1
|
Binaree T, Jitsangiam P, Renouf M, Azéma E. Packing of cohesive angular particles: Cohesive strength, structure, and effects of angularity. Phys Rev E 2025; 111:015407. [PMID: 39972895 DOI: 10.1103/physreve.111.015407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/02/2024] [Indexed: 02/21/2025]
Abstract
Employing extensive 2D contact dynamics simulations, we analyze the effects of grain shape angularity on the quasistatic shear strength properties of cohesive granular packings. We consider sticky irregular polygons ranging from disklike shapes to triangle. We find that the Mohr-Coulomb cohesion (i.e., the cohesive strength) is an increasing function of grain angularity. Meanwhile, the macroscopic friction angle increases with angularity and saturates for the most angular shapes, similar to dry cases. Using an effective stresslike approach, we show that the Mohr-Coulomb cohesion emerges from the cohesive force network for all shapes. From this, a micromechanical model reminiscent of the so-called "Rumpf" formula, is derived and reveals the increasing competition between the macroscopic friction, the anisotropy of the cohesive contacts network, and the grain shape parameter (i.e., the number of sides of the polygons) in the variation of Mohr-Coulomb cohesion with increasing angularity.
Collapse
Affiliation(s)
- Theechalit Binaree
- Chiang Mai University, -Advanced Railway Civil and Foundation Engineering Center (CMU-RailCFC), Department of Civil Engineering, Faculty of Engineering, Chiang Mai University, 239 Huay Kaew Road, Muang, Chiang Mai 50200, Thailand
| | - Peerapong Jitsangiam
- Chiang Mai University, -Advanced Railway Civil and Foundation Engineering Center (CMU-RailCFC), Department of Civil Engineering, Faculty of Engineering, Chiang Mai University, 239 Huay Kaew Road, Muang, Chiang Mai 50200, Thailand
| | - Mathieu Renouf
- Université de Montpellier, LMGC, CNRS, Montpellier 34090, France
| | - Emilien Azéma
- Université de Montpellier, LMGC, CNRS, Montpellier 34090, France
- Polytechnique Montréal, Department of Civil, Geological, and Mining Engineering, Montréal 2500, Canada
- Institut Universitaire de France, (IUF), Paris 75005, France
| |
Collapse
|
2
|
Azéma E, Linero S, Estrada N, Lizcano A. Shear strength and microstructure of polydisperse packings: The effect of size span and shape of particle size distribution. Phys Rev E 2017; 96:022902. [PMID: 28950486 DOI: 10.1103/physreve.96.022902] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 11/07/2022]
Abstract
By means of extensive contact dynamics simulations, we analyzed the effect of particle size distribution (PSD) on the strength and microstructure of sheared granular materials composed of frictional disks. The PSDs are built by means of a normalized β function, which allows the systematic investigation of the effects of both, the size span (from almost monodisperse to highly polydisperse) and the shape of the PSD (from linear to pronouncedly curved). We show that the shear strength is independent of the size span, which substantiates previous results obtained for uniform distributions by packing fraction. Notably, the shear strength is also independent of the shape of the PSD, as shown previously for systems composed of frictionless disks. In contrast, the packing fraction increases with the size span, but decreases with more pronounced PSD curvature. At the microscale, we analyzed the connectivity and anisotropies of the contacts and forces networks. We show that the invariance of the shear strength with the PSD is due to a compensation mechanism which involves both geometrical sources of anisotropy. In particular, contact orientation anisotropy decreases with the size span and increases with PSD curvature, while the branch length anisotropy behaves inversely.
Collapse
Affiliation(s)
- Emilien Azéma
- Laboratoire de Mécanique et Génie Civil (LMGC), Université de Montpellier, CNRS, Montpellier, France
| | - Sandra Linero
- University of Newcastle, Faculty of Engineering and Build Environment, University Dr Callaghan NSW2308, Australia.,SRK Consulting (Australasia) Pty Ltd, 10 Richardson St WA6005, Australia
| | - Nicolas Estrada
- Departamento de Ingeniería Civil y Ambiental, Universidad de Los Andes, Bogotá, Colombia
| | - Arcesio Lizcano
- SRK Consulting (Canada) Inc, 1066 West Hastings St, BC V6E 3X2, Canada
| |
Collapse
|
3
|
Nguyen DH, Azéma E, Sornay P, Radjai F. Effects of shape and size polydispersity on strength properties of granular materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032203. [PMID: 25871099 DOI: 10.1103/physreve.91.032203] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 05/21/2023]
Abstract
By means of extensive contact dynamics simulations, we analyze the combined effects of polydispersity both in particle size and in particle shape, defined as the degree of shape irregularity, on the shear strength and microstructure of sheared granular materials composed of pentagonal particles. We find that the shear strength is independent of the size span, but unexpectedly, it declines with increasing shape polydispersity. At the same time, the solid fraction is an increasing function of both the size span and the shape polydispersity. Hence, the densest and loosest packings have the same shear strength. At the scale of the particles and their contacts, we analyze the connectivity of particles, force transmission, and friction mobilization as well as their anisotropies. We show that stronger forces are carried by larger particles and propped by an increasing number of small particles. The independence of shear strength with regard to size span is shown to be a consequence of contact network self-organization, with the falloff of contact anisotropy compensated by increasing force anisotropy.
Collapse
Affiliation(s)
- Duc-Hanh Nguyen
- University of Montpellier, CNRS, LMGC, Place Eugène Bataillon, 34095 Montpellier, France
- CEA, DEN, DEC, SPUA, LCU, F-13108 Saint Paul lez Durance, France
| | - Emilien Azéma
- University of Montpellier, CNRS, LMGC, Place Eugène Bataillon, 34095 Montpellier, France
| | - Philippe Sornay
- CEA, DEN, DEC, SPUA, LCU, F-13108 Saint Paul lez Durance, France
| | - Farhang Radjai
- University of Montpellier, CNRS, LMGC, Place Eugène Bataillon, 34095 Montpellier, France
- ⟨MSE⟩2, UMI 3466 CNRS-MIT, CEE, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|