1
|
Wiese KJ. Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086502. [PMID: 35943081 DOI: 10.1088/1361-6633/ac4648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/23/2021] [Indexed: 06/15/2023]
Abstract
Domain walls in magnets, vortex lattices in superconductors, contact lines at depinning, and many other systems can be modeled as an elastic system subject to quenched disorder. The ensuing field theory possesses a well-controlled perturbative expansion around its upper critical dimension. Contrary to standard field theory, the renormalization group (RG) flow involves a function, the disorder correlator Δ(w), and is therefore termed the functional RG. Δ(w) is a physical observable, the auto-correlation function of the center of mass of the elastic manifold. In this review, we give a pedagogical introduction into its phenomenology and techniques. This allows us to treat both equilibrium (statics), and depinning (dynamics). Building on these techniques, avalanche observables are accessible: distributions of size, duration, and velocity, as well as the spatial and temporal shape. Various equivalences between disordered elastic manifolds, and sandpile models exist: an elastic string driven at a point and the Oslo model; disordered elastic manifolds and Manna sandpiles; charge density waves and Abelian sandpiles or loop-erased random walks. Each of the mappings between these systems requires specific techniques, which we develop, including modeling of discrete stochastic systems via coarse-grained stochastic equations of motion, super-symmetry techniques, and cellular automata. Stronger than quadratic nearest-neighbor interactions lead to directed percolation, and non-linear surface growth with additional Kardar-Parisi-Zhang (KPZ) terms. On the other hand, KPZ without disorder can be mapped back to disordered elastic manifolds, either on the directed polymer for its steady state, or a single particle for its decay. Other topics covered are the relation between functional RG and replica symmetry breaking, and random-field magnets. Emphasis is given to numerical and experimental tests of the theory.
Collapse
Affiliation(s)
- Kay Jörg Wiese
- Laboratoire de physique, Département de physique de l'ENS, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France
| |
Collapse
|
2
|
Le Priol C, Le Doussal P, Rosso A. Spatial Clustering of Depinning Avalanches in Presence of Long-Range Interactions. PHYSICAL REVIEW LETTERS 2021; 126:025702. [PMID: 33512216 DOI: 10.1103/physrevlett.126.025702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/14/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Disordered elastic interfaces display avalanche dynamics at the depinning transition. For short-range interactions, avalanches correspond to compact reorganizations of the interface well described by the depinning theory. For long-range elasticity, an avalanche is a collection of spatially disconnected clusters. In this Letter we determine the scaling properties of the clusters and relate them to the roughness exponent of the interface. The key observation of our analysis is the identification of a Bienaymé-Galton-Watson process describing the statistics of the number of clusters. Our work has concrete importance for experimental applications where the cluster statistics is a key probe of avalanche dynamics.
Collapse
Affiliation(s)
- Clément Le Priol
- Laboratoire de Physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75231 Paris Cedex, France
| | - Pierre Le Doussal
- Laboratoire de Physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75231 Paris Cedex, France
| | - Alberto Rosso
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
3
|
Abstract
In disordered elastic systems, driven by displacing a parabolic confining potential adiabatically slowly, all advance of the system is in bursts, termed avalanches. Avalanches have a finite extension in time, which is much smaller than the waiting time between them. Avalanches also have a finite extension ℓ in space, i.e., only a part of the interface of size ℓ moves during an avalanche. Here we study their spatial shape 〈S(x)〉_{ℓ} given ℓ, as well as its fluctuations encoded in the second cumulant 〈S^{2}(x)〉_{ℓ}^{c}. We establish scaling relations governing the behavior close to the boundary. We then give analytic results for the Brownian force model, in which the microscopic disorder for each degree of freedom is a random walk. Finally, we confirm these results with numerical simulations. To do this properly we elucidate the influence of discretization effects, which also confirms the assumptions entering into the scaling ansatz. This allows us to reach the scaling limit already for avalanches of moderate size. We find excellent agreement for the universal shape and its fluctuations, including all amplitudes.
Collapse
Affiliation(s)
- Zhaoxuan Zhu
- CNRS, Laboratoire de Physique Théorique, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC, 24 Rue Lhomond, 75005 Paris, France
| | - Kay Jörg Wiese
- CNRS, Laboratoire de Physique Théorique, École Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC, 24 Rue Lhomond, 75005 Paris, France
| |
Collapse
|
4
|
Guan D, Wang YJ, Charlaix E, Tong P. Simultaneous observation of asymmetric speed-dependent capillary force hysteresis and slow relaxation of a suddenly stopped moving contact line. Phys Rev E 2016; 94:042802. [PMID: 27841463 DOI: 10.1103/physreve.94.042802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 06/06/2023]
Abstract
We report direct atomic-force-microscope measurements of capillary force hysteresis (CFH) and relaxation of a circular moving contact line (CL) formed on a long micron-sized hydrophobic fiber intersecting a liquid-air interface. By using eight different liquid interfaces with varying solid-liquid molecular interactions, we find a universal behavior of the asymmetric speed dependence of CFH and CL relaxation. A unified model based on force-assisted barrier crossing is used to connect the mesoscopic measurements of CFH and CL relaxation with the energy barrier height E_{b} and size λ associated with the surface defects. The experiment demonstrates that the CL pinning (relaxation) and depinning dynamics are closely related and can be described by a common microscopic framework.
Collapse
Affiliation(s)
- Dongshi Guan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yong Jian Wang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Elisabeth Charlaix
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier, 140 rue de la physique, F-38402 Grenoble, France
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
5
|
Boulogne F, Ingremeau F, Limat L, Stone HA. Tuning the Receding Contact Angle on Hydrogels by Addition of Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5573-5579. [PMID: 27185647 DOI: 10.1021/acs.langmuir.6b01209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Control of the swelling, chemical functionalization, and adhesivity of hydrogels are finding new applications in a wide range of material systems. We investigate experimentally the effect of adsorbed particles on hydrogels on the depinning of contact lines. In our experiments, a water drop containing polystyrene microspheres is deposited on a swelling hydrogel, which leads to the drop absorption and particle deposition. Two regimes are observed: a decreasing drop height with a pinned contact line followed by a receding contact line. We show that increasing the particles concentration increases the duration of the first regime and significantly decreases the total absorption time. The adsorbed particles increase the pinning force at the contact line. Finally, we develop a method to measure the receding contact angle with the consideration of the hydrogel swelling.
Collapse
Affiliation(s)
- François Boulogne
- Department of Mechanical and Aerospace Engineering, Princeton University , Princeton, New Jersey 08544, United States
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot , Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, Paris, France
| | - François Ingremeau
- Department of Mechanical and Aerospace Engineering, Princeton University , Princeton, New Jersey 08544, United States
- LIPhy, CNRS, and Université Grenoble Alpes, 140 Rue de la Physique, 38402 Saint-Martin-d'Hères, France
| | - Laurent Limat
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Diderot , Bâtiment Condorcet, 10 rue Alice Domon et Léonie Duquet, Paris, France
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Wang YJ, Guo S, Chen HY, Tong P. Understanding contact angle hysteresis on an ambient solid surface. Phys Rev E 2016; 93:052802. [PMID: 27300959 DOI: 10.1103/physreve.93.052802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Indexed: 06/06/2023]
Abstract
We report a systematic study of contact angle hysteresis (CAH) with direct measurement of the capillary force acting on a contact line formed on the surface of a long glass fiber intersecting a liquid-air interface. The glass fiber of diameter 1-2μm and length 100-200μm is glued onto the front end of a rectangular cantilever beam, which is used for atomic force microscopy. From the measured hysteresis loop of the capillary force for 28 different liquids with varying surface tensions and contact angles, we find a universal behavior of the unbalanced capillary force in the advancing and receding directions and the spring constant of a stretched meniscus by the glass fiber. Measurements of the capillary force and its fluctuations suggest that CAH on an ambient solid surface is caused primarily by two types of coexisting and spatially intertwined defects with opposite natures. The contact line is primarily pinned by the relatively nonwetting (repulsive) defects in the advancing direction and by the relatively wetting (attractive) defects in the receding direction. Based on the experimental observations, we propose a "composite model" of CAH and relevant scaling laws, which explain the basic features of the measured hysteresis force loops.
Collapse
Affiliation(s)
- Yong Jian Wang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Shuo Guo
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Hsuan-Yi Chen
- Department of Physics, National Central University, Jhongli 32001, Taiwan, Republic of China
- Institute of Physics, Academia Sinica, Taipei 11520, Taiwan, Republic of China
- Physics Division, National Center for Theoretical Sciences, Hsinchu 30113, Taiwan, Republic of China
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
7
|
Guan D, Wang YJ, Charlaix E, Tong P. Asymmetric and Speed-Dependent Capillary Force Hysteresis and Relaxation of a Suddenly Stopped Moving Contact Line. PHYSICAL REVIEW LETTERS 2016; 116:066102. [PMID: 26919000 DOI: 10.1103/physrevlett.116.066102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Indexed: 06/05/2023]
Abstract
We report on direct atomic-force-microscope measurements of capillary force hysteresis (CFH) and relaxation of a circular moving contact line (CL) formed on a long micron-sized hydrophobic fiber intersecting a water-air interface. The measured CFH and CL relaxation show a strong asymmetric speed dependence in the advancing and receding directions. A unified model based on force-assisted barrier crossing is utilized to find the underlying energy barrier Eb and size λ associated with the defects on the fiber surface. The experiment demonstrates that the pinning (relaxation) and depinning dynamics of the CL can be described by a common microscopic framework, and the advancing and receding CLs are influenced by two different sets of relatively wetting and nonwetting defects on the fiber surface.
Collapse
Affiliation(s)
- Dongshi Guan
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yong Jian Wang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Elisabeth Charlaix
- Laboratoire Interdisciplinaire de Physique, Université Joseph Fourier, 140 rue de la physique, F-38402 Grenoble, France
| | - Penger Tong
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
8
|
Dobrinevski A, Le Doussal P, Wiese KJ. Statistics of avalanches with relaxation and Barkhausen noise: a solvable model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032106. [PMID: 24125213 DOI: 10.1103/physreve.88.032106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 06/02/2023]
Abstract
We study a generalization of the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model of a particle in a Brownian force landscape, including retardation effects. We show that under monotonous driving the particle moves forward at all times, as it does in absence of retardation (Middleton's theorem). This remarkable property allows us to develop an analytical treatment. The model with an exponentially decaying memory kernel is realized in Barkhausen experiments with eddy-current relaxation and has previously been shown numerically to account for the experimentally observed asymmetry of Barkhausen pulse shapes. We elucidate another qualitatively new feature: the breakup of each avalanche of the standard ABBM model into a cluster of subavalanches, sharply delimited for slow relaxation under quasistatic driving. These conditions are typical for earthquake dynamics. With relaxation and aftershock clustering, the present model includes important ingredients for an effective description of earthquakes. We analyze quantitatively the limits of slow and fast relaxation for stationary driving with velocity v>0. The v-dependent power-law exponent for small velocities, and the critical driving velocity at which the particle velocity never vanishes, are modified. We also analyze nonstationary avalanches following a step in the driving magnetic field. Analytically, we obtain the mean avalanche shape at fixed size, the duration distribution of the first subavalanche, and the time dependence of the mean velocity. We propose to study these observables in experiments, allowing a direct measurement of the shape of the memory kernel and tracing eddy current relaxation in Barkhausen noise.
Collapse
Affiliation(s)
- Alexander Dobrinevski
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | | | | |
Collapse
|
9
|
Le Doussal P, Wiese KJ. Avalanche dynamics of elastic interfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022106. [PMID: 24032774 DOI: 10.1103/physreve.88.022106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Indexed: 06/02/2023]
Abstract
Slowly driven elastic interfaces, such as domain walls in dirty magnets, contact lines wetting a nonhomogeneous substrate, or cracks in brittle disordered material proceed via intermittent motion, called avalanches. Here we develop a field-theoretic treatment to calculate, from first principles, the space-time statistics of instantaneous velocities within an avalanche. For elastic interfaces at (or above) their (internal) upper critical dimension d≥d(uc) (d(uc)=2,4 respectively for long-ranged and short-ranged elasticity) we show that the field theory for the center of mass reduces to the motion of a point particle in a random-force landscape, which is itself a random walk [Alessandro, Beatrice, Bertotti, and Montorsi (ABBM) model]. Furthermore, the full spatial dependence of the velocity correlations is described by the Brownian-force model (BFM) where each point of the interface sees an independent Brownian-force landscape. Both ABBM and BFM can be solved exactly in any dimension d (for monotonous driving) by summing tree graphs, equivalent to solving a (nonlinear) instanton equation. We focus on the limit of slow uniform driving. This tree approximation is the mean-field theory (MFT) for realistic interfaces in short-ranged disorder, up to the renormalization of two parameters at d=d(uc). We calculate a number of observables of direct experimental interest: Both for the center of mass, and for a given Fourier mode q, we obtain various correlations and probability distribution functions (PDF's) of the velocity inside an avalanche, as well as the avalanche shape and its fluctuations (second shape). Within MFT we find that velocity correlations at nonzero q are asymmetric under time reversal. Next we calculate, beyond MFT, i.e., including loop corrections, the one-time PDF of the center-of-mass velocity u[over ·] for dimension d<d(uc). The singularity at small velocity P(u[over ·])~1/u[over ·](a) is substantially reduced from a=1 (MFT) to a=1-2/9(4-d)+... (short-ranged elasticity) and a=1-4/9(2-d)+... (long-ranged elasticity). We show how the dynamical theory recovers the avalanche-size distribution, and how the instanton relates to the response to an infinitesimal step in the force.
Collapse
Affiliation(s)
- Pierre Le Doussal
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | | |
Collapse
|
10
|
Le Doussal P, Wiese KJ. First-principles derivation of static avalanche-size distributions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061102. [PMID: 23005046 DOI: 10.1103/physreve.85.061102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Indexed: 06/01/2023]
Abstract
We study the energy minimization problem for an elastic interface in a random potential plus a quadratic well. As the position of the well is varied, the ground state undergoes jumps, called shocks or static avalanches. We introduce an efficient and systematic method to compute the statistics of avalanche sizes and manifold displacements. The tree-level calculation, i.e., mean-field limit, is obtained by solving a saddle-point equation. Graphically, it can be interpreted as the sum of all tree graphs. The 1-loop corrections are computed using results from the functional renormalization group. At the upper critical dimension the shock statistics is described by the Brownian force model (BFM), the static version of the so-called Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model in the nonequilibrium context of depinning. This model can itself be treated exactly in any dimension and its shock statistics is that of a Lévy process. Contact is made with classical results in probability theory on the Burgers equation with Brownian initial conditions. In particular we obtain a functional extension of an evolution equation introduced by Carraro and Duchon, which recursively constructs the tree diagrams in the field theory.
Collapse
Affiliation(s)
- Pierre Le Doussal
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
| | | |
Collapse
|