1
|
Noguchi H, Yukawa S. Fracture process of composite materials in a spring network model. Phys Rev E 2024; 110:045001. [PMID: 39562880 DOI: 10.1103/physreve.110.045001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/20/2024] [Indexed: 11/21/2024]
Abstract
We analyze a two-dimensional spring network model comprising breakable and unbreakable springs. Computer simulations showed this system to exhibit intermittent stress drops in a larger strain regime, and these stress drops resulted in ductilelike behavior. The scaling analysis reveals that the avalanche size distribution demonstrates a cutoff, depending on its internal structure. This study also investigates the relationship between cluster growth and stress drop, and we show that the amount of stress drop increases in terms of power law, corresponding to crack growth. The crack length distribution also demonstrates a cutoff depending on its internal structure. The results show that both the cluster growth-stress drop relationship and the crack size distribution are scaled by the quantity related to the internal structure, and the relevance of the exponent that scales the cluster growth-stress drop relationship to the exponent that scales crack size distribution is verified.
Collapse
|
2
|
Senapati S, Roy S, Banerjee A, Rajesh R. Record statistics of fracture in the random spring network model. Phys Rev E 2024; 110:035004. [PMID: 39425309 DOI: 10.1103/physreve.110.035004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 09/09/2024] [Indexed: 10/21/2024]
Abstract
We study the role of record statistics of damage avalanches in predicting the fracture of a heterogeneous material under tensile loading. The material is modeled using a two-dimensional random spring network where disorder is introduced through randomness in the breakage threshold strains of the springs. It is shown that the waiting strain interval between successive records of avalanches has a maximum for moderate disorder, thus showing an acceleration in occurrence of records when approaching final fracture. Such a signature is absent for low disorder when the fracture is nucleation-dominated, as well as for high disorder when the fracture is percolation type. We examine the correlation between the record with the maximum waiting strain interval and the crossover record at which the avalanche statistics change from off-critical to critical. Compared to the avalanche exponent crossover based prediction for failure, we show that the record statistics have the advantage of both being real-time as well as being a precursor significantly prior to final fracture. We also find that in the avalanche-dominated regime, the failure strain is at best weakly correlated with the strain at the maximum waiting strain interval. A stronger correlation is observed between the index of the largest record and the index of the record at the maximum waiting strain interval.
Collapse
|
3
|
Senapati S, Banerjee A, Rajesh R. Role of composition in fracture behavior of two-phase solids. Phys Rev E 2023; 107:055002. [PMID: 37329015 DOI: 10.1103/physreve.107.055002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/11/2023] [Indexed: 06/18/2023]
Abstract
In a two-phase solid, we examine the growth of a preexisting macroscopic crack based on simulations of a random spring network model. We find that the enhancement in toughness, as well as strength, is strongly dependent on the ratio of elastic moduli as well as on the relative proportion of the phases. We find that the mechanism that leads to enhancement in toughness is not the same as that for enhancement in strength; however, the overall enhancement is similar in mode I and mixed-mode loading. Based on the crack paths, and the spread of the fracture process zone, we identify the type of fracture to transition from nucleation type, for close to single-phase compositions, whether hard or soft, to avalanche type for more mixed compositions. We also show that the associated avalanche distributions exhibit power-law statistics with different exponents for each phase. The significance of variations in the avalanche exponents with the relative proportion of phases and possible connections to the fracture types are discussed in detail.
Collapse
Affiliation(s)
- Subrat Senapati
- Department of Applied Mechanics, IIT Madras, Chennai 600036, India
| | | | - R Rajesh
- Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
4
|
Tauber J, van der Gucht J, Dussi S. Stretchy and disordered: Toward understanding fracture in soft network materials via mesoscopic computer simulations. J Chem Phys 2022; 156:160901. [PMID: 35490006 DOI: 10.1063/5.0081316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Soft network materials exist in numerous forms ranging from polymer networks, such as elastomers, to fiber networks, such as collagen. In addition, in colloidal gels, an underlying network structure can be identified, and several metamaterials and textiles can be considered network materials as well. Many of these materials share a highly disordered microstructure and can undergo large deformations before damage becomes visible at the macroscopic level. Despite their widespread presence, we still lack a clear picture of how the network structure controls the fracture processes of these soft materials. In this Perspective, we will focus on progress and open questions concerning fracture at the mesoscopic scale, in which the network architecture is clearly resolved, but neither the material-specific atomistic features nor the macroscopic sample geometries are considered. We will describe concepts regarding the network elastic response that have been established in recent years and turn out to be pre-requisites to understand the fracture response. We will mostly consider simulation studies, where the influence of specific network features on the material mechanics can be cleanly assessed. Rather than focusing on specific systems, we will discuss future challenges that should be addressed to gain new fundamental insights that would be relevant across several examples of soft network materials.
Collapse
Affiliation(s)
- Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
5
|
Parihar RPS, Mani DV, Banerjee A, Rajesh R. Role of spatial patterns in fracture of disordered multiphase materials. Phys Rev E 2020; 102:053002. [PMID: 33327211 DOI: 10.1103/physreve.102.053002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/03/2020] [Indexed: 11/07/2022]
Abstract
Multiphase materials, such as composite materials, exhibit multiple competing failure mechanisms during the growth of a macroscopic defect. For the simulation of the overall fracture process in such materials, we develop a two-phase spring network model that accounts for the architecture between the different components as well as the respective disorders in their failure characteristics. In the specific case of a plain weave architecture, we show that any offset between the layers reduces the delocalization of the stresses at the crack tip and thereby substantially lowers the strength and fracture toughness of the overall laminate. The avalanche statistics of the broken springs do not show a distinguishable dependence on the offsets between layers. The power-law exponents are found to be much smaller than that of disordered spring network models in the absence of a crack. A discussion is developed on the possibility of the avalanche statistics being those near breakdown.
Collapse
Affiliation(s)
| | - Dhiwakar V Mani
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai-600036, India
| | - Anuradha Banerjee
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai-600036, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai-600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai-400094, India
| |
Collapse
|
6
|
Mayya A, Banerjee A, Rajesh R. Role of porosity and matrix behavior on compressive fracture of Haversian bone using random spring network model. J Mech Behav Biomed Mater 2018; 83:108-119. [PMID: 29698930 DOI: 10.1016/j.jmbbm.2018.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/18/2018] [Accepted: 04/13/2018] [Indexed: 10/17/2022]
Abstract
Haversian remodeling is known to result in improved resistance to compressive fracture in healthy cortical bone. Here, we examine the individual roles of the mean porosity, structure of the network of pores and remodeled bone matrix properties in the fracture behavior of Haversian bone. The detailed structure of porosity network is obtained both pre- and post-testing of dry cubical bone samples using micro-Computed Tomography. Based on the periodicity in the features of porosity along tangential direction, we develop a two dimensional porosity-based random spring network model for Haversian bone. The model is shown to capture well the macroscopic response and reproduce the avalanche statistics similar to recently reported experiments on porcine bone. The predictions suggest that at the millimeter scale, the remodeled bone matrix of Haversian bone is less stiff but tougher than that of plexiform/primary bone.
Collapse
Affiliation(s)
- Ashwij Mayya
- Department of Applied Mechanics, IIT-Madras, Chennai 600036, India
| | | | - R Rajesh
- The Institute of Mathematical Sciences, Tharamani, Chennai 600113, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
7
|
Mayya A, Banerjee A, Rajesh R. Role of matrix behavior in compressive fracture of bovine cortical bone. Phys Rev E 2017; 96:053001. [PMID: 29347807 DOI: 10.1103/physreve.96.053001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 06/07/2023]
Abstract
In compressive fracture of dry plexiform bone, we examine the individual roles of overall mean porosity, the connectivity of the porosity network, and the elastic as well as the failure properties of the nonporous matrix, using a random spring network model (RSNM). Porosity network structure is shown to reduce the compressive strength by up to 30%. However, the load-bearing capacity increases with an increase in either of the matrix properties-the elastic modulus or the failure strain threshold. To validate the porosity-based RSNM model with available experimental data, bone-specific failure strain thresholds for the ideal matrix of similar elastic properties were estimated to be within 60% of each other. Further, we observe the avalanche size exponents to be independent of the bone-dependent parameters as well as the structure of the porosity network.
Collapse
Affiliation(s)
- Ashwij Mayya
- Department of Applied Mechanics, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Anuradha Banerjee
- Department of Applied Mechanics, Indian Institute of Technology-Madras, Chennai 600036, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
8
|
Mayya A, Praveen P, Banerjee A, Rajesh R. Splitting fracture in bovine bone using a porosity-based spring network model. J R Soc Interface 2017; 13:rsif.2016.0809. [PMID: 27903786 DOI: 10.1098/rsif.2016.0809] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 11/12/2022] Open
Abstract
We examine the specific role of the structure of the network of pores in plexiform bone in its fracture behaviour under compression. Computed tomography scan images of the sample pre- and post-compressive failure show the existence of weak planes formed by aligned thin long pores extending through the length. We show that the physics of the fracture process is captured by a two-dimensional random spring network model that reproduces well the macroscopic response and qualitative features of fracture paths obtained experimentally, as well as avalanche statistics seen in recent experiments on porcine bone.
Collapse
Affiliation(s)
- Ashwij Mayya
- Department of Applied Mechanics, Indian Institute of Technology-Madras, Chennai 600036, India
| | - P Praveen
- Department of Applied Mechanics, Indian Institute of Technology-Madras, Chennai 600036, India
| | - Anuradha Banerjee
- Department of Applied Mechanics, Indian Institute of Technology-Madras, Chennai 600036, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
9
|
Karpas ED, Kun F. Blending stiffness and strength disorder can stabilize fracture. Phys Rev E 2016; 93:033002. [PMID: 27078436 DOI: 10.1103/physreve.93.033002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/07/2022]
Abstract
Quasibrittle behavior, where macroscopic failure is preceded by stable damaging and intensive cracking activity, is a desired feature of materials because it makes fracture predictable. Based on a fiber-bundle model with global load sharing we show that blending strength and stiffness disorder of material elements leads to the stabilization of fracture, i.e., samples that are brittle when one source of disorder is present become quasibrittle as a consequence of blending. We derive a condition of quasibrittle behavior in terms of the joint distribution of the two sources of disorder. Breaking bursts have a power-law size distribution of exponent 5/2 without any crossover to a lower exponent when the amount of disorder is gradually decreased. The results have practical relevance for the design of materials to increase the safety of constructions.
Collapse
Affiliation(s)
- Ehud D Karpas
- Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ferenc Kun
- Department of Theoretical Physics, University of Debrecen, P.O. Box 5, H-4010 Debrecen, Hungary
| |
Collapse
|
10
|
Khatun T, Choudhury MD, Dutta T, Tarafdar S. Electric-field-induced crack patterns: experiments and simulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:016114. [PMID: 23005498 DOI: 10.1103/physreve.86.016114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/28/2012] [Indexed: 06/01/2023]
Abstract
We report a study of crack patterns formed in laponite gel drying in an electric field. The sample dries in a circular petri dish and the field is radial, acting inward or outward. A system of radial cracks forms in the setup with the center terminal positive, while predominantly cross-radial cracks form when the center is at a negative potential. The laponite accumulates near the negative terminal making the layer thicker at this end. A spring model on a square lattice is used to simulate the desiccation crack formation, with an additional radial force acting due to the electric field. With the radial force acting outward, radial cracks form and for the reversed field cross-radial cracks form. This conforms to the observation that laponite platelets become effectively positive due to overcharging and are attracted towards the negative terminal.
Collapse
Affiliation(s)
- Tajkera Khatun
- Condensed Matter Physics Research Centre, Physics Department, Jadavpur University, Kolkata 700032, India
| | | | | | | |
Collapse
|
11
|
Balankin AS, Susarrey O, Santos CAM, Patiño J, Yoguez A, García EI. Stress concentration and size effect in fracture of notched heterogeneous material. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:015101. [PMID: 21405733 DOI: 10.1103/physreve.83.015101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Indexed: 05/30/2023]
Abstract
We study theoretically and experimentally the effect of long-range correlations in the material microstructure on the stress concentration in the vicinity of the notch tip. We find that while in a fractal continuum the notch-tip displacements obey the classic asymptotic for a linear elastic continuum, the power-law decay of notch-tip stresses is controlled by the long-range density correlations. The corresponding notch-size effect on fracture strength is in good agreement with the experimental tests performed on notched sheets of different kinds of paper. In particular, we find that there is no stress concentration if the fractal dimension of the fiber network is D≤d-0.5, where d is the topological dimension of the paper sheet.
Collapse
Affiliation(s)
- Alexander S Balankin
- Grupo Mecánica Fractal, Instituto Politécnico Nacional, México D.F., México 07738
| | | | | | | | | | | |
Collapse
|