1
|
Lin J, Zhao T, Jiang M. Drag force regime in dry and immersed granular media. Phys Rev E 2024; 109:064908. [PMID: 39020922 DOI: 10.1103/physreve.109.064908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/05/2024] [Indexed: 07/20/2024]
Abstract
The drag force acting on an intruder colliding with granular media is typically influenced by the impact velocity and the penetrating depth. In this paper, the investigation was extended to the dry and immersed scenarios through coupled simulations at different penetrating velocities. The drag force regime was clarified to exhibit velocity dependence in the initial contact stage, followed by the inertial transit stage with a F∼z^{2} (force-depth) relationship. Subsequently, it transitioned into the depth-dependent regime in both dry and immersed cases. The underlying rheological mechanism was explored, revealing that, in both dry and immersed scenarios, the granular bulk underwent a state relaxation process, as indicated by the granular inertial number. Additionally, the presence of the ambient fluid restricted the flow dynamics of the perturbed granular material, exhibiting a similar rheology as observed in the dry case.
Collapse
|
2
|
Carvalho DD, Bertho Y, Franklin EM, Seguin A. Penetration of a spinning sphere impacting a granular medium. Phys Rev E 2024; 109:054902. [PMID: 38907414 DOI: 10.1103/physreve.109.054902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/19/2024] [Indexed: 06/24/2024]
Abstract
We investigate experimentally the influence of rotation on the penetration depth of a spherical projectile impacting a granular medium. We show that a rotational motion significantly increases the penetration depth achieved. Moreover, we model our experimental results by modifying the frictional term of the equation describing the penetration dynamics of an object in a granular medium. In particular, we find that the frictional drag decreases linearly with the velocity ratio between rotational (spin motion) and translational (falling motion) velocities. The good agreement between our model and our experimental measurements offers perspectives for estimating the depth that spinning projectiles reach after impacting onto a granular ground, such as happens with seeds dropped from aircraft or with landing probes.
Collapse
Affiliation(s)
- D D Carvalho
- Université Paris-Saclay, CNRS, Laboratoire FAST, 91405 Orsay, France
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas (UNICAMP), Rua Mendeleyev, 200, CEP13083-860, Campinas-SP, Brazil
| | - Y Bertho
- Université Paris-Saclay, CNRS, Laboratoire FAST, 91405 Orsay, France
| | - E M Franklin
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas (UNICAMP), Rua Mendeleyev, 200, CEP13083-860, Campinas-SP, Brazil
| | - A Seguin
- Université Paris-Saclay, CNRS, Laboratoire FAST, 91405 Orsay, France
| |
Collapse
|
3
|
Sneha Ravi A, Dalvi S. Liquid Marbles and Drops on Superhydrophobic Surfaces: Interfacial Aspects and Dynamics of Formation: A Review. ACS OMEGA 2024; 9:12307-12330. [PMID: 38524492 PMCID: PMC10956110 DOI: 10.1021/acsomega.3c07657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Liquid marbles (LMs) are droplets encapsulated with powders presenting varied roughness and wettability. These LMs have garnered a lot of attention due to their dual properties of leakage-free and quick transport on both solid and liquid surfaces. These droplets are in a Cassie-Baxter wetting state sitting on both roughness and air pockets existing between particles. They are also reminiscent of the state of a drop on a superhydrophobic (SH) surface. In this review, LMs and bare droplets on SH surfaces are comparatively investigated in terms of two aspects: interfacial and dynamical. LMs present a fascinating class of soft matter due to their superior interfacial activity and their remarkable stability. Inherently hydrophobic powders form stable LMs by simple rolling; however, particles with defined morphologies and chemistries contribute to the varied stability of LMs. The factors contributing to this interesting robustness with respect to bare droplets are then identified by tests of stability such as evaporation and compression. Next, the dynamics of the impact of a drop on a hydrophobic powder bed to form LMs is studied vis-à̀-vis that of drop impact on flat surfaces. The knowledge from drop impact phenomena on flat surfaces is used to build and complement insights to that of drop impact on powder surfaces. The maximum spread of the drop is empirically understood in terms of dimensionless numbers, and their drawbacks are highlighted. Various stages of drop impact-spreading, retraction and rebound, splashing, and final outcome-are systematically explored on both solid and hard surfaces. The implications of crater formation and energy dissipations are discussed in the case of granular beds. While the drop impact on solid surfaces is extensively reviewed, deep interpretation of the drop impact on granular surfaces needs to be improved. Additionally, the applications of each step in the sequence of drop impact phenomena on both substrates are also identified. Next, the criterion for the formation of peculiar jammed LMs was examined. Finally, the challenges and possible future perspectives are envisaged.
Collapse
Affiliation(s)
- Apoorva Sneha Ravi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Sameer Dalvi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
4
|
Mandal MK, Roy S. High speed impact on granular media: breakdown of conventional inertial drag models. SOFT MATTER 2024; 20:877-886. [PMID: 38173332 DOI: 10.1039/d3sm01410j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In this study, we extensively explore the impact process on granular media, particularly focusing on situations where the ratio of impact speed to acoustic speed is on the order of 0.01-1. This range significantly exceeds that considered in existing literature (0.0001-0.001). Our investigation involves a comprehensive comparison between our simulation data, obtained under high-speed conditions, and the established macroscopic drag models. In the high-speed regime, conventional drag force models prove inadequate, and the drag force cannot be separated into a depth-dependent static pressure and a depth-independent inertial drag, as suggested in previous literature. A detailed examination of the impact process in the high-speed limit is also presented, involving the spatio-temporal evolution of the force chain network, displacement field, and velocity field at the particle length scale. Unlike prior works demonstrating the exponential decay of pulses, we provide direct evidence of acoustic pulses propagating over long distances, reflecting from boundaries, and interfering with the original pulses. These acoustic pulses, in turn, induce large scale reorganization of the force chain network, and the granular medium continuously traverses different jammed states to support the impact load. Reorientation of the force chains leads to plastic dissipation and the eventual dissipation of the impact energy. Furthermore, we study the scaling of the early stage peak forces with the impact velocity and find that spatial dimensionality strongly influences the scaling.
Collapse
Affiliation(s)
- Manish Kumar Mandal
- Department of Chemical Engineering, IIT Ropar, Rupnagar, Punjab, 140001, India.
| | - Saikat Roy
- Department of Chemical Engineering, IIT Ropar, Rupnagar, Punjab, 140001, India.
| |
Collapse
|
5
|
Carvalho DD, Lima NC, Franklin EM. Impact craters formed by spinning granular projectiles. Phys Rev E 2023; 108:054904. [PMID: 38115485 DOI: 10.1103/physreve.108.054904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/12/2023] [Indexed: 12/21/2023]
Abstract
Craters formed by the impact of agglomerated materials are commonly observed in nature, such as asteroids colliding with planets and moons. In this paper, we investigate how the projectile spin and cohesion lead to different crater shapes. For that, we carried out discrete element method computations of spinning granular projectiles impacting onto cohesionless grains for different bonding stresses, initial spins, and initial heights. We found that, as the bonding stresses decrease and the initial spin increases, the projectile's grains spread farther from the collision point, and in consequence, the crater shape becomes flatter, with peaks around the rim and in the center of the crater. Our results shed light on the dispersion of the projectile's material and the different shapes of craters found on Earth and other planetary environments.
Collapse
Affiliation(s)
- Douglas D Carvalho
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas (UNICAMP), Rua Mendeleyev, 200, CEP:13083-860, Campinas-SP, Brazil
| | - Nicolao C Lima
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas (UNICAMP), Rua Mendeleyev, 200, CEP:13083-860, Campinas-SP, Brazil
| | - Erick M Franklin
- Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas (UNICAMP), Rua Mendeleyev, 200, CEP:13083-860, Campinas-SP, Brazil
| |
Collapse
|
6
|
Carvalho DD, Lima NC, Franklin EM. Roles of packing fraction, microscopic friction, and projectile spin in cratering by impact. Phys Rev E 2023; 107:044901. [PMID: 37198868 DOI: 10.1103/physreve.107.044901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/06/2023] [Indexed: 05/19/2023]
Abstract
From small seeds falling from trees to asteroids colliding with planets and moons, the impact of projectiles onto granular targets occurs in nature at different scales. In this paper, we investigate open questions in the mechanics of granular cratering, in particular, the forces acting on the projectile and the roles of granular packing, grain-grain friction, and projectile spin. For that, we carried out discrete element method computations of the impact of solid projectiles on a cohesionless granular medium, where we varied the projectile and grain properties (diameter, density, friction, and packing fraction) for different available energies (within relatively small values). We found that a denser region forms below the projectile, pushing it back and causing its rebound by the end of its motion, and that solid friction affects considerably the crater morphology. Besides, we show that the penetration length increases with the initial spin of the projectile, and that differences in initial packing fractions can engender the diversity of scaling laws found in the literature. Finally, we propose an ad hoc scaling that collapsed our data for the penetration length and can perhaps unify existing correlations. Our results provide new insights into the formation of craters in granular matter.
Collapse
Affiliation(s)
- Douglas D Carvalho
- School of Mechanical Engineering, UNICAMP-University of Campinas, Rua Mendeleyev, 200 Campinas, SP, Brazil
| | - Nicolao C Lima
- School of Mechanical Engineering, UNICAMP-University of Campinas, Rua Mendeleyev, 200 Campinas, SP, Brazil
| | - Erick M Franklin
- School of Mechanical Engineering, UNICAMP-University of Campinas, Rua Mendeleyev, 200 Campinas, SP, Brazil
| |
Collapse
|
7
|
Aghda SA, Naji A. Drag force on cylindrical intruders in granular media: Experimental study of lateral vs axial intrusion and high grain-size polydispersity. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.118194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Seguin A, Bertho Y, Darbois Texier B. Penetrating a granular medium by successive impacts. Phys Rev E 2022; 106:054904. [PMID: 36559451 DOI: 10.1103/physreve.106.054904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
We consider the penetration dynamics of a vertical cylinder into a dry granular medium subjected to successive impacts. The depth of the impactor below the free surface z_{N} first evolves linearly with the impact number N and then follows a power-law evolution z_{N}∝N^{1/3}. The depth reached by the cylinder after a given number of impacts is observed to increase with the impact energy, but to decrease with its diameter and the density of the granular medium. We develop a model that accounts for the quasistatic and inertial granular forces applying on the cylinder to rationalize our observations. This approach reveals the existence of two intrusion regimes for large and small impact numbers, allowing all data to be rescaled on a master curve. Then, we extend the study to the effect of sidewalls on the dynamics of the impactor. We show that lateral confinement changes the dependence of the impactor depth on the impact number z_{N}(N). This effect is accounted for by considering the increase of the granular drag with the lateral confinement.
Collapse
Affiliation(s)
- Antoine Seguin
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| | - Yann Bertho
- Université Paris-Saclay, CNRS, FAST, 91405 Orsay, France
| | | |
Collapse
|
9
|
Roth LK, Han E, Jaeger HM. Intrusion into Granular Media Beyond the Quasistatic Regime. PHYSICAL REVIEW LETTERS 2021; 126:218001. [PMID: 34114833 DOI: 10.1103/physrevlett.126.218001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The drag force exerted on an object intruding into granular media is typically assumed to arise from additive velocity and depth dependent contributions. We test this with intrusion experiments and molecular dynamics simulations at constant speed over four orders of magnitude, well beyond the quasistatic regime. For a vertical cylindrical rod we find velocity dependence only right after impact, followed by a crossover to a common, purely depth-dependent behavior for all intrusion speeds. The crossover is set by the timescale for material, forced to well up at impact, to subsequently settle under gravity. These results challenge current models of granular drag.
Collapse
Affiliation(s)
- Leah K Roth
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Endao Han
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Heinrich M Jaeger
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
10
|
Agarwal S, Karsai A, Goldman DI, Kamrin K. Surprising simplicity in the modeling of dynamic granular intrusion. SCIENCE ADVANCES 2021; 7:7/17/eabe0631. [PMID: 33893099 PMCID: PMC8064642 DOI: 10.1126/sciadv.abe0631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Granular intrusions, such as dynamic impact or wheel locomotion, are complex multiphase phenomena where the grains exhibit solid-like and fluid-like characteristics together with an ejected gas-like phase. Despite decades of modeling efforts, a unified description of the physics in such intrusions is as yet unknown. Here, we show that a continuum model based on the simple notions of frictional flow and tension-free separation describes complex granular intrusions near free surfaces. This model captures dynamics in a variety of experiments including wheel locomotion, plate intrusions, and running legged robots. The model reveals that one static and two dynamic effects primarily give rise to intrusion forces in such scenarios. We merge these effects into a further reduced-order technique (dynamic resistive force theory) for rapid modeling of granular locomotion of arbitrarily shaped intruders. The continuum-motivated strategy we propose for identifying physical mechanisms and corresponding reduced-order relations has potential use for a variety of other materials.
Collapse
Affiliation(s)
- Shashank Agarwal
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andras Karsai
- Department of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Daniel I Goldman
- Department of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ken Kamrin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Jorge JF, Bergbreiter S, Patek SN. Pendulum-based measurements reveal impact dynamics at the scale of a trap-jaw ant. J Exp Biol 2021; 224:jeb.232157. [PMID: 33504588 DOI: 10.1242/jeb.232157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Small organisms can produce powerful, sub-millisecond impacts by moving tiny structures at high accelerations. We developed and validated a pendulum device to measure the impact energetics of microgram-sized trap-jaw ant mandibles accelerated against targets at 105 m s-2 Trap-jaw ants (Odontomachus brunneus; 19 individuals, 212 strikes) were suspended on one pendulum and struck swappable targets that were either attached to an opposing pendulum or fixed in place. Mean post-impact kinetic energy (energy from a strike converted to pendulum motion) was higher with a stiff target (21.0-21.5 µJ) than with a compliant target (6.4-6.5 µJ). Target mobility had relatively little influence on energy transfer. Mean contact duration of strikes against stiff targets was shorter (3.9-4.5 ms) than against compliant targets (6.2-7.9 ms). Shorter contact duration was correlated with higher post-impact kinetic energy. These findings contextualize and provide an energetic explanation for the diverse, natural uses of trap-jaw ant strikes such as impaling prey, launching away threats and performing mandible-powered jumps. The strong effect of target material on energetic exchange suggests material interactions as an avenue for tuning performance of small, high acceleration impacts. Our device offers a foundation for novel research into the ecomechanics and evolution of tiny biological impacts and their application in synthetic systems.
Collapse
Affiliation(s)
- Justin F Jorge
- Biology Department, Duke University, Durham, NC 27708, USA
| | - Sarah Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - S N Patek
- Biology Department, Duke University, Durham, NC 27708, USA
| |
Collapse
|
12
|
de Jong R, Zhao SC, Garcia-Gonzalez D, Verduijn G, van der Meer D. Impact cratering in sand: comparing solid and liquid intruders. SOFT MATTER 2021; 17:120-125. [PMID: 33155013 DOI: 10.1039/d0sm01579b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
How does the impact of a deformable droplet on a granular bed differ from that caused by a solid impactor of similar size and density? Here, we experimentally study this question and focus on the effect of intruder deformability on the crater shape. For comparable impact energies, we show that the crater diameter is larger for droplets than for solid intruders but that the impact of the latter results in deeper craters. Interestingly, for initially dense beds of packing fractions larger than 0.58, we find that the resultant excavated crater volume is independent of the intruder deformability, suggesting an impactor-independent dissipation mechanism within the sand for these dense beds.
Collapse
Affiliation(s)
- Rianne de Jong
- Physics of Fluids Group, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
13
|
Chopra S, Tolley MT, Gravish N. Granular Jamming Feet Enable Improved Foot-Ground Interactions for Robot Mobility on Deformable Ground. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2982361] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Krizou N, Clark AH. Power-Law Scaling of Early-Stage Forces during Granular Impact. PHYSICAL REVIEW LETTERS 2020; 124:178002. [PMID: 32412283 DOI: 10.1103/physrevlett.124.178002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
We experimentally and computationally study the early-stage forces during intruder impacts with granular beds in the regime where the impact velocity approaches the granular force propagation speed. Experiments use 2D assemblies of photoelastic disks of varying stiffness, and complimentary discrete-element simulations are performed in 2D and 3D. The peak force during the initial stages of impact and the time at which it occurs depend only on the impact speed, the intruder diameter, the stiffness of the grains, and the mass density of the grains according to power-law scaling forms that are not consistent with Poncelet models, granular shock theory, or added-mass models. The insensitivity of our results to many system details suggests that they may also apply to impacts into similar materials like foams and emulsions.
Collapse
Affiliation(s)
- Nasser Krizou
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, USA
| | - Abram H Clark
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, USA
| |
Collapse
|
15
|
Lynch DJ, Lynch KM, Umbanhowar PB. The Soft-Landing Problem: Minimizing Energy Loss by a Legged Robot Impacting Yielding Terrain. IEEE Robot Autom Lett 2020. [DOI: 10.1109/lra.2020.2977260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Wyser E, Carrea D, Jaboyedoff M, Pudasaini SP. Cratering response during droplet impacts on granular beds. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:111. [PMID: 31444582 DOI: 10.1140/epje/i2019-11877-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
This experimental work focuses on the cratering response of granular layers induced by liquid droplet impacts. A droplet impact results in severe granular layer deformation, crater formation and deposits in the vicinity of the impact center. High-precision three-dimensional imaging of the granular layer surface revealed important characteristics of liquid impacts on granular matter, such as singular asymmetric deformations of the layer. Our analysis also demonstrated that the impact energy and the granular packing, and its inherent compressibility, are not the unique parameters controlling the bed response, for which granular fraction heterogeneities may induce strong variations. Such heterogeneous conditions primarily influence the magnitude but not the dynamics of liquid impacts on granular layers. Finally, a general equation can be used to relate the enery released during cratering to both the impact energy and the compressibility of the granular matter. However, our results do not support any transition triggered by the compaction-dilation regime. Hence, higly detailed numerical simulations could provide considerable insights regarding the remaining questions related to heterogeneous packing conditions and its influence over the bulk compressibility and the compaction-dilation phase transition.
Collapse
Affiliation(s)
- Emmanuel Wyser
- University of Lausanne, Institute of Earth Sciences, Lausanne, Switzerland.
| | - Dario Carrea
- University of Lausanne, Institute of Earth Sciences, Lausanne, Switzerland
| | - Michel Jaboyedoff
- University of Lausanne, Institute of Earth Sciences, Lausanne, Switzerland
| | - Shiva P Pudasaini
- University of Bonn, Institute of Geosciences, Geophysics Section, Bonn, Germany
| |
Collapse
|
17
|
Pacheco-Vázquez F. Ray Systems and Craters Generated by the Impact of Nonspherical Projectiles. PHYSICAL REVIEW LETTERS 2019; 122:164501. [PMID: 31075016 DOI: 10.1103/physrevlett.122.164501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The impact of a spherical projectile on an evened-out granular bed generates a uniform ejecta of material and a crater with a raised circular rim. Recently, Sabuwala et al. [Phys. Rev. Lett. 120, 264501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.264501] found that the uniform blanket of ejecta changes to a set of radial streaks when a spherical body impacts on an undulated granular surface, being a plausible explanation to the enigmatic ray systems on planetary bodies. Here, we show that ray systems can also be generated by the impact of nonspherical projectiles on a flat granular surface. This is a reasonable explanation considering that meteorites are rarely spherical. Moreover, by impacting bodies of different geometries, we show that the crater size follows the same power-law scaling with the impact energy found for spherical projectiles, and the crater rim becomes circular as the impact energy is increased regardless of the projectile shape, which helps to understand why most impact craters in nature are rounded.
Collapse
Affiliation(s)
- F Pacheco-Vázquez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| |
Collapse
|
18
|
Han JF, Liang T, Duan WS. Possibility of the existence of the rogue wave and the super rogue wave in granular matter. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:5. [PMID: 30656485 DOI: 10.1140/epje/i2019-11764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
By using the traditional perturbation technique, a focusing nonlinear Schrödinger equation (NLSE) for the one-dimensional bead chain with the initial prestress is first obtained. The Peregrine soliton, called the rogue wave in the present paper, and the super rogue wave are investigated both numerically and analytically. It is noted that both the rogue wave and the super rogue wave do exist in the one-dimensional bead chain. The solutions from the NLSE can correctly describe the real rogue wave as well as the real super rogue wave in the limiting case of small amplitude. Both the rogue wave and the super rogue wave propagate in the granular bead chain as if they are solitary waves.
Collapse
Affiliation(s)
- Juan-Fang Han
- College of Physics and Electronic Engineering, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Joint Laboratory of Atomic and Molecular Physics of NWNU &IMP CAS, Northwest Normal University, 730070, Lanzhou, China
| | - Tao Liang
- College of Physics and Electronic Engineering, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.
- Joint Laboratory of Atomic and Molecular Physics of NWNU &IMP CAS, Northwest Normal University, 730070, Lanzhou, China.
| | - Wen-Shan Duan
- College of Physics and Electronic Engineering, Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
- Joint Laboratory of Atomic and Molecular Physics of NWNU &IMP CAS, Northwest Normal University, 730070, Lanzhou, China
| |
Collapse
|
19
|
Ye X, Wang D, Zheng X. Effect of packing fraction on dynamic characteristics of granular materials under oblique impact. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.07.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Liang T, Yang Y, Shi YR, Han JF, Duan WS, Jiang X. Shock wave due to the short-period impact in one-dimensional plasticity bead chain. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:96. [PMID: 30141092 DOI: 10.1140/epje/i2018-11704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
The waves in a one-dimensional (1-D) bead chain produced by a constant velocity impact in a short period are studied numerically in the present paper. It seems that in some cases, the waves look like a shock wave, while in other cases they may be composed of several solitary waves or some oscillations. These characteristics depend on both the bead parameters and the impact parameters, such as the plasticity of the bead material, the piston velocity and the impact duration. It is found that the shock structure appears if the duration of the impact is longer, while it will evolve into several solitary waves if the duration of the impact is small enough. This indicates that the bead velocity attenuates with power function. The strength of the attenuation depends on the plasticity, the piston velocity and the bead radius.
Collapse
Affiliation(s)
- Tao Liang
- College of Physics and Electronic Engineering, Northwest Normal University, 730070, Lanzhou, China.
| | - Yang Yang
- College of Physics and Electronic Engineering, Northwest Normal University, 730070, Lanzhou, China
| | - Yu-Ren Shi
- College of Physics and Electronic Engineering, Northwest Normal University, 730070, Lanzhou, China
| | - Juan-Fang Han
- College of Physics and Electronic Engineering, Northwest Normal University, 730070, Lanzhou, China
| | - Wen-Shan Duan
- College of Physics and Electronic Engineering, Northwest Normal University, 730070, Lanzhou, China
| | - Xin Jiang
- Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute and Engineering, Chinese Academy of Sciences, 315201, Ningbo, Zhejiang, China
| |
Collapse
|
21
|
Maharjan R, Mukhopadhyay S, Allen B, Storz T, Brown E. Constitutive relation for the system-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Phys Rev E 2018; 97:052602. [PMID: 29906932 DOI: 10.1103/physreve.97.052602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 06/08/2023]
Abstract
We experimentally characterize the impact response of concentrated suspensions consisting of cornstarch and water. We observe that the suspensions support a large normal stress-on the order of MPa-with a delay after the impactor hits the suspension surface. We show that neither the delay nor the magnitude of the stress can yet be explained by either standard rheological models of shear thickening in terms of steady-state viscosities, or impact models based on added mass or other inertial effects. The stress increase occurs when a dynamically jammed region of the suspension in front of the impactor propagates to the opposite boundary of the container, which can support large stresses when it spans between solid boundaries. We present a constitutive relation for impact rheology to relate the force on the impactor to its displacement. This can be described in terms of an effective modulus but only after the delay required for the dynamically jammed region to span between solid boundaries. Both the modulus and the delay are reported as a function of impact velocity, fluid height, and weight fraction. We report in a companion paper the structure of the dynamically jammed region when it spans between the impactor and the opposite boundary [Allen et al., Phys. Rev. E 97, 052603 (2018)10.1103/PhysRevE.97.052603]. In a direct follow-up paper, we show that this constitutive model can be used to quantitatively predict, for example, the trajectory and penetration depth of the foot of a person walking or running on cornstarch and water [Mukhopadhyay et al., Phys. Rev. E 97, 052604 (2018)10.1103/PhysRevE.97.052604].
Collapse
Affiliation(s)
- Rijan Maharjan
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Shomeek Mukhopadhyay
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Benjamin Allen
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- School of Natural Sciences, University of California, Merced, California 95343, USA
| | - Tobias Storz
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Eric Brown
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
- School of Natural Sciences, University of California, Merced, California 95343, USA
| |
Collapse
|
22
|
López-Rodríguez LA, Pacheco-Vázquez F. Friction force regimes and the conditions for endless penetration of an intruder into a granular medium. Phys Rev E 2018; 96:030901. [PMID: 29347017 DOI: 10.1103/physreve.96.030901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/07/2022]
Abstract
An intruder penetrating into a granular column experiences a depth-dependent friction force F(z). Different regimes of F(z) have been measured depending on the experimental design: a nearly linear dependence for shallow penetrations, total saturation at large depths, and an exponential increase when the intruder approaches the bottom of the granular bed. We report here an experiment that allows us to measure the different regimes in a single run during the quasistatic descent of a sphere in a light granular medium. From the analysis of the resistance in the saturation zone, it was found that F(z) follows a cube-power-law dependence on the intruder diameter and an exponential increase with the packing fraction of the bed. Moreover, we determine the critical mass m_{c} required to observe infinite penetration and its dependence on the above parameters. Finally, we use our results to estimate the final penetration depth reached by intruders of masses m<m_{c}. The results indicate that an intruder of any density (larger than the density of the granular bed) can sink indefinitely into the granular medium if the bed packing fraction is smaller than a critical value.
Collapse
Affiliation(s)
- L A López-Rodríguez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| | - F Pacheco-Vázquez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| |
Collapse
|
23
|
Takahashi T, Clark AH, Majmudar T, Kondic L. Granular response to impact: Topology of the force networks. Phys Rev E 2018; 97:012906. [PMID: 29448328 DOI: 10.1103/physreve.97.012906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 06/08/2023]
Abstract
The impact of an intruder on granular matter leads to the formation of mesoscopic force networks, which were seen particularly clearly in the recent experiments carried out with photoelastic particles [Clark et al., Phys. Rev. Lett. 114, 144502 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.144502]. These force networks are characterized by complex structure and evolve on fast time scales. While it is known that total photoelastic activity in the granular system is correlated with the acceleration of the intruder, it is not known how the structure of the force network evolves during impact, and if there are dominant features in the networks that can be used to describe the intruder's dynamics. Here, we use topological tools, in particular persistent homology, to describe these features. Persistent homology allows quantification of both structure and time evolution of the resulting force networks. We find that there is a clear correlation of the intruder's dynamics and some of the topological measures implemented. This finding allows us to discuss which properties of the force networks are most important when attempting to describe the intruder's dynamics. In particular, we find that the presence of loops in the force network, quantified by persistent homology, is strongly correlated to the deceleration of the intruder. In some cases, particularly for the impact on soft particles, the measures derived from the persistence analysis describe the deceleration of the intruder even better than the total photoelastic activity. We are also able to define an upper bound on the relevant time scale over which the force networks evolve.
Collapse
Affiliation(s)
- T Takahashi
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Abram H Clark
- Department of Physics, Naval Postgraduate School, Monterey, California 93943, USA
| | - T Majmudar
- Department of Mathematics, New York University, New York, New York 10012, USA
| | - L Kondic
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| |
Collapse
|
24
|
Sakamoto K, Otsuki M, Kubota T, Morino Y. Hopping Motion Estimation on Soft Soil by Resistive Force Theory. JOURNAL OF ROBOTICS AND MECHATRONICS 2017. [DOI: 10.20965/jrm.2017.p0895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Various planetary terrains or asteroids, which are hard to traverse with wheeled platforms, are expected to be explored. Bekker’s model cannot be applied to estimate the motions of rovers without wheels, such as the hopping rover (hopper). In this paper, the resistive force theory (RFT) approach is introduced. This approach is not based on Bekker’s model, and is expected to apply to any platform. However, this RFT approach only applies to static or quasi-static motion, such as in the case of slow motions. To apply the RFT approach to dynamic motions, such as hopping, the effect of velocity as a dynamic variable is also studied. Through the hopping experiments, the effectiveness of RFT with the velocity-term approach is investigated and compared to the RFT approach.
Collapse
|
25
|
Pacheco-Vázquez F, Ramos-Reyes AY, Hidalgo-Caballero S. Surface depression with double-angle geometry during the discharge of grains from a silo. Phys Rev E 2017; 96:022901. [PMID: 28950576 DOI: 10.1103/physreve.96.022901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Indexed: 11/07/2022]
Abstract
When rough grains in loose packing conditions are discharged from a silo, a conical depression with a single slope is formed at the surface. We observed that the increase of volume fraction generates a more complex depression, characterized by two angles of discharge: one at the bottom similar to the angle of repose and a considerably larger upper angle. The change in slope appears at the boundary between a dense stagnant region at the periphery and the central flowing channel formed over the aperture. Since the material in the latter zone is always fluidized, the flow rate is unaffected by the initial packing of the bed. On the other hand, the contrast between both angles is markedly smaller when smooth particles of the same size and density are used, which reveals that high packing fraction and friction must combine to produce the observed geometry. Our results show that the surface profile helps to identify by simple visual inspection the packing conditions of a granular bed, being useful to prevent undesirable collapses during silo discharge in industry.
Collapse
Affiliation(s)
- F Pacheco-Vázquez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| | - A Y Ramos-Reyes
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| | - S Hidalgo-Caballero
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| |
Collapse
|
26
|
Pacheco-Vázquez F, Tacumá A, Marston JO. Craters produced by explosions in a granular medium. Phys Rev E 2017; 96:032904. [PMID: 29346862 DOI: 10.1103/physreve.96.032904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 06/07/2023]
Abstract
We report on an experimental investigation of craters generated by explosions at the surface of a model granular bed. Following the initial blast, a pressure wave propagates through the bed, producing high-speed ejecta of grains and ultimately a crater. We analyzed the crater morphology in the context of large-scale explosions and other cratering processes. The process was analyzed in the context of large-scale explosions, and the crater morphology was compared with those resulting from other cratering processes in the same energy range. From this comparison, we deduce that craters formed through different mechanisms can exhibit fine surface features depending on their origin, at least at the laboratory scale. Moreover, unlike laboratory-scale craters produced by the impact of dense spheres, the diameter and depth do not follow a 1/4-power-law scaling with energy, rather the exponent observed herein is approximately 0.30, as has also been found in large-scale events. Regarding the ejecta curtain of grains, its expansion obeys the same time dependence followed by shock waves produced by underground explosions. Finally, from experiments in a two-dimensional system, the early cavity growth is analyzed and compared to a recent study on explosions at the surface of water.
Collapse
Affiliation(s)
- F Pacheco-Vázquez
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| | - A Tacumá
- Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, Puebla 72570, Mexico
| | - J O Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
27
|
|
28
|
de Jong R, Zhao SC, van der Meer D. Crater formation during raindrop impact on sand. Phys Rev E 2017; 95:042901. [PMID: 28505774 DOI: 10.1103/physreve.95.042901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Indexed: 11/07/2022]
Abstract
After a raindrop impacts on a granular bed, a crater is formed as both drop and target deform. After an initial, transient, phase in which the maximum crater depth is reached, the crater broadens outwards until a final steady shape is attained. By varying the impact velocity of the drop and the packing density of the bed, we find that avalanches of grains are important in the second phase and hence affect the final crater shape. In a previous paper, we introduced an estimate of the impact energy going solely into sand deformation and here we show that both the transient and final crater diameter collapse with this quantity for various packing densities. The aspect ratio of the transient crater is however altered by changes in the packing fraction.
Collapse
Affiliation(s)
- Rianne de Jong
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Song-Chuan Zhao
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Devaraj van der Meer
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and J.M. Burgers Center for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
29
|
Bester CS, Behringer RP. Collisional model of energy dissipation in three-dimensional granular impact. Phys Rev E 2017; 95:032906. [PMID: 28415347 DOI: 10.1103/physreve.95.032906] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Indexed: 11/07/2022]
Abstract
We study the dynamic process occurring when a granular assembly is displaced by a solid impactor. The momentum transfer from the impactor to the target is shown to occur through sporadic, normal collisions of high force carrying grains at the intruder surface. We therefore describe the stopping force of the impact through a collisional-based model. To verify the model in impact experiments, we determine the forces acting on an intruder decelerating through a dense granular medium by using high-speed imaging of its trajectory. By varying the intruder shape and granular target, intruder-grain interactions are inferred from the consequent path. As a result, we connect the drag to the effect of intruder shape and grain density based on a proposed collisional model.
Collapse
Affiliation(s)
| | - Robert P Behringer
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
30
|
Zhao SC, de Jong R, van der Meer D. Liquid-Grain Mixing Suppresses Droplet Spreading and Splashing during Impact. PHYSICAL REVIEW LETTERS 2017; 118:054502. [PMID: 28211715 DOI: 10.1103/physrevlett.118.054502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Would a raindrop impacting on a coarse beach behave differently from that impacting on a desert of fine sand? We study this question by a series of model experiments, where the packing density of the granular target, the wettability of individual grains, the grain size, the impacting liquid, and the impact speed are varied. We find that by increasing the grain size and/or the wettability of individual grains the maximum droplet spreading undergoes a transition from a capillary regime towards a viscous regime, and splashing is suppressed. The liquid-grain mixing is discovered to be the underlying mechanism. An effective viscosity is defined accordingly to quantitatively explain the observations.
Collapse
Affiliation(s)
- Song-Chuan Zhao
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Rianne de Jong
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Devaraj van der Meer
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
31
|
Zaidi AA, Müller C. Vertical drag force acting on intruders of different shapes in granular media. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714002011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Duan WS, Zhang ZB, Yang L. Shock wave in a one-dimensional granular chain under Hertz contact. Phys Rev E 2016; 94:052906. [PMID: 27967032 DOI: 10.1103/physreve.94.052906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 11/07/2022]
Abstract
The shock wave in one-dimensional bead chain is studied numerically. When the shock wave arrives, the bead velocity oscillates around the piston velocity. It is found that the shock front is composed of several solitary waves and the limitation of the maximum bead velocity is 2 times the piston velocity in the limiting case where the initial overlap is zero. If the initial overlap is not zero, then the maximum bead velocity is less than 2 times the piston velocity but larger than the piston velocity. As the initial overlap increases from zero to the finite value, the shock velocity depends on not only the piston velocity but also the initial overlap. The crossover of the dependence of the shock velocity on the piston velocity from the zero initial prestress to the finite value is obtained in the present manuscript. It is an improvement of the results presented in Phys. Rev. Lett. 108, 058001 (2012)10.1103/PhysRevLett.108.058001. In other words, the dependence of the shock velocity on the parameters of the granular materials is given.
Collapse
Affiliation(s)
- Wen-Shan Duan
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU &IMP CAS, Northwest Normal University, Lanzhou 730070, China
| | - Zhen-Bin Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU &IMP CAS, Northwest Normal University, Lanzhou 730070, China
| | - Lei Yang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU &IMP CAS, Northwest Normal University, Lanzhou 730070, China.,Department of Physics, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
33
|
Kouraytem N, Thoroddsen ST, Marston JO. Penetration in bimodal, polydisperse granular material. Phys Rev E 2016; 94:052902. [PMID: 27967058 DOI: 10.1103/physreve.94.052902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 11/07/2022]
Abstract
We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between δ=0.5D_{0} and δ=7D_{0}, which, for mono-modal media only, could be correlated in terms of the total drop height, H=h+δ, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d_{s}∼O(30) μm] were added to the larger particles [d_{l}∼O(200-500) μm], with a size ratio, ε=d_{l}/d_{s}, larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.
Collapse
Affiliation(s)
- N Kouraytem
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - S T Thoroddsen
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - J O Marston
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
34
|
Aguilar J, Zhang T, Qian F, Kingsbury M, McInroe B, Mazouchova N, Li C, Maladen R, Gong C, Travers M, Hatton RL, Choset H, Umbanhowar PB, Goldman DI. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:110001. [PMID: 27652614 DOI: 10.1088/0034-4885/79/11/110001] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Discovery of fundamental principles which govern and limit effective locomotion (self-propulsion) is of intellectual interest and practical importance. Human technology has created robotic moving systems that excel in movement on and within environments of societal interest: paved roads, open air and water. However, such devices cannot yet robustly and efficiently navigate (as animals do) the enormous diversity of natural environments which might be of future interest for autonomous robots; examples include vertical surfaces like trees and cliffs, heterogeneous ground like desert rubble and brush, turbulent flows found near seashores, and deformable/flowable substrates like sand, mud and soil. In this review we argue for the creation of a physics of moving systems-a 'locomotion robophysics'-which we define as the pursuit of principles of self-generated motion. Robophysics can provide an important intellectual complement to the discipline of robotics, largely the domain of researchers from engineering and computer science. The essential idea is that we must complement the study of complex robots in complex situations with systematic study of simplified robotic devices in controlled laboratory settings and in simplified theoretical models. We must thus use the methods of physics to examine both locomotor successes and failures using parameter space exploration, systematic control, and techniques from dynamical systems. Using examples from our and others' research, we will discuss how such robophysical studies have begun to aid engineers in the creation of devices that have begun to achieve life-like locomotor abilities on and within complex environments, have inspired interesting physics questions in low dimensional dynamical systems, geometric mechanics and soft matter physics, and have been useful to develop models for biological locomotion in complex terrain. The rapidly decreasing cost of constructing robot models with easy access to significant computational power bodes well for scientists and engineers to engage in a discipline which can readily integrate experiment, theory and computation.
Collapse
Affiliation(s)
- Jeffrey Aguilar
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Clark AH, Kondic L, Behringer RP. Steady flow dynamics during granular impact. Phys Rev E 2016; 93:050901. [PMID: 27300820 DOI: 10.1103/physreve.93.050901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 11/07/2022]
Abstract
We study experimentally and computationally the dynamics of granular flow during impacts where intruders strike a collection of disks from above. In the regime where granular force dynamics are much more rapid than the intruder motion, we find that the particle flow near the intruder is proportional to the instantaneous intruder speed; it is essentially constant when normalized by that speed. The granular flow is nearly divergence free and remains in balance with the intruder, despite the latter's rapid deceleration. Simulations indicate that this observation is insensitive to grain properties, which can be explained by the separation of time scales between intergrain force dynamics and intruder dynamics. Assuming there is a comparable separation of time scales, we expect that our results are applicable to a broad class of dynamic or transient granular flows. Our results suggest that descriptions of static-in-time granular flows might be extended or modified to describe these dynamic flows. Additionally, we find that accurate grain-grain interactions are not necessary to correctly capture the granular flow in this regime.
Collapse
Affiliation(s)
- Abram H Clark
- Department of Physics & Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708, USA.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Lou Kondic
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Robert P Behringer
- Department of Physics & Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
36
|
Spreading, encapsulation and transition to arrested shapes during drop impact onto hydrophobic powders. J Colloid Interface Sci 2016; 468:10-20. [DOI: 10.1016/j.jcis.2016.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 11/21/2022]
|
37
|
Zhao SC, de Jong R, van der Meer D. Raindrop impact on sand: a dynamic explanation of crater morphologies. SOFT MATTER 2015; 11:6562-6568. [PMID: 26158484 DOI: 10.1039/c5sm00957j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As a droplet impacts upon a granular substrate, both the intruder and the target undergo deformation, during which the liquid may penetrate into the substrate. These three aspects together distinguish it from other impact phenomena in the literature. We perform high-speed, double-laser profilometry measurements and disentangle the dynamics into three aspects: the deformation of the substrate during the impact, the maximum spreading diameter of the droplet, and the penetration of the liquid into the substrate. By systematically varying the impact speed and the packing fraction of the substrate, (i) the substrate deformation indicates a critical packing fraction ϕ* ≈ 0.585; (ii) the maximum droplet spreading diameter is found to scale with a Weber number corrected by the substrate deformation; and (iii) a model of the liquid penetration is established and is used to explain the observed crater morphology transition.
Collapse
Affiliation(s)
- Song-Chuan Zhao
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, and J.M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | |
Collapse
|
38
|
Clark AH, Petersen AJ, Kondic L, Behringer RP. Nonlinear force propagation during granular impact. PHYSICAL REVIEW LETTERS 2015; 114:144502. [PMID: 25910128 DOI: 10.1103/physrevlett.114.144502] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 06/04/2023]
Abstract
We experimentally study nonlinear force propagation into granular material during impact from an intruder, and we explain our observations in terms of the nonlinear grain-scale force relation. Using high-speed video and photoelastic particles, we determine the speed and spatial structure of the force response just after impact. We show that these quantities depend on a dimensionless parameter, M^{'}=t_{c}v_{0}/d, where v_{0} is the intruder speed at impact, d is the particle diameter, and t_{c} is the collision time for a pair of grains impacting at relative speed v_{0}. The experiments access a large range of M^{'} by using particles of three different materials. When M^{'}≪1, force propagation is chainlike with a speed, v_{f}, satisfying v_{f}∝d/t_{c}. For larger M^{'}, the force response becomes spatially dense and the force propagation speed departs from v_{f}∝d/t_{c}, corresponding to collective stiffening of a strongly compressed packing of grains.
Collapse
Affiliation(s)
- Abram H Clark
- Department of Physics & Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708, USA
| | - Alec J Petersen
- Department of Physics & Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708, USA
| | - Lou Kondic
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Robert P Behringer
- Department of Physics & Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
39
|
Brzinski TA, Schug J, Mao K, Durian DJ. Penetration depth scaling for impact into wet granular packings. Phys Rev E 2015; 91:022202. [PMID: 25768493 DOI: 10.1103/physreve.91.022202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Indexed: 11/07/2022]
Abstract
We present experimental measurements of penetration depths for the impact of spheres into wetted granular media. We observe that the penetration depth in the liquid saturated case scales with projectile density, size, and drop height in a fashion consistent with the scaling observed in the dry case, but with smaller penetrations. Neither viscous drag nor density effects can explain the enhancement to the stopping force. The penetration depth exhibits a complicated dependence on liquid fraction, accompanied by a change in the drop-height dependence, that must be the consequence of accompanying changes in the conformation of the liquid phase in the interstices.
Collapse
Affiliation(s)
- T A Brzinski
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - J Schug
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,William Penn Charter School, Philadelphia, Pennsylvania 19144, USA
| | - K Mao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,The Haverford School, Haverford, Pennsylvania 19041, USA
| | - D J Durian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
40
|
Joubaud S, Homan T, Gasteuil Y, Lohse D, van der Meer D. Forces encountered by a sphere during impact into sand. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:060201. [PMID: 25615033 DOI: 10.1103/physreve.90.060201] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Indexed: 06/04/2023]
Abstract
We describe direct measurements of the acceleration of an object impacting on a loosely packed granular bed under various pressures, using an instrumented sphere. The sphere acts as a noninvasive probe that measures and continuously transmits the acceleration as it penetrates into the sand, using a radio signal. The time-resolved acceleration of the sphere reveals the detailed dynamics during the impact that cannot be resolved from the position information alone. Because of the unobstructed penetration, we see a downward acceleration of the sphere at the moment the air cavity collapses. The compressibility of the sand bed is observed through the oscillatory behavior of the acceleration curve for various ambient pressures; it shows the influence of interstitial air on the compaction of the sand as a function of time.
Collapse
Affiliation(s)
- Sylvain Joubaud
- Laboratoire de Physique de l'École Normale Supérieure de Lyon, CNRS, Université de Lyon, F-69364 Lyon, France
| | - Tess Homan
- Physics of Fluids Group, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Y Gasteuil
- smartINST S.A.S., 213 rue de Gerland, 69007 Lyon, France
| | - Detlef Lohse
- Physics of Fluids Group, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| | - Devaraj van der Meer
- Physics of Fluids Group, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands
| |
Collapse
|
41
|
Tiwari M, Mohan TRK, Sen S. Drag-force regimes in granular impact. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062202. [PMID: 25615080 DOI: 10.1103/physreve.90.062202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Indexed: 06/04/2023]
Abstract
We study the penetration dynamics of a projectile incident normally on a substrate comprising of smaller granular particles in three-dimensions using the discrete element method. Scaling of the penetration depth is consistent with experimental observations for small velocity impacts. Our studies are consistent with the observation that the normal or drag force experienced by the penetrating grain obeys the generalized Poncelet law, which has been extensively invoked in understanding the drag force in the recent experimental data. We find that the normal force experienced by the projectile consists of position and kinetic-energy-dependent pieces. Three different penetration regimes are identified in our studies for low-impact velocities. The first two regimes are observed immediately after the impact and in the early penetration stage, respectively, during which the drag force is seen to depend on the kinetic energy. The depth dependence of the drag force becomes significant in the third regime when the projectile is moving slowly and is partially immersed in the substrate. These regimes relate to the different configurations of the bed: the initial loose surface packed state, fluidized bed below the region of impact, and the state after the crater formation commences.
Collapse
Affiliation(s)
- Mukesh Tiwari
- Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT), 382007 Gandhinagar, India
| | - T R Krishna Mohan
- CSIR Centre for Mathematical Modelling and Computer Simulation (C-MMACS), Bangalore 560017, India
| | - Surajit Sen
- Department of Physics, State University of New York, Buffalo, New York 14260-1500, USA
| |
Collapse
|
42
|
Gravish N, Goldman DI. Effect of volume fraction on granular avalanche dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032202. [PMID: 25314432 DOI: 10.1103/physreve.90.032202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Indexed: 06/04/2023]
Abstract
We study the evolution and failure of a granular slope as a function of prepared volume fraction, ϕ(0). We rotated an initially horizontal layer of granular material (0.3-mm-diam glass spheres) to a 45° angle while we monitor the motion of grains from the side and top with high-speed video cameras. The dynamics of grain motion during the tilt process depended sensitively on ϕ(0)∈[0.58-0.63] and differed above or below the granular critical state, ϕ(c), defined as the onset of dilation as a function of increasing volume fraction. For ϕ(0)-ϕ(c)<0, slopes experienced short, rapid, precursor compaction events prior to the onset of a sustained avalanche. Precursor compaction events began at an initial angle θ(0)=7.7±1.4° and occurred intermittently prior to the onset of an avalanche. Avalanches occurred at the maximal slope angle θ(m)=28.5±1.0°. Granular material at ϕ(0)-ϕ(c)>0 did not experience precursor compaction prior to avalanche flow, and instead experienced a single dilational motion at θ(0)=32.1±1.5° prior to the onset of an avalanche at θ(m)=35.9±0.7°. Both θ(0) and θ(m) increased with ϕ(0) and approached the same value in the limit of random close packing. The angle at which avalanching grains came to rest, θ(R)=22±2°, was independent of ϕ(0). From side-view high-speed video, we measured the velocity field of intermittent and avalanching flow. We found that flow direction, depth, and duration were affected by ϕ(0), with ϕ(0)-ϕ(c)<0 precursor flow extending deeper into the granular bed and occurring more rapidly than precursor flow at ϕ(0)-ϕ(c)>0. Our study elucidates how initial conditions-including volume fraction-are important determinants of granular slope stability and the onset of avalanches.
Collapse
Affiliation(s)
- Nick Gravish
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Daniel I Goldman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
43
|
Nordstrom KN, Lim E, Harrington M, Losert W. Granular dynamics during impact. PHYSICAL REVIEW LETTERS 2014; 112:228002. [PMID: 24949789 DOI: 10.1103/physrevlett.112.228002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 06/03/2023]
Abstract
We study the impact of a projectile onto a bed of 3 mm grains immersed in an index-matched fluid. We vary the amount of prestrain on the sample, strengthening the force chains within the system. We find this affects only the prefactor of the linear depth-dependent term in the stopping force. We propose a simple model to account for the strain dependence of this term, owing to increased pressure in the pile. Interestingly, we find that the presence of the fluid does not affect the impact dynamics, suggesting that dynamic friction is not a factor. Using a laser sheet scanning technique to visualize internal grain motion, we measure the trajectory of each grain throughout an impact. Microscopically, our results indicate that weaker initial force chains result in more irreversible, plastic rearrangements, suggesting static friction between grains does play a substantial role in the energy dissipation.
Collapse
Affiliation(s)
- K N Nordstrom
- Institute for Physical Science and Technology, and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - E Lim
- Department of Physics and Astronomy, Duke University, Durham, North Carolina 27708, USA
| | - M Harrington
- Institute for Physical Science and Technology, and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - W Losert
- Institute for Physical Science and Technology, and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
44
|
Gravish N, Umbanhowar PB, Goldman DI. Force and flow at the onset of drag in plowed granular media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:042202. [PMID: 24827236 DOI: 10.1103/physreve.89.042202] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Indexed: 06/03/2023]
Abstract
We study the transient drag force FD on a localized intruder in a granular medium composed of spherical glass particles. A flat plate is translated horizontally from rest through the granular medium to observe how FD varies as a function of the medium's initial volume fraction, ϕ. The force response of the granular material differs above and below the granular critical state, ϕc, the volume fraction which corresponds to the onset of grain dilatancy. For ϕ<ϕc FD increases monotonically with displacement and is independent of drag velocity for the range of velocities examined (<10 cm/s). For ϕ>ϕc, FD rapidly rises to a maximum and then decreases over further displacement. The maximum force for ϕ>ϕc increases with increasing drag velocity. In quasi-two-dimensional drag experiments, we use granular particle image velocimetry (PIV) to measure time resolved strain fields associated with the horizontal motion of a plate started from rest. PIV experiments show that the maxima in FD for ϕ>ϕc are associated with maxima in the spatially averaged shear strain field. For ϕ>ϕc the shear strain occurs in a narrow region in front of the plate, a shear band. For ϕ<ϕc the shear strain is not localized, the shear band fluctuates in space and time, and the average shear increases monotonically with displacement. Laser speckle measurements made at the granular surface ahead of the plate reveal that for ϕ<ϕc particles are in motion far from the intruder and shearing region. For ϕ>ϕc, surface particles move only during the formation of the shear band, coincident with the maxima in FD, after which the particles remain immobile until the sheared region reaches the measurement region.
Collapse
Affiliation(s)
- Nick Gravish
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Paul B Umbanhowar
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Daniel I Goldman
- School of Physics and School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
45
|
Clark AH, Petersen AJ, Behringer RP. Collisional model for granular impact dynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012201. [PMID: 24580216 DOI: 10.1103/physreve.89.012201] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Indexed: 06/03/2023]
Abstract
When an intruder strikes a granular material from above, the grains exert a stopping force which decelerates and stops the intruder. Many previous studies have used a macroscopic force law, including a drag force which is quadratic in velocity, to characterize the decelerating force on the intruder. However, the microscopic origins of the force-law terms are still a subject of debate. Here, drawing from previous experiments with photoelastic particles, we present a model which describes the velocity-squared force in terms of repeated collisions with clusters of grains. From our high speed photoelastic data, we infer that "clusters" correspond to segments of the strong force network that are excited by the advancing intruder. The model predicts a scaling relation for the velocity-squared drag force that accounts for the intruder shape. Additionally, we show that the collisional model predicts an instability to rotations, which depends on the intruder shape. To test this model, we perform a comprehensive experimental study of the dynamics of two-dimensional granular impacts on beds of photoelastic disks, with different profiles for the leading edge of the intruder. We particularly focus on a simple and useful case for testing shape effects by using triangular-nosed intruders. We show that the collisional model effectively captures the dynamics of intruder deceleration and rotation; i.e., these two dynamical effects can be described as two different manifestations of the same grain-scale physical processes.
Collapse
Affiliation(s)
- Abram H Clark
- Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708, USA
| | - Alec J Petersen
- Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708, USA
| | - Robert P Behringer
- Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
46
|
Kachuck SB, Voth GA. Simulations of granular gravitational collapse. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062202. [PMID: 24483431 DOI: 10.1103/physreve.88.062202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 06/03/2023]
Abstract
A freely cooling granular gas in a gravitational field undergoes a collapse to a multicontact state in a finite time. Previous theoretical [D. Volfson et al., Phys. Rev. E 73, 061305 (2006)] and experimental work [R. Son et al., Phys. Rev. E 78, 041302 (2008)] have obtained contradictory results about the rate of energy loss before the gravitational collapse. Here we use a molecular dynamics simulation in an attempt to recreate the experimental and theoretical results to resolve the discrepancy. We are able to nearly match the experimental results, and find that to reproduce the power law predicted in the theory we need a nearly elastic system with a constant coefficient of restitution greater than 0.993. For the more realistic velocity-dependent coefficient of restitution, there does not appear to be a power-law decay and the transition from granular gas to granular solid is smooth, making it difficult to define a time of collapse.
Collapse
Affiliation(s)
- Samuel B Kachuck
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Greg A Voth
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| |
Collapse
|
47
|
Brzinski TA, Mayor P, Durian DJ. Depth-dependent resistance of granular media to vertical penetration. PHYSICAL REVIEW LETTERS 2013; 111:168002. [PMID: 24182303 DOI: 10.1103/physrevlett.111.168002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Indexed: 06/02/2023]
Abstract
We measure the quasistatic friction force acting on intruders moving downwards into a granular medium. By utilizing different intruder geometries, we demonstrate that the force acts locally normal to the intruder surface. By altering the hydrostatic loading of grain contacts by a sub-fluidizing airflow through the bed, we demonstrate that the relevant frictional contacts are loaded by gravity rather than by the motion of the intruder itself. Lastly, by measuring the final penetration depth versus airspeed and using an earlier result for inertial drag, we demonstrate that the same quasistatic friction force acts during impact. Altogether this force is set by a friction coefficient, hydrostatic pressure, projectile size and shape, and a dimensionless proportionality constant. The latter is the same in nearly all experiments, and is surprisingly greater than one.
Collapse
Affiliation(s)
- T A Brzinski
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
48
|
Ruiz-Suárez JC. Penetration of projectiles into granular targets. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:066601. [PMID: 23660625 DOI: 10.1088/0034-4885/76/6/066601] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Energetic collisions of subatomic particles with fixed or moving targets have been very valuable to penetrate into the mysteries of nature. But the mysteries are quite intriguing when projectiles and targets are macroscopically immense. We know that countless debris wandering in space impacted (and still do) large asteroids, moons and planets; and that millions of craters on their surfaces are traces of such collisions. By classifying and studying the morphology of such craters, geologists and astrophysicists obtain important clues to understand the origin and evolution of the Solar System. This review surveys knowledge about crater phenomena in the planetary science context, avoiding detailed descriptions already found in excellent papers on the subject. Then, it examines the most important results reported in the literature related to impact and penetration phenomena in granular targets obtained by doing simple experiments. The main goal is to discern whether both schools, one that takes into account the right ingredients (planetary bodies and very high energies) but cannot physically reproduce the collisions, and the other that easily carries out the collisions but uses laboratory ingredients (small projectiles and low energies), can arrive at a synergistic intersection point.
Collapse
|
49
|
Katsuragi H, Durian DJ. Drag force scaling for penetration into granular media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052208. [PMID: 23767531 DOI: 10.1103/physreve.87.052208] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Impact dynamics is measured for spherical and cylindrical projectiles of many different densities dropped onto a variety non-cohesive granular media. The results are analyzed in terms of the material-dependent scaling of the inertial and frictional drag contributions to the total stopping force. The inertial drag force scales similar to that in fluids, except that it depends on the internal friction coefficient. The frictional drag force scales as the square-root of the density of granular medium and projectile, and hence cannot be explained by the combination of granular hydrostatic pressure and Coulomb friction law. The combined results provide an explanation for the previously observed penetration depth scaling.
Collapse
Affiliation(s)
- Hiroaki Katsuragi
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
50
|
Seguin A, Bertho Y, Martinez F, Crassous J, Gondret P. Experimental velocity fields and forces for a cylinder penetrating into a granular medium. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012201. [PMID: 23410320 DOI: 10.1103/physreve.87.012201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/21/2012] [Indexed: 06/01/2023]
Abstract
We present here a detailed granular flow characterization together with force measurements for the quasi-bidimensional situation of a horizontal cylinder penetrating vertically at a constant velocity in dry granular matter between two parallel glass walls. In the velocity range studied here, the drag force on the cylinder does not depend on the velocity V(0) and is mainly proportional to the cylinder diameter d. While the force on the cylinder increases with its penetration depth, the granular velocity profile around the cylinder is found to be stationary with fluctuations around a mean value leading to the granular temperature profile. Both mean velocity profile and temperature profile exhibit strong localization near the cylinder. The mean flow perturbation induced by the cylinder decreases exponentially away from the cylinder on a characteristic length λ that is mainly governed by the cylinder diameter for a large enough cylinder/grain size ratio d/d(g): λ~d/4+2d(g). The granular temperature exhibits a constant plateau value T(0) in a thin layer close to the cylinder of extension δ(T(0))~λ/2 and decays exponentially far away with a characteristic length λ(T) of a few grain diameters (λ(T)~3d(g)). The granular temperature plateau T(0) that scales as V(0)(2)d(g)/d is created by the flow itself from the balance between the "granular heat" production by the shear rate V(0)/λ over δ(T(0)) close to the cylinder and the granular dissipation far away.
Collapse
Affiliation(s)
- A Seguin
- Université Paris-Sud, Université Paris 6, CNRS, Lab FAST, Bâtiment 502, Campus Université, F-91405 Orsay, France
| | | | | | | | | |
Collapse
|