1
|
Yamamoto H, Ichiki S, Yanagisawa D, Nishinari K. Two-lane totally asymmetric simple exclusion process with extended Langmuir kinetics. Phys Rev E 2022; 105:014128. [PMID: 35193289 DOI: 10.1103/physreve.105.014128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Multilane totally asymmetric simple exclusion processes with interactions between the lanes have recently been investigated actively. This paper proposes a two-lane model with extended Langmuir kinetics on a periodic lattice. Both bidirectional and unidirectional flows are investigated. In our model, the hopping, attachment, and detachment rates vary depending on the state of the corresponding site in the other lane. We obtain a theoretical expression for the global density of the system in the steady state from three kinds of mean-field analyses [(1×1)-, (2×1)-, and (2×2)-cluster cases]. We verify that the (2×2)-cluster mean-field analysis reproduces the differences between the two directional flows and approximates well the results of computer simulations for some cases. We observe that (2×1)-cluster mean-field analyses are already good approximations of the simulation results for unidirectional flows; on the other hand, the accuracy of the approximations much improves by (2×2)-cluster one for bidirectional flows. We explain the phenomena in a qualitative manner by a simple analysis of correlations. We expect these findings to give informative suggestions for actual traffic systems.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- School of Medicine, Hirosaki University, 5 Zaifu-cho Hirosaki city, Aomori, 036-8562, Japan
| | - Shingo Ichiki
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Daichi Yanagisawa
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Katsuhiro Nishinari
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Aeronautics and Astronautics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Hao QY, Jiang R, Hu MB, Zhang Y, Wu CY, Guo N. Theoretical analysis and simulation of phase separation in a driven bidirectional two-lane system. Phys Rev E 2019; 100:032133. [PMID: 31640021 DOI: 10.1103/physreve.100.032133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 11/07/2022]
Abstract
The two-lane driven system is a type of important model to research some transport systems, and also a powerful tool to investigate properties of nonequilibrium state systems. This paper presents a driven bidirectional two-lane model. The dynamic characteristics of the model with periodic boundary are investigated by Monte Carlo simulation, simple mean field, and cluster mean field methods, respectively. By simulations, phase separations are observed in the system with some values of model parameters. When the phase separation does not occur, cluster mean field results are in good agreement with simulation results. According to the cluster mean field analysis and simulations, a conjecture about the condition that the phase separation happens is proposed. Based on the conjecture, the phase boundary distinguishing phase separation state and homogeneous state is determined, and a corresponding phase diagram is drawn. The conjecture is validated through observing directly the spatiotemporal diagram and investigating the coarsening process of the system by simulation, and a possible mechanism causing the phase separation is also discussed. These outcomes maybe contribute to understand deeply transport systems including the congestion and efficiency of the transport, and enrich explorations of nonequilibrium state systems.
Collapse
Affiliation(s)
- Qing-Yi Hao
- Key Laboratory of Modeling, Simulation and Control of Complex Ecosystem in Dabie Mountains of Anhui Higher Education Institutes, School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China.,School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Rui Jiang
- MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Mao-Bin Hu
- School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
| | - Yunxin Zhang
- School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Chao-Yun Wu
- Key Laboratory of Modeling, Simulation and Control of Complex Ecosystem in Dabie Mountains of Anhui Higher Education Institutes, School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China.,School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
| | - Ning Guo
- School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
3
|
Arita C, Foulaadvand ME, Santen L. Signal optimization in urban transport: A totally asymmetric simple exclusion process with traffic lights. Phys Rev E 2017; 95:032108. [PMID: 28415173 DOI: 10.1103/physreve.95.032108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Indexed: 11/07/2022]
Abstract
We consider the exclusion process on a ring with time-dependent defective bonds at which the hopping rate periodically switches between zero and one. This system models main roads in city traffics, intersecting with perpendicular streets. We explore basic properties of the system, in particular dependence of the vehicular flow on the parameters of signalization as well as the system size and the car density. We investigate various types of the spatial distribution of the vehicular density, and show existence of a shock profile. We also measure waiting time behind traffic lights, and examine its relationship with the traffic flow.
Collapse
Affiliation(s)
- Chikashi Arita
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| | - M Ebrahim Foulaadvand
- Department of Physics, University of Zanjan, P. O. Box 45196-313, Zanjan, Iran.,School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), P. O. Box 19395-5531, Tehran, Iran
| | - Ludger Santen
- Theoretical Physics, Saarland University, 66041 Saarbrücken, Germany
| |
Collapse
|
4
|
Hao QY, Chen Z, Sun XY, Liu BB, Wu CY. Theoretical analysis and simulation for a facilitated asymmetric exclusion process. Phys Rev E 2016; 94:022113. [PMID: 27627252 DOI: 10.1103/physreve.94.022113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 06/06/2023]
Abstract
Driven diffusive systems are important models in nonequilibrium state statistical mechanics. This paper studies an asymmetric exclusion process model with nearest rear neighbor interactions associated with energy. The exact flux expression of the model is obtained by a cluster mean-field method. Based on the flux expression, the properties of the fundamental diagram have been investigated in detail. To probe the energy's influence on the coarsening process of the system, Monte Carlo simulations are carried out to acquire the monotonic phase boundary in energy-density space. Above the phase boundary, the system is inhomogeneous and the normalized residence distribution p(s) is nonmonotonically decreasing. Under the phase boundary, the system is homogeneous and p(s) is monotonically decreasing. Further study comparatively shows that the system has turned into a microscopic inhomogeneous state from a homogeneous state before the system current arrives at maximum, if nearest rear neighbor interactions are strong. Our findings offer insights to deeply understand the dynamic features of nonequilibrium state systems.
Collapse
Affiliation(s)
- Qing-Yi Hao
- School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China
| | - Zhe Chen
- School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China
| | - Xiao-Yan Sun
- College of Physics and Electronic Engineering, Guangxi Teachers Education University, Nanning 530023, China
| | - Bing-Bing Liu
- School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China
- School of Management, University of Science and Technology of China, Hefei 230026, China
| | - Chao-Yun Wu
- School of Mathematics and Computational Science, Anqing Normal University, Anqing 246133, China
- School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Exponential decay of spatial correlation in driven diffusive system: A universal feature of macroscopic homogeneous state. Sci Rep 2016; 6:19652. [PMID: 26804770 PMCID: PMC4726421 DOI: 10.1038/srep19652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/21/2015] [Indexed: 11/08/2022] Open
Abstract
Driven diffusive systems have been a paradigm for modelling many physical, chemical, and biological transport processes. In the systems, spatial correlation plays an important role in the emergence of a variety of nonequilibrium phenomena and exhibits rich features such as pronounced oscillations. However, the lack of analytical results of spatial correlation precludes us from fully understanding the effect of spatial correlation on the dynamics of the system. Here we offer precise analytical predictions of the spatial correlation in a typical driven diffusive system, namely facilitated asymmetric exclusion process. We find theoretically that the correlation between two sites decays exponentially as their distance increases, which is in good agreement with numerical simulations. Furthermore, we find the exponential decay is a universal property of macroscopic homogeneous state in a broad class of 1D driven diffusive systems. Our findings deepen the understanding of many nonequilibrium phenomena resulting from spatial correlation in driven diffusive systems.
Collapse
|