1
|
McGraw JD, Niguès A, Chennevière A, Siria A. Contact Dependence and Velocity Crossover in Friction between Microscopic Solid/Solid Contacts. NANO LETTERS 2017; 17:6335-6339. [PMID: 28930467 DOI: 10.1021/acs.nanolett.7b03076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Friction at the nanoscale differs markedly from that between surfaces of macroscopic extent. Characteristically, the velocity dependence of friction between apparent solid/solid contacts can strongly deviate from the classically assumed velocity independence. Here, we show that a nondestructive friction between solid tips with radius on the scale of hundreds of nanometers and solid hydrophobic self-assembled monolayers has a strong velocity dependence. Specifically, using laterally oscillating quartz tuning forks, we observe a linear scaling in the velocity at the lowest accessed velocities, typically hundreds of micrometers per second, crossing over into a logarithmic velocity dependence. This crossover is consistent with a general multicontact friction model that includes thermally activated breaking of the contacts at subnanometric elongation. We find as well a strong dependence of the friction on the dimensions of the frictional probe.
Collapse
Affiliation(s)
- Joshua D McGraw
- Département de Physique, Ecole Normale Supérieure/Paris Sciences et Lettres (PSL) Research University, CNRS , 75005 Paris, France
| | - Antoine Niguès
- Laboratoire de Physique Statistique de l'Ecole Normale Superiéure, UMR CNRS 8550, PSL Research University , 24 Rue Lhomond 75005 Paris, France
| | - Alexis Chennevière
- Laboratoire Léon Brillouin CEA, CNRS, CEA Saclay , 91191 Gif-sur-Yvette, France
| | - Alessandro Siria
- Laboratoire de Physique Statistique de l'Ecole Normale Superiéure, UMR CNRS 8550, PSL Research University , 24 Rue Lhomond 75005 Paris, France
| |
Collapse
|
2
|
Viswanathan K, Sundaram NK, Chandrasekar S. Slow wave propagation in soft adhesive interfaces. SOFT MATTER 2016; 12:9185-9201. [PMID: 27747360 DOI: 10.1039/c6sm01960a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stick-slip in sliding of soft adhesive surfaces has long been associated with the propagation of Schallamach waves, a type of slow surface wave. Recently it was demonstrated using in situ experiments that two other kinds of slow waves-separation pulses and slip pulses-also mediate stick-slip (Viswanathan et al., Soft Matter, 2016, 12, 5265-5275). While separation pulses, like Schallamach waves, involve local interface detachment, slip pulses are moving stress fronts with no detachment. Here, we present a theoretical analysis of the propagation of these three waves in a linear elastodynamics framework. Different boundary conditions apply depending on whether or not local interface detachment occurs. It is shown that the interface dynamics accompanying slow waves is governed by a system of integral equations. Closed-form analytical expressions are obtained for the interfacial pressure, shear stress, displacements and velocities. Separation pulses and Schallamach waves emerge naturally as wave solutions of the integral equations, with oppositely oriented directions of propagation. Wave propagation is found to be stable in the stress regime where linearized elasticity is a physically valid approximation. Interestingly, the analysis reveals that slow traveling wave solutions are not possible in a Coulomb friction framework for slip pulses. The theory provides a unified picture of stick-slip dynamics and slow wave propagation in adhesive contacts, consistent with experimental observations.
Collapse
Affiliation(s)
- Koushik Viswanathan
- Center for Materials Processing and Tribology, Purdue University, West Lafayette, IN 47907-2023, USA.
| | - Narayan K Sundaram
- Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Srinivasan Chandrasekar
- Center for Materials Processing and Tribology, Purdue University, West Lafayette, IN 47907-2023, USA.
| |
Collapse
|
3
|
Manini N, Braun OM, Tosatti E, Guerra R, Vanossi A. Friction and nonlinear dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:293001. [PMID: 27249652 DOI: 10.1088/0953-8984/28/29/293001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The nonlinear dynamics associated with sliding friction forms a broad interdisciplinary research field that involves complex dynamical processes and patterns covering a broad range of time and length scales. Progress in experimental techniques and computational resources has stimulated the development of more refined and accurate mathematical and numerical models, capable of capturing many of the essentially nonlinear phenomena involved in friction.
Collapse
Affiliation(s)
- N Manini
- Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
4
|
Trømborg JK, Sveinsson HA, Thøgersen K, Scheibert J, Malthe-Sørenssen A. Speed of fast and slow rupture fronts along frictional interfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012408. [PMID: 26274187 DOI: 10.1103/physreve.92.012408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 06/04/2023]
Abstract
The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.
Collapse
Affiliation(s)
- Jørgen Kjoshagen Trømborg
- Department of Physics, University of Oslo, Sem Sælands vei 24, NO-0316, Oslo, Norway
- Laboratoire de Tribologie et Dynamique des Systèmes, CNRS, Ecole Centrale de Lyon, 36, Avenue Guy de Collongue, 69134 Ecully cedex, France
| | | | - Kjetil Thøgersen
- Department of Physics, University of Oslo, Sem Sælands vei 24, NO-0316, Oslo, Norway
| | - Julien Scheibert
- Laboratoire de Tribologie et Dynamique des Systèmes, CNRS, Ecole Centrale de Lyon, 36, Avenue Guy de Collongue, 69134 Ecully cedex, France
| | | |
Collapse
|
5
|
Braun OM, Tosatti E. Aftershocks in a frictional earthquake model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032403. [PMID: 25314453 DOI: 10.1103/physreve.90.032403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Indexed: 06/04/2023]
Abstract
Inspired by spring-block models, we elaborate a "minimal" physical model of earthquakes which reproduces two main empirical seismological laws, the Gutenberg-Richter law and the Omori aftershock law. Our point is to demonstrate that the simultaneous incorporation of aging of contacts in the sliding interface and of elasticity of the sliding plates constitutes the minimal ingredients to account for both laws within the same frictional model.
Collapse
Affiliation(s)
- O M Braun
- Institute of Physics, National Academy of Sciences of Ukraine, 46 Science Avenue, 03028 Kiev, Ukraine, and International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Erio Tosatti
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy; CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy; and International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
6
|
Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces. Proc Natl Acad Sci U S A 2014; 111:8764-9. [PMID: 24889640 DOI: 10.1073/pnas.1321752111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The failure of the population of microjunctions forming the frictional interface between two solids is central to fields ranging from biomechanics to seismology. This failure is mediated by the propagation along the interface of various types of rupture fronts, covering a wide range of velocities. Among them are the so-called slow fronts, which are recently discovered fronts much slower than the materials' sound speeds. Despite intense modeling activity, the mechanisms underlying slow fronts remain elusive. Here, we introduce a multiscale model capable of reproducing both the transition from fast to slow fronts in a single rupture event and the short-time slip dynamics observed in recent experiments. We identify slow slip immediately following the arrest of a fast front as a phenomenon sufficient for the front to propagate further at a much slower pace. Whether slow fronts are actually observed is controlled both by the interfacial stresses and by the width of the local distribution of forces among microjunctions. Our results show that slow fronts are qualitatively different from faster fronts. Because the transition from fast to slow fronts is potentially as generic as slow slip, we anticipate that it might occur in the wide range of systems in which slow slip has been reported, including seismic faults.
Collapse
|
7
|
Thøgersen K, Trømborg JK, Sveinsson HA, Malthe-Sørenssen A, Scheibert J. History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052401. [PMID: 25353806 DOI: 10.1103/physreve.89.052401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 06/04/2023]
Abstract
To study how macroscopic friction phenomena originate from microscopic junction laws, we introduce a general statistical framework describing the collective behavior of a large number of individual microjunctions forming a macroscopic frictional interface. Each microjunction can switch in time between two states: a pinned state characterized by a displacement-dependent force and a slipping state characterized by a time-dependent force. Instead of tracking each microjunction individually, the state of the interface is described by two coupled distributions for (i) the stretching of pinned junctions and (ii) the time spent in the slipping state. This framework allows for a whole family of microjunction behavior laws, and we show how it represents an overarching structure for many existing models found in the friction literature. We then use this framework to pinpoint the effects of the time scale that controls the duration of the slipping state. First, we show that the model reproduces a series of friction phenomena already observed experimentally. The macroscopic steady-state friction force is velocity dependent, either monotonic (strengthening or weakening) or nonmonotonic (weakening-strengthening), depending on the microscopic behavior of individual junctions. In addition, slow slip, which has been reported in a wide variety of systems, spontaneously occurs in the model if the friction contribution from junctions in the slipping state is time weakening. Next, we show that the model predicts a nontrivial history dependence of the macroscopic static friction force. In particular, the static friction coefficient at the onset of sliding is shown to increase with increasing deceleration during the final phases of the preceding sliding event. We suggest that this form of history dependence of static friction should be investigated in experiments, and we provide the acceleration range in which this effect is expected to be experimentally observable.
Collapse
Affiliation(s)
- Kjetil Thøgersen
- Department of Physics, University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway
| | | | | | | | - Julien Scheibert
- Laboratoire de Tribologie et Dynamique des Systèmes, CNRS, Ecole Centrale de Lyon, 36, Avenue Guy de Collongue, 69134 Ecully Cedex, France
| |
Collapse
|
8
|
Braun OM, Manini N, Tosatti E. Size scaling of static friction. PHYSICAL REVIEW LETTERS 2013; 110:085503. [PMID: 23473164 DOI: 10.1103/physrevlett.110.085503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/04/2012] [Indexed: 06/01/2023]
Abstract
Sliding friction across a thin soft lubricant film typically occurs by stick slip, the lubricant fully solidifying at stick, yielding and flowing at slip. The static friction force per unit area preceding slip is known from molecular dynamics (MD) simulations to decrease with increasing contact area. That makes the large-size fate of stick slip unclear and unknown; its possible vanishing is important as it would herald smooth sliding with a dramatic drop of kinetic friction at large size. Here we formulate a scaling law of the static friction force, which for a soft lubricant is predicted to decrease as f(m)+Δf/A(γ) for increasing contact area A, with γ>0. Our main finding is that the value of f(m), controlling the survival of stick slip at large size, can be evaluated by simulations of comparably small size. MD simulations of soft lubricant sliding are presented, which verify this theory.
Collapse
Affiliation(s)
- O M Braun
- Institute of Physics, National Academy of Sciences of Ukraine, 46 Science Avenue, 03028 Kiev, Ukraine.
| | | | | |
Collapse
|
9
|
Dong Y, Perez D, Gao H, Martini A. Thermal activation in atomic friction: revisiting the theoretical analysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:265001. [PMID: 22641167 DOI: 10.1088/0953-8984/24/26/265001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of thermal activation on atomic-scale friction is often described in the framework of the Prandtl-Tomlinson model. Accurate use of this model relies on parameters that describe the shape of the corrugation potential β and the transition attempt frequency f(0). We show that the commonly used form of β for a sinusoidal corrugation potential can lead to underestimation of friction, and that the attempt frequency is not, as is usually assumed, a constant value, but rather varies as the energy landscape evolves. We partially resolve these issues by demonstrating that numerical results can be captured by a model with a fitted β and using harmonic transition state theory to develop a variable form of the attempt frequency. We incorporate these developments into a more accurate and generally applicable expression relating friction to temperature and velocity. Finally, by using a master equation approach, we verify the improved analytical model is accurate in its expected regime of validity.
Collapse
Affiliation(s)
- Y Dong
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
10
|
Braun OM, Peyrard M. Crack in the frictional interface as a solitary wave. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:026111. [PMID: 22463283 DOI: 10.1103/physreve.85.026111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/18/2012] [Indexed: 05/31/2023]
Abstract
We introduce and investigate a multiscale model for the propagation of rupture fronts in friction. Taking advantage of the correlation length for the motion of individual contacts in elastic theory, we introduce collective contacts which can be characterized by a master equation approach. The problem of the dynamics of a chain of those effective contacts under stress is studied. We show that it can be reduced to an analog of the Frenkel-Kontorova model. In some limits this allows us to derive analytical solutions for kinks describing the rupture fronts. Numerical simulations are used to study more complex cases.
Collapse
Affiliation(s)
- O M Braun
- Institute of Physics, National Academy of Sciences of Ukraine, 46 Science Avenue, UA-03028 Kiev, Ukraine.
| | | |
Collapse
|
11
|
Sokoloff JB. Surface roughness and dry friction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:027102. [PMID: 22463359 DOI: 10.1103/physreve.85.027102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/06/2012] [Indexed: 05/31/2023]
Abstract
Persson's multiscale contact mechanics theory combined with a multiscale Brillouin-Prandtl-Tomlinson model is used to show that on the basis of these models "dry friction" [i.e., kinetic friction that remains at exceedingly small velocities (but still above the creep range) close to its value at higher velocities] should almost always occur for self-affine surfaces when the dominant interaction between two surfaces in contact is due to interatomic hard core repulsion, except for extremely smooth surfaces (i.e., surfaces with a Hurst index very close to 1).
Collapse
Affiliation(s)
- J B Sokoloff
- Department of Physics and Center for Interdisciplinary Research in Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
12
|
Braun OM, Peyrard M. Dependence of kinetic friction on velocity: master equation approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:046129. [PMID: 21599262 DOI: 10.1103/physreve.83.046129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 02/06/2011] [Indexed: 05/30/2023]
Abstract
We investigate the velocity dependence of kinetic friction with a model that makes minimal assumptions on the actual mechanism of friction so that it can be applied at many scales, provided the system involves multicontact friction. Using a recently developed master equation approach, we investigate the influence of two concurrent processes. First, at a nonzero temperature, thermal fluctuations allow an activated breaking of contacts that are still below the threshold. As a result, the friction force monotonically increases with velocity. Second, the aging of contacts leads to a decrease of the friction force with velocity. Aging effects include two aspects: the delay in contact formation and aging of a contact itself, i.e., the change of its characteristics with the duration of stationary contact. All these processes are considered simultaneously with the master equation approach, giving a complete dependence of the kinetic friction force on the driving velocity and system temperature, provided the interface parameters are known.
Collapse
Affiliation(s)
- O M Braun
- Institute of Physics, National Academy of Sciences of Ukraine, 46 Science Avenue, 03028 Kiev, Ukraine.
| | | |
Collapse
|