1
|
Mokshin AV, Vlasov RV. Liquid-Liquid Crossover in Water Model: Local Structure vs Kinetics of Hydrogen Bonds. J Phys Chem B 2024. [PMID: 38411102 DOI: 10.1021/acs.jpcb.3c07650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
In equilibrium and supercooled liquids, polymorphism is manifested by thermodynamic regions defined in the phase diagram, which are predominantly of different short- and medium-range order (local structure). It is found that on the phase diagram of the water model, the thermodynamic region corresponding to the equilibrium liquid phase is divided by a line of the smooth liquid-liquid crossover. In the case of the water model TIP4P/2005, this crossover is revealed by various local order parameters and corresponds to pressures on the order of 3150 ± 350 atm at ambient temperature. In the vicinity of the crossover, the dynamics of water molecules change significantly, which is reflected, in particular, in the fact that the self-diffusion coefficient reaches its maximum values. In addition, changes in the structure also manifest themselves in changes in the kinetics of hydrogen bonding, which are captured by values of such quantities as the average lifetime of hydrogen bonding, the average lifetimes of different local coordination numbers, and the frequencies of changes in different local coordination numbers. An interpretation of the hydrogen bond kinetics in terms of the free energy landscape concept in the space of possible coordination numbers is proposed.
Collapse
Affiliation(s)
- Anatolii V Mokshin
- Department of Computational Physics, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| | - Roman V Vlasov
- Department of Computational Physics, Kazan (Volga Region) Federal University, Kazan 420008, Russia
| |
Collapse
|
2
|
Goswami A, Dalal IS, Singh JK. Universal Nucleation Behavior of Sheared Systems. PHYSICAL REVIEW LETTERS 2021; 126:195702. [PMID: 34047572 DOI: 10.1103/physrevlett.126.195702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Using molecular simulations and a modified classical nucleation theory, we study the nucleation, under flow, of a variety of liquids: different water models, Lennard-Jones, and hard sphere colloids. Our approach enables us to analyze a wide range of shear rates inaccessible to brute-force simulations. Our results reveal that the variation of the nucleation rate with shear is universal. A simplified version of the theory successfully captures the nonmonotonic temperature dependence of the nucleation behavior, which is shown to originate from the violation of the Stokes-Einstein relation.
Collapse
Affiliation(s)
- Amrita Goswami
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Indranil Saha Dalal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Goswami A, Singh JK. Homogeneous nucleation of sheared liquids: advances and insights from simulations and theory. Phys Chem Chem Phys 2021; 23:15402-15419. [PMID: 34279013 DOI: 10.1039/d1cp02617h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most ubiquitous and technologically important phenomena in nature is the nucleation of homogeneous flowing systems. The microscopic effects of shear on a nucleating system are still imperfectly understood, although in recent years a consistent picture has emerged. The opposing effects of shear can be split into two major contributions for simple atomic and molecular liquids: increase of the energetic cost of nucleation, and enhancement of the kinetics. In this perspective, we describe the latest computational and theoretical techniques which have been developed over the past two decades. We collate and unify the overarching influences of shear, temperature, and supersaturation on the process of homogeneous nucleation. Experimental techniques and capabilities are discussed, against the backdrop of results from simulations and theory. Although we primarily focus on simple systems, we also touch upon the sheared nucleation of more complex systems, including glasses and polymer melts. We speculate on the promising directions and possible advances that could come to fruition in the future.
Collapse
Affiliation(s)
- Amrita Goswami
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| | - Jayant K Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
4
|
Richard D, Speck T. Classical nucleation theory for the crystallization kinetics in sheared liquids. Phys Rev E 2019; 99:062801. [PMID: 31330660 DOI: 10.1103/physreve.99.062801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Indexed: 06/10/2023]
Abstract
While statistical mechanics provides a comprehensive framework for the understanding of equilibrium phase behavior, predicting the kinetics of phase transformations remains a challenge. Classical nucleation theory (CNT) provides a thermodynamic framework to relate the nucleation rate to thermodynamic quantities such as pressure difference and interfacial tension through the nucleation work necessary to spawn critical nuclei. However, it remains unclear whether such an approach can be extended to the crystallization of driven melts that are subjected to mechanical stresses and flows. Here, we demonstrate numerically for hard spheres that the impact of simple shear on the crystallization rate can be rationalized within the CNT framework by an additional elastic work proportional to the droplet volume. We extract the local stress and strain inside solid droplets, which yield size-dependent values for the shear modulus that are about half of the bulk value. Finally, we show that for a complete description one also has to take into account the change of interfacial work between the strained droplet and the sheared liquid. From scaling reasons, we expect this extra contribution to dominate the work formation of small nuclei but become negligible compared to the elastic work for droplets composed of a few hundreds of particles.
Collapse
Affiliation(s)
- David Richard
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
5
|
Mokshin AV, Galimzyanov BN. Kinetics of crystalline nuclei growth in glassy systems. Phys Chem Chem Phys 2017; 19:11340-11353. [DOI: 10.1039/c7cp00879a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports results for crystalline nuclei growth in glassy systems. The crystal growth laws rescaled onto the waiting times of critically-sized nuclei follow a unified dependence. The scaled crystal growth rate characteristics as functions of reduced temperature follow unified power-law dependencies.
Collapse
Affiliation(s)
- Anatolii V. Mokshin
- Institute of Physics
- Kazan Federal University
- 420008 Kazan
- Russia
- L. D. Landau Institute for Theoretical Physics
| | - Bulat N. Galimzyanov
- Institute of Physics
- Kazan Federal University
- 420008 Kazan
- Russia
- L. D. Landau Institute for Theoretical Physics
| |
Collapse
|
6
|
Descamps M, Willart JF. Perspectives on the amorphisation/milling relationship in pharmaceutical materials. Adv Drug Deliv Rev 2016; 100:51-66. [PMID: 26826439 DOI: 10.1016/j.addr.2016.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 11/28/2022]
Abstract
This paper presents an overview of recent advances in understanding the role of the amorphous state in the physical and chemical transformations of pharmaceutical materials induced by mechanical milling. The following points are addressed: (1) Is milling really able to amorphise crystals?, (2) Conditions for obtaining an amorphisation, (3) Milling of hydrates, (4) Producing amorphous state without changing the chemical nature, (5) Milling induced crystal to crystal transformations: mediation by an amorphous state, (6) Nature of the amorphous state obtained by milling, (7) Milling of amorphous compounds: accelerated aging or rejuvenation, (8) Specific recrystallisation behaviour, and (9) Toward a rationalisation and conceptual framework.
Collapse
Affiliation(s)
- M Descamps
- UMET, Unité Matériaux et Transformations, CNRS, Univ. Lille, F 59 000 Lille, France
| | - J F Willart
- UMET, Unité Matériaux et Transformations, CNRS, Univ. Lille, F 59 000 Lille, France.
| |
Collapse
|
7
|
Ramsay M, Harrowell P. Shear melting at the crystal-liquid interface: Erosion and the asymmetric suppression of interface fluctuations. Phys Rev E 2016; 93:042608. [PMID: 27176353 DOI: 10.1103/physreve.93.042608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 06/05/2023]
Abstract
The influence of an applied shear on the planar crystal-melt interface is modeled by a nonlinear stochastic partial differential equation of the interface fluctuations. A feature of this theory is the asymmetric destruction of interface fluctuations due to advection of the crystal protrusions on the liquid side of the interface only. We show that this model is able to qualitatively reproduce the nonequilibrium coexistence line found in simulations. The impact of shear on spherical clusters is also addressed.
Collapse
Affiliation(s)
- Malcolm Ramsay
- School of Chemistry, University of Sydney, Sydney 2006 NSW, Australia
| | - Peter Harrowell
- School of Chemistry, University of Sydney, Sydney 2006 NSW, Australia
| |
Collapse
|
8
|
Mokshin AV, Galimzyanov BN. Scaling law for crystal nucleation time in glasses. J Chem Phys 2015; 142:104502. [PMID: 25770546 DOI: 10.1063/1.4914172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Due to high viscosity, glassy systems evolve slowly to the ordered state. Results of molecular dynamics simulation reveal that the structural ordering in glasses becomes observable over "experimental" (finite) time-scale for the range of phase diagram with high values of pressure. We show that the structural ordering in glasses at such conditions is initiated through the nucleation mechanism, and the mechanism spreads to the states at extremely deep levels of supercooling. We find that the scaled values of the nucleation time, τ1 (average waiting time of the first nucleus with the critical size), in glassy systems as a function of the reduced temperature, T˜, are collapsed onto a single line reproducible by the power-law dependence. This scaling is supported by the simulation results for the model glassy systems for a wide range of temperatures as well as by the experimental data for the stoichiometric glasses at the temperatures near the glass transition.
Collapse
|
9
|
Shao Z, Singer JP, Liu Y, Liu Z, Li H, Gopinadhan M, O'Hern CS, Schroers J, Osuji CO. Shear-accelerated crystallization in a supercooled atomic liquid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:020301. [PMID: 25768445 DOI: 10.1103/physreve.91.020301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Indexed: 06/04/2023]
Abstract
A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disk. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to the nondeformed case. The transition from quiescent to shear-accelerated crystallization is linked to strain accumulated during shear flow above a critical shear rate γ̇(c)≈0.3 s(-1) which corresponds to Péclet number, Pe∼O(1). The observation of shear-accelerated crystallization in an atomic system at modest shear rates is uncommon. It is made possible here by the substantial viscosity of the supercooled liquid which increases strongly with temperature in the approach to the glass transition. We may therefore anticipate the encounter of nontrivial shear-related effects during thermoplastic deformation of similar systems.
Collapse
Affiliation(s)
- Zhen Shao
- Department of Chemical and Environmental Engineering, Yale University, New Haven Connecticut 06511, USA
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven Connecticut 06511, USA
| | - Jonathan P Singer
- Department of Chemical and Environmental Engineering, Yale University, New Haven Connecticut 06511, USA
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven Connecticut 06511, USA
| | - Yanhui Liu
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven Connecticut 06511, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven Connecticut 06511, USA
| | - Ze Liu
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven Connecticut 06511, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven Connecticut 06511, USA
| | - Huiping Li
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven Connecticut 06511, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven Connecticut 06511, USA
| | - Manesh Gopinadhan
- Department of Chemical and Environmental Engineering, Yale University, New Haven Connecticut 06511, USA
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven Connecticut 06511, USA
| | - Corey S O'Hern
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven Connecticut 06511, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven Connecticut 06511, USA
| | - Jan Schroers
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven Connecticut 06511, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven Connecticut 06511, USA
| | - Chinedum O Osuji
- Department of Chemical and Environmental Engineering, Yale University, New Haven Connecticut 06511, USA
- Center for Research on Interface Structures and Phenomena, Yale University, New Haven Connecticut 06511, USA
| |
Collapse
|
10
|
Mokshin AV, Galimzyanov BN. A method for analyzing the non-stationary nucleation and overall transition kinetics: A case of water. J Chem Phys 2014; 140:024104. [DOI: 10.1063/1.4851438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
11
|
Lander B, Seifert U, Speck T. Crystallization in a sheared colloidal suspension. J Chem Phys 2013; 138:224907. [DOI: 10.1063/1.4808354] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Mokshin AV, Galimzyanov BN, Barrat JL. Extension of classical nucleation theory for uniformly sheared systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062307. [PMID: 23848675 DOI: 10.1103/physreve.87.062307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 06/02/2023]
Abstract
Nucleation is an out-of-equilibrium process that can be strongly affected by the presence of external fields. In this paper, we report a simple extension of classical nucleation theory to systems submitted to an homogeneous shear flow. The theory involves accounting for the anisotropy of the critical nucleus formation and introduces a shear-rate-dependent effective temperature. This extended theory is used to analyze the results of extensive molecular dynamics simulations that explore a broad range of shear rates and undercoolings. At fixed temperature, a maximum in the nucleation rate is observed, when the relaxation time of the system is comparable to the inverse shear rate. In contrast to previous studies, our approach does not require a modification of the thermodynamic description, as the effect of shear is mainly embodied into a modification of the kinetic prefactor and of the temperature.
Collapse
|
13
|
Mickel W, Kapfer SC, Schröder-Turk GE, Mecke K. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J Chem Phys 2013; 138:044501. [DOI: 10.1063/1.4774084] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
14
|
Mokshin AV, Galimzyanov BN. Steady-State Homogeneous Nucleation and Growth of Water Droplets: Extended Numerical Treatment. J Phys Chem B 2012; 116:11959-67. [DOI: 10.1021/jp304830e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
|