crowder-induced conformational segregation may facilitate various cellular functions of IDPs.
Collapse
|
15
|
Rivas G, Minton AP. Toward an understanding of biochemical equilibria within living cells. Biophys Rev 2018; 10:241-253. [PMID: 29235084 PMCID: PMC5899707 DOI: 10.1007/s12551-017-0347-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
Four types of environmental effects that can affect macromolecular reactions in a living cell are defined: nonspecific intermolecular interactions, side reactions, partitioning between microenvironments, and surface interactions. Methods for investigating these interactions and their influence on target reactions in vitro are reviewed. Methods employed to characterize conformational and association equilibria in vivo are reviewed and difficulties in their interpretation cataloged. It is concluded that, in order to be amenable to unambiguous interpretation, in vivo studies must be complemented by in vitro studies carried out in well-characterized and controllable media designed to contain key elements of selected intracellular microenvironments.
Collapse
Affiliation(s)
- Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Allen P. Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
16
|
Giamblanco N, Marletta G, Graillot A, Bia N, Loubat C, Berret JF. Serum Protein-Resistant Behavior of Multisite-Bound Poly(ethylene glycol) Chains on Iron Oxide Surfaces. ACS OMEGA 2017; 2:1309-1320. [PMID: 31457506 PMCID: PMC6640927 DOI: 10.1021/acsomega.7b00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 05/21/2023]
Abstract
Recent surveys have shown that the number of nanoparticle-based formulations actually used at a clinical level is significantly lower than that expected a decade ago. One reason for this is that the physicochemical properties of nanoparticles fall short for handling the complexity of biological environments and preventing nonspecific protein adsorption. In this study, we address the issue of the interactions of plasma proteins with polymer-coated surfaces. With this aim, we use a noncovalent grafting-to method to functionalize iron oxide sub-10 nm nanoparticles and iron oxide flat substrates and compare their protein responses. The functionalized copolymers consist of alternating poly(ethylene glycol) (PEG) chains and phosphonic acid grafted on the same backbone. Quartz crystal microbalance with dissipation was used to monitor polymer adsorption kinetics and evaluate the resistance to protein adsorption. On flat substrates, functionalized PEG copolymers adsorb and form a brush in moderate or highly stretched regimes, with densities between 0.15 and 1.5 nm-2. PEG layers using phosphonic acid as linkers exhibit excellent protein resistance. In contrast, layers prepared with carboxylic acid as the grafting agent exhibit mitigated protein responses and layer destructuration. The present study establishes a correlation between the long-term stability of PEG-coated particles in biofluids and the protein resistance of surfaces coated with the same polymers.
Collapse
Affiliation(s)
- Nicoletta Giamblanco
- Laboratory
for Molecular Surface and Nanotechnology (LAMSUN), Department of Chemical
Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Giovanni Marletta
- Laboratory
for Molecular Surface and Nanotechnology (LAMSUN), Department of Chemical
Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy
| | - Alain Graillot
- Specific
Polymers, ZAC Via Domitia,
150 Avenue des Cocardières, 34160 Castries, France
| | - Nicolas Bia
- Specific
Polymers, ZAC Via Domitia,
150 Avenue des Cocardières, 34160 Castries, France
| | - Cédric Loubat
- Specific
Polymers, ZAC Via Domitia,
150 Avenue des Cocardières, 34160 Castries, France
| | - Jean-François Berret
- Matière
et Systèmes Complexes, UMR 7057 CNRS,
Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et
Léonie Duquet, 75205 Paris, France
| |
Collapse
|
17
|
Moreno AJ, Lo Verso F, Arbe A, Pomposo JA, Colmenero J. Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions. J Phys Chem Lett 2016; 7:838-844. [PMID: 26894933 DOI: 10.1021/acs.jpclett.6b00144] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
By means of large-scale computer simulations and small-angle neutron scattering (SANS), we investigate solutions of single-chain nanoparticles (SCNPs), covering the whole concentration range from infinite dilution to melt density. The analysis of the conformational properties of the SCNPs reveals that these synthetic nano-objects share basic ingredients with intrinsically disordered proteins (IDPs), as topological polydispersity, generally sparse conformations, and locally compact domains. We investigate the role of the architecture of the SCNPs in their collapse behavior under macromolecular crowding. Unlike in the case of linear macromolecules, which experience the usual transition from self-avoiding to Gaussian random-walk conformations, crowding leads to collapsed conformations of SCNPs resembling those of crumpled globules. This behavior is already found at volume fractions (about 30%) that are characteristic of crowding in cellular environments. The simulation results are confirmed by the SANS experiments. Our results for SCNPs--a model system free of specific interactions--propose a general scenario for the effect of steric crowding on IDPs: collapse from sparse conformations at high dilution to crumpled globular conformations in cell environments.
Collapse
Affiliation(s)
- Angel J Moreno
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Federica Lo Verso
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
| | - Arantxa Arbe
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
| | - José A Pomposo
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU) , Apartado 1072, E-20800 San Sebastián, Spain
- IKERBASQUE - Basque Foundation for Science, Alameda Urquijo 36, E-48011 Bilbao, Spain
| | - Juan Colmenero
- Centro de Física de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain
- Departamento de Física de Materiales, Universidad del País Vasco (UPV/EHU) , Apartado 1072, E-20800 San Sebastián, Spain
| |
Collapse
|
18
|
Lim WK, Denton AR. Depletion-induced forces and crowding in polymer-nanoparticle mixtures: Role of polymer shape fluctuations and penetrability. J Chem Phys 2016; 144:024904. [DOI: 10.1063/1.4939766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Wei Kang Lim
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
19
|
Garanger E, MacEwan SR, Sandre O, Brûlet A, Bataille L, Chilkoti A, Lecommandoux S. Structural Evolution of a Stimulus-Responsive Diblock Polypeptide Micelle by Temperature Tunable Compaction of its Core. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elisabeth Garanger
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
- Institut Européen de Chimie et Biologie (IECB), Pessac 33607, France
| | - Sarah R. MacEwan
- Department
of Biomedical Engineering, Duke University, Campus Box 90281, Durham, North Carolina 27708, United States
| | - Olivier Sandre
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
| | - Annie Brûlet
- Laboratoire
Léon Brillouin (LLB), CEA-CNRS UMR 12, CEA-Saclay, Gif-sur-Yvette 91191, France
| | - Laure Bataille
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
- Institut Européen de Chimie et Biologie (IECB), Pessac 33607, France
| | - Ashutosh Chilkoti
- Department
of Biomedical Engineering, Duke University, Campus Box 90281, Durham, North Carolina 27708, United States
| | - Sébastien Lecommandoux
- Laboratoire
de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607 Cedex, France
| |
Collapse
|
20
|
Mikaelsson T, Ådén J, Wittung-Stafshede P, Johansson LBÅ. Macromolecular crowding effects on two homologs of ribosomal protein s16: protein-dependent structural changes and local interactions. Biophys J 2015; 107:401-410. [PMID: 25028882 DOI: 10.1016/j.bpj.2014.05.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022] Open
Abstract
Proteins function in cellular environments that are crowded with biomolecules, and in this reduced available space, their biophysical properties may differ from those observed in dilute solutions in vitro. Here, we investigated the effects of a synthetic macromolecular crowding agent, dextran 20, on the folded states of hyperthermophilic (S16Thermo) and mesophilic (S16Meso) homologs of the ribosomal protein S16. As expected for an excluded-volume effect, the resistance of the mesophilic protein to heat-induced unfolding increased in the presence of dextran 20, and chemical denaturation experiments at different fixed temperatures showed the macromolecular crowding effect to be temperature-independent. Förster resonance energy transfer experiments show that intramolecular distances between an intrinsic Trp residue and BODIPY-labeled S16Meso depend on the level of the crowding agent. The BODIPY group was attached at three specific positions in S16Meso, allowing measurements of three intraprotein distances. All S16Meso variants exhibited a decrease in the average Trp-BODIPY distance at up to 100 mg/mL dextran 20, whereas the changes in distance became anisotropic (one distance increased, two distances decreased) at higher dextran concentrations. In contrast, the two S16Thermo mutants did not show any changes in Trp-BODIPY distances upon increase of dextran 20 concentrations. It should be noted that the fluorescence quantum yields and lifetimes of BODIPY attached to the two S16 homologs decreased gradually in the presence of dextran 20. To investigate the origin of this decrease, we studied the BODIPY quantum yield in three protein variants in the presence of a tyrosine-labeled dextran. The experiments revealed distinct tyrosine quenching behaviors of BODIPY in the three variants, suggesting a dynamic local interaction between dextran and one particular S16 variant.
Collapse
Affiliation(s)
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Giuseppe D’Adamo
- SISSA, International School for Advanced
Studies, via Bonomea 265, I-34136 Trieste, Italy
| | - Cristian Micheletti
- SISSA, International School for Advanced
Studies, via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|
22
|
Le Cœur C, Combet S, Carrot G, Busch P, Teixeira J, Longeville S. Conformation of the Poly(ethylene Glycol) Chains in DiPEGylated Hemoglobin Specifically Probed by SANS: Correlation with PEG Length and in Vivo Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8402-8410. [PMID: 26153251 DOI: 10.1021/acs.langmuir.5b01121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell-free hemoglobin (Hb)-based oxygen carriers have long been proposed as blood substitutes but their clinical use remains tricky due to problems of inefficiency and/or toxicity. Conjugation of Hb with the biocompatible polymer poly(ethylene glycol) (PEG) greatly improved their performance. However, physiological data suggested a polymer molecular weight (Mw) threshold of about 10 kDa, beyond which the grafting of two PEG chains no longer improves efficiency and nontoxicity of diPEG/Hb conjugates. We used small-angle neutron scattering and contrast variation, which are the only techniques able to probe separately the conformation of PEG chains and Hb protein within the complex, to investigate the role of PEG chain conformation in diPEGylated Hb conjugates as a function of the polymer Mw. We found out that the structure of Hb tetramer is not modified by the polymer grafting. Similarly, with a constant grafting of two chains per protein, there is no significant change of the Gaussian conformation between free and grafted PEG below ∼10 kDa, the complex being well described by the "dumbbell" model. However, beyond that threshold, the radius of gyration of grafted PEG is significantly smaller than that of the free polymer, showing a compaction of the PEG chains, either in the "dumbbell" model or in the "shroud" one. In the latter model, the polymer may be wrapped on the surface of the protein spreading a protective "shielding" effect over a larger fraction of the protein. Both proposed models are in good agreement with the physiological data reported in the literature.
Collapse
Affiliation(s)
- Clémence Le Cœur
- †Laboratoire Léon-Brillouin (LLB), UMR 12 CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Sophie Combet
- †Laboratoire Léon-Brillouin (LLB), UMR 12 CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Géraldine Carrot
- †Laboratoire Léon-Brillouin (LLB), UMR 12 CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Peter Busch
- ‡Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstrasse 1, D-85747 Garching, Germany
| | - José Teixeira
- †Laboratoire Léon-Brillouin (LLB), UMR 12 CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Stéphane Longeville
- †Laboratoire Léon-Brillouin (LLB), UMR 12 CEA-CNRS, CEA-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| |
Collapse
|
23
|
Boersma AJ, Zuhorn IS, Poolman B. A sensor for quantification of macromolecular crowding in living cells. Nat Methods 2015; 12:227-9, 1 p following 229. [PMID: 25643150 DOI: 10.1038/nmeth.3257] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/02/2014] [Indexed: 12/24/2022]
Abstract
Macromolecular crowding in cells influences processes such as folding, association and diffusion of proteins and polynucleic acids. Direct spatiotemporal readout of crowding would be a powerful approach for unraveling the structure of the cytoplasm and determining the impact of excluded volume on protein function in living cells. Here, we introduce a genetically encodable fluorescence resonance energy transfer (FRET) sensor for quantifying macromolecular crowding and discuss our application of the sensor in bacterial and mammalian cells.
Collapse
Affiliation(s)
- Arnold J Boersma
- 1] Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands. [2] Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| | - Inge S Zuhorn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- 1] Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands. [2] Zernike Institute for Advanced Materials, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
24
|
Goldenberg DP, Argyle B. Minimal effects of macromolecular crowding on an intrinsically disordered protein: a small-angle neutron scattering study. Biophys J 2014; 106:905-14. [PMID: 24559993 DOI: 10.1016/j.bpj.2013.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 01/04/2023] Open
Abstract
Small-angle neutron scattering was used to study the effects of macromolecular crowding by two globular proteins, i.e., bovine pancreatic trypsin inhibitor and equine metmyoglobin, on the conformational ensemble of an intrinsically disordered protein, the N protein of bacteriophage λ. The λ N protein was uniformly labeled with (2)H, and the concentrations of D2O in the samples were adjusted to match the neutron scattering contrast of the unlabeled crowding proteins, thereby masking their contribution to the scattering profiles. Scattering from the deuterated λ N was recorded for samples containing up to 0.12 g/mL bovine pancreatic trypsin inhibitor or 0.2 g/mL metmyoglobin. The radius of gyration of the uncrowded protein was estimated to be 30 Å and was found to be remarkably insensitive to the presence of crowders, varying by <2 Å for the highest crowder concentrations. The scattering profiles were also used to estimate the fractal dimension of λ N, which was found to be ∼1.8 in the absence or presence of crowders, indicative of a well-solvated and expanded random coil under all of the conditions examined. These results are contrary to the predictions of theoretical treatments and previous experimental studies demonstrating compaction of unfolded proteins by crowding with polymers such as dextran and Ficoll. A computational simulation suggests that some previous treatments may have overestimated the effective volumes of disordered proteins and the variation of these volumes within an ensemble. The apparent insensitivity of λ N to crowding may also be due in part to weak attractive interactions with the crowding proteins, which may compensate for the effects of steric exclusion.
Collapse
Affiliation(s)
| | - Brian Argyle
- Department of Biology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Lim WK, Denton AR. Polymer crowding and shape distributions in polymer-nanoparticle mixtures. J Chem Phys 2014; 141:114909. [DOI: 10.1063/1.4895612] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei Kang Lim
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
26
|
Crowding in Polymer–Nanoparticle Mixtures. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:27-71. [DOI: 10.1016/b978-0-12-800046-5.00003-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
27
|
Qin S, Zhou HX. Effects of Macromolecular Crowding on the Conformational Ensembles of Disordered Proteins. J Phys Chem Lett 2013; 4:10.1021/jz401817x. [PMID: 24312701 PMCID: PMC3846091 DOI: 10.1021/jz401817x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Due to their conformational malleability, intrinsically disordered proteins (IDPs) are particularly susceptible to influences of crowded cellular environments. Here we report a computational study of the effects of macromolecular crowding on the conformational ensemble of a coarse-grained IDP model, by using two approaches. In one, the IDP is simulated along with the crowders; in the other, crowder-free simulations are postprocessed to predict the conformational ensembles under crowding. We found significant decreases in the radius of gyration of the IDP under crowding, and suggest repulsive interactions with crowders as a common cause for chain compaction in a number of experimental studies. The postprocessing approach accurately reproduced the conformational ensembles of the IDP in the direct simulations here, and holds enormous potential for realistic modeling of IDPs under crowding, by permitting thorough conformation sampling for the proteins even when they and the crowders are both represented at the all-atom level.
Collapse
Affiliation(s)
| | - Huan-Xiang Zhou
- Correspondence information: phone, (850) 645-1336; fax, (850) 644-7244; e-mail,
| |
Collapse
|
28
|
Liu Z, Jiang ZB, Yang H, Bai SM, Wang R, Xue G. Crowding effect induced phase transition of amphiphilic diblock copolymer in solution. CHINESE JOURNAL OF POLYMER SCIENCE 2013. [DOI: 10.1007/s10118-013-1346-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Direct observation of protein unfolded state compaction in the presence of macromolecular crowding. Biophys J 2013; 104:694-704. [PMID: 23442920 DOI: 10.1016/j.bpj.2012.12.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/20/2012] [Accepted: 12/06/2012] [Indexed: 11/22/2022] Open
Abstract
Proteins fold and function in cellular environments that are crowded with other macromolecules. As a consequence of excluded volume effects, compact folded states of proteins should be indirectly stabilized due to destabilization of extended unfolded conformations. Here, we assess the role of excluded volume in terms of protein stability, structural dimensions and folding dynamics using a sugar-based crowding agent, dextran 20, and the small ribosomal protein S16 as a model system. To specifically address dimensions, we labeled the protein with BODIPY at two positions and measured Trp-BODIPY distances under different conditions. As expected, we found that dextran 20 (200 mg/ml) stabilized the variants against urea-induced unfolding. At conditions where the protein is unfolded, Förster resonance energy transfer measurements reveal that in the presence of dextran, the unfolded ensemble is more compact and there is residual structure left as probed by far-ultraviolet circular dichroism. In the presence of a crowding agent, folding rates are faster in the two-state regime, and at low denaturant concentrations, a kinetic intermediate is favored. Our study provides direct evidence for protein unfolded-state compaction in the presence of macromolecular crowding along with its energetic and kinetic consequences.
Collapse
|
30
|
Christiansen A, Wang Q, Cheung MS, Wittung-Stafshede P. Effects of macromolecular crowding agents on protein folding in vitro and in silico. Biophys Rev 2013; 5:137-145. [PMID: 28510156 DOI: 10.1007/s12551-013-0108-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 01/31/2013] [Indexed: 01/24/2023] Open
Abstract
Proteins fold and function inside cells which are environments very different from that of dilute buffer solutions most often used in traditional experiments. The crowded milieu results in excluded-volume effects, increased bulk viscosity and amplified chances for inter-molecular interactions. These environmental factors have not been accounted for in most mechanistic studies of protein folding executed during the last decades. The question thus arises as to how these effects-present when polypeptides normally fold in vivo-modulate protein biophysics. To address excluded volume effects, we use synthetic macromolecular crowding agents, which take up significant volume but do not interact with proteins, in combination with strategically selected proteins and a range of equilibrium and time-resolved biophysical (spectroscopic and computational) methods. In this review, we describe key observations on macromolecular crowding effects on protein stability, folding and structure drawn from combined in vitro and in silico studies. As expected based on Minton's early predictions, many proteins (apoflavodoxin, VlsE, cytochrome c, and S16) became more thermodynamically stable (magnitude depends inversely on protein stability in buffer) and, unexpectedly, for apoflavodoxin and VlsE, the folded states changed both secondary structure content and, for VlsE, overall shape in the presence of macromolecular crowding. For apoflavodoxin and cytochrome c, which have complex kinetic folding mechanisms, excluded volume effects made the folding energy landscapes smoother (i.e., less misfolding and/or kinetic heterogeneity) than in buffer.
Collapse
Affiliation(s)
| | - Qian Wang
- Department of Physics, University of Houston, Houston, TX, 77204, USA
| | - Margaret S Cheung
- Department of Physics, University of Houston, Houston, TX, 77204, USA
| | | |
Collapse
|
31
|
Zhou HX. Influence of crowded cellular environments on protein folding, binding, and oligomerization: biological consequences and potentials of atomistic modeling. FEBS Lett 2013; 587:1053-61. [PMID: 23395796 DOI: 10.1016/j.febslet.2013.01.064] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 02/05/2023]
Abstract
Recent experiments inside cells and in cytomimetic conditions have demonstrated that the crowded environments found therein can significantly reshape the energy landscapes of individual protein molecules and their oligomers. The resulting shifts in populations of conformational and oligomeric states have numerous biological consequences, e.g., concerning the efficiency of replication and transcription, the development of aggregation-related diseases, and the efficacy of small-molecule drugs. Some of the effects of crowding can be anticipated from hard-particle theoretical models, but the in vitro and in vivo measurements indicate that these effects are often subtle and complex. These observations, coupled with recent computational studies at the atomistic level, suggest that the latter detailed modeling may be required to yield a quantitative understanding on the influence of crowded cellular environments.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
32
|
Receveur-Brechot V, Durand D. How random are intrinsically disordered proteins? A small angle scattering perspective. Curr Protein Pept Sci 2012; 13:55-75. [PMID: 22044150 PMCID: PMC3394175 DOI: 10.2174/138920312799277901] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 01/08/2023]
Abstract
While the crucial role of intrinsically disordered proteins (IDPs) in the cell cycle is now recognized, deciphering their molecular mode of action at the structural level still remains highly challenging and requires a combination of many biophysical approaches. Among them, small angle X-ray scattering (SAXS) has been extremely successful in the last decade and has become an indispensable technique for addressing many of the fundamental questions regarding the activities of IDPs. After introducing some experimental issues specific to IDPs and in relation to the latest technical developments, this article presents the interest of the theory of polymer physics to evaluate the flexibility of fully disordered proteins. The different strategies to obtain 3-dimensional models of IDPs, free in solution and associated in a complex, are then reviewed. Indeed, recent computational advances have made it possible to readily extract maximum information from the scattering curve with a special emphasis on highly flexible systems, such as multidomain proteins and IDPs. Furthermore, integrated computational approaches now enable the generation of ensembles of conformers to translate the unique flexible characteristics of IDPs by taking into consideration the constraints of more and more various complementary experiment. In particular, a combination of SAXS with high-resolution techniques, such as x-ray crystallography and NMR, allows us to provide reliable models and to gain unique structural insights about the protein over multiple structural scales. The latest neutron scattering experiments also promise new advances in the study of the conformational changes of macromolecules involving more complex systems.
Collapse
|
33
|
Marguet M, Sandre O, Lecommandoux S. Polymersomes in "gelly" polymersomes: toward structural cell mimicry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2035-2043. [PMID: 22149733 DOI: 10.1021/la204018w] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We demonstrate here the formation of compartmentalized polymersomes with an internal "gelly" cavity using an original and versatile process. Nanosize polymersomes of poly(trimethylene carbonate)-b-poly(L-glutamic acid) (PTMC-b-PGA), formed by a solvent displacement method are encapsulated with a rough "cytoplasm mimic" in giant polymersomes of poly(butadiene)-b-poly(ethylene oxide) PB-b-PEO by emulsion-centrifugation. Such a system constitutes a first step toward the challenge of structural cell mimicry with both "organelles" and "cytoplasm mimics". The structure is demonstrated with fluorescence labeling and confocal microscopy imaging with movies featuring the motion of the inner nanosize polymersomes in larger vesicles. Without "cytoplasm mimic", the motion was confirmed to be Brownian by particle tracking analysis. The inner nanosize polymersomes motion was blocked in the presence of alginate, but only hindered in the presence of dextran. With the use of such high molecular weight and concentrated polysaccharides, the crowded internal volume of cells, responsible for the so-called "macromolecular crowding" effect influencing every intracellular macromolecular association, seems to be efficiently mimicked. This study constitutes major progress in the field of structural biomimicry and will certainly enable the rise of new, highly interesting properties in the field of high-added value soft matter.
Collapse
Affiliation(s)
- Maïté Marguet
- Université de Bordeaux /IPB, ENSCBP, 16 avenue Pey Berland, 33607 Pessac Cedex, France
| | | | | |
Collapse
|
34
|
Ramos ÉB. Macromolecular Crowding and the Sizes of Neutral Flexible Polymer Chains: The Role of Colloids Sizes and Concentrations. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201000096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|