1
|
A P, Gupta BS. Kinetics of vapor-liquid transition of active matter system in confined geometry. Phys Rev E 2025; 111:025405. [PMID: 40103025 DOI: 10.1103/physreve.111.025405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/13/2025] [Indexed: 03/20/2025]
Abstract
We study the kinetics of vapor-liquid phase separation in a quasi-one-dimensional confined active matter system using molecular dynamics simulations. Activity is invoked via the Vicsek rule, while passive interaction follows the Lennard-Jones potential. With the system density near the vapor branch, the evolution morphology features disconnected liquid clusters. In the passive limit, coarsening begins with nucleation, followed by an evaporation-condensation growth mechanism, leading to a metastable state without complete phase separation. We aim to understand the impact of Vicsek-like self-propulsion on the structure and growth of these clusters. Our key finding is that Vicsek activity results in a distinct growth mechanism, notably rapid cluster growth and the breakdown of the metastable state through ballistic aggregation. Relevant growth laws are analyzed and explained using appropriate theoretical models.
Collapse
Affiliation(s)
- Parameshwaran A
- Vellore Institute of Technology, Department of Physics, School of Advanced Sciences, Vellore, Tamil Nadu 632014, India
| | - Bhaskar Sen Gupta
- Vellore Institute of Technology, Department of Physics, School of Advanced Sciences, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
2
|
Davis D, Sen Gupta B. Kinetics of vapor-liquid and vapor-solid phase separation under gravity. SOFT MATTER 2025; 21:1012-1023. [PMID: 39807936 DOI: 10.1039/d4sm01055h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
We study the kinetics of vapor-liquid and vapor-solid phase separation of a hydrodynamics preserving three-dimensional one-component Lennard Jones system in the presence of an external gravitational field using extensive molecular dynamic simulation. A bicontinuous domain structure is formed when the homogeneous system near the critical density is quenched inside the coexistence region. In the absence of gravity, the domain morphology is statistically self-similar and the length scale grows as per the existing laws. However, the presence of gravity destroys the isotropy of the system and affects the scaling laws. We observe an accelerated domain growth in the direction of the field which resembles a sedimentation process. Consequently, a new length scale emerges which strongly depends on the field strength. Similar behavior is observed in the direction perpendicular to the applied field, with a different growth rate. Finally, the statistical self-similarity of the domain growth and the Porod law in such anisotropic systems is verified in terms of two-point equal time order parameter correlation function and static structure factor.
Collapse
Affiliation(s)
- Daniya Davis
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Bhaskar Sen Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
3
|
Müller F, Christiansen H, Janke W. Nonuniversality of Aging during Phase Separation of the Two-Dimensional Long-Range Ising Model. PHYSICAL REVIEW LETTERS 2024; 133:237102. [PMID: 39714668 DOI: 10.1103/physrevlett.133.237102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/29/2024] [Indexed: 12/24/2024]
Abstract
We investigate the aging properties of phase-separation kinetics following quenches from T=∞ to a finite temperature below T_{c} of the paradigmatic two-dimensional conserved Ising model with power-law decaying long-range interactions ∼r^{-(2+σ)}. Physical aging with a power-law decay of the two-time autocorrelation function C(t,t_{w})∼(t/t_{w})^{-λ/z} is observed, displaying a complex dependence of the autocorrelation exponent λ on σ. A value of λ=3.500(26) for the corresponding nearest-neighbor model (which is recovered as the σ→∞ limit) is determined. The values of λ in the long-range regime (σ<1) are all compatible with λ≈4. In between, a continuous crossover is visible for 1≲σ≲2 with nonuniversal, σ-dependent values of λ. The performed Metropolis Monte Carlo simulations are primarily enabled by our novel algorithm for long-range interacting systems.
Collapse
|
4
|
Biswas T, Kahl G, Shrivastav GP. Phase separation dynamics in a symmetric binary mixture of ultrasoft particles. J Chem Phys 2024; 160:214901. [PMID: 38828826 DOI: 10.1063/5.0209814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Phase separation plays a key role in determining the self-assembly of biological and soft-matter systems. In biological systems, liquid-liquid phase separation inside a cell leads to the formation of various macromolecular aggregates. The interaction among these aggregates is soft, i.e., they can significantly overlap at a small energy cost. From a computer simulation point of view, these complex macromolecular aggregates are generally modeled by soft particles. The effective interaction between two particles is defined via the generalized exponential model of index n, with n = 4. Here, using molecular dynamics simulations, we study the phase separation dynamics of a size-symmetric binary mixture of ultrasoft particles. We find that when the mixture is quenched to a temperature below the critical temperature, the two components spontaneously start to separate. Domains of the two components form, and the equal-time order parameter reveals that the domain sizes grow with time in a power-law manner with an exponent of 1/3, which is consistent with the Lifshitz-Slyozov law for conserved systems. Furthermore, the static structure factor shows a power-law decay with an exponent of 4, consistent with the Porod law.
Collapse
Affiliation(s)
- Tanmay Biswas
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
| | - Gerhard Kahl
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
| | - Gaurav P Shrivastav
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
| |
Collapse
|
5
|
Das P, Dubey AK, Puri S. Pattern dynamics of density and velocity fields in segregation of fluid mixtures. J Chem Phys 2024; 160:154507. [PMID: 38634496 DOI: 10.1063/5.0203489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
We present comprehensive numerical results from a study of model H, which describes phase separation kinetics in binary fluid mixtures. We study the pattern dynamics of both density and velocity fields in d = 2, 3. The density length scales show three distinct regimes, in accordance with analytical arguments. The velocity length scale shows a diffusive behavior. We also study the scaling behavior of the morphologies for density and velocity fields and observe dynamical scaling in the relevant correlation functions and structure factors. Finally, we study the effect of quenched random field disorder on spinodal decomposition in model H.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, 140306 Punjab, India
| | - Awadhesh Kumar Dubey
- Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
6
|
Bhattacharyya R, Sen Gupta B. Kinetics of phase separation and aging dynamics of segregating fluid mixtures in the presence of quenched disorder. SOFT MATTER 2024; 20:2969-2977. [PMID: 38470361 DOI: 10.1039/d4sm00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Quenched or frozen-in structural disorder is ubiquitous in real experimental systems. Much of the progress is achieved in understanding the phase separation of such systems using the diffusion-driven coarsening in an Ising model with quenched disorder. But there is a paucity of research on the phase-separation kinetics in fluids with quenched disorder. In this paper, we present results from a detailed molecular dynamics simulation, showing the effects of randomly placed localized impurities on the phase separation kinetics of binary fluid mixtures. Two different models are offered for representing the impurities. We observe a dramatic slowing down in the pattern formation with increasing impurity concentration. This sluggish domain growth kinetics follows a power-law with a disorder-dependent exponent. The correlation function and structure factor show a non-Porod behavior, indicating the roughening of the domain interfaces. We have also studied the effect of quenched disorder on the aging dynamics by calculating the two-time order parameter auto correlation function and find that the Fisher and Huse scaling law holds good in the presence of quenched disorder.
Collapse
Affiliation(s)
- Rounak Bhattacharyya
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg 69120, Germany
| | - Bhaskar Sen Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
7
|
Singh AK, Chauhan A, Singh A. Growth kinetics and morphology characterization of binary polymeric fluid under random photo-illumination. J Chem Phys 2024; 160:024907. [PMID: 38193555 DOI: 10.1063/5.0181688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
We present a comprehensive study using dissipative particle dynamics simulations to investigate phase separation kinetics (PSK) in three-dimensional (3d) polymeric fluids under random photo-illumination. We consider two scenarios: polymer blends with active radicals at one end of each immiscible chain and block copolymer (BCP) melts with photosensitive bonds linking incompatible blocks. The phase separation (PS) is induced by temperature quench of the initial homogeneously mixed system. Simultaneously, the system experiences random photo-illumination, simulated by two concurrent random events: (a) the recombination of active radicals in polymer blends and (b) the breaking of photosensitive bonds in BCP chains. Variations in the bond-breaking probability, Pb, mimic the change in light intensity. The length scale follows power law growth, R(t) ∼ tϕ, where ϕ represents the growth exponent. Increasing Pb results in a gradual transition in growth kinetics from micro-PS to macro-PS, accompanied by corresponding transition probabilities for both systems. Micro-PSK dominates the evolution process at low Pb values. The scaling functions exhibit data overlap for most scaled distances, indicating the statistical self-similarity of evolving patterns. Our study enhances the understanding of PSK in polymeric fluids, revealing the impact of photosensitive bonds and active radicals. Furthermore, it suggests the potential for designing novel polymeric materials with desired properties.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Avinash Chauhan
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
8
|
Davis D, Gupta BS. Surface-directed spinodal decomposition of fluids confined in a cylindrical pore. Phys Rev E 2023; 108:064607. [PMID: 38243488 DOI: 10.1103/physreve.108.064607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
The surface-directed spinodal decomposition of a binary liquid confined inside a cylindrical pore is investigated using molecular dynamics simulations. One component of the liquid wets the pore surface while the other remains neutral. A variety of wetting conditions are studied. For the partial wetting case, after an initial period of phase separation, the domains organize themselves into pluglike structures and the system enters into a metastable state. Therefore, a complete phase separation is never achieved. Analysis of domain growth and the structure factor suggests a one-dimensional growth dynamics for the partial wetting case. As the wetting interaction is increased beyond a critical value, a transition from the pluglike to tubelike domain formation is observed, which corresponds to the full wetting morphology. Thus, a complete phase separation is achieved as the wetting species moves towards the pore surface and forms layers enclosing the nonwetting species residing around the axis of the cylinder. The coarsening dynamics of both the species are studied separately. The wetting species is found to follow a two-dimensional domain growth dynamics with a growth exponent 1/2 in the viscous hydrodynamic regime. This was substantiated by the Porod tail of the structure factor. On the other hand, the domain grows linearly with time for the nonwetting species. This suggests that the nonwetting species behaves akin to a three-dimensional bulk system. An appropriate reasoning is presented to justify the given observations.
Collapse
Affiliation(s)
- Daniya Davis
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Bhaskar Sen Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
9
|
Chauhan A, Gogoi D, Puri S, Singh A. Effect of amphiphilic polymers on phase separating binary mixtures: A DPD simulation study. J Chem Phys 2023; 159:204901. [PMID: 37991159 DOI: 10.1063/5.0173817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
We present the phase separation dynamics of a binary (AB), simple fluid (SF), and amphiphilic polymer (AP) mixture using dissipative particle dynamics simulation at d = 3. We study the effect of different AP topologies, including block copolymers, ring block copolymers (RCP), and miktoarm star polymers, on the evolution morphologies, dynamic scaling functions, and length scale of the AB mixture. Our results demonstrate that the presence of APs leads to significantly different evolution morphologies in SF. However, the deviation from dynamical scaling is prominent, mainly for RCP. Typically, the characteristic length scale for SF follows the power law R(t) ∼ tϕ, where ϕ is the growth exponent. In the presence of high AP, we observe diffusive growth (ϕ → 1/3) at early times, followed by saturation in length scale (ϕ → 0) at late times. The extent of saturation varies with constraints imposed on the APs, such as topology, composition ratio, chain length, and stiffness. At lower composition ratios, the system exhibits inertial hydrodynamic growth (ϕ → 2/3) at asymptotic times without clearly exhibiting the viscous hydrodynamic regime (ϕ → 1) at earlier times in our simulations. Our results firmly establish the existence of hydrodynamic growth regimes in low surfactant-influenced phase separation kinetics of binary fluids and settle the related ambiguity in d = 3 systems.
Collapse
Affiliation(s)
- Avinash Chauhan
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Dorothy Gogoi
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
10
|
Gogoi D, Chauhan A, Puri S, Singh A. Segregation of fluids with polymer additives at domain interfaces: a dissipative particle dynamics study. SOFT MATTER 2023; 19:6433-6445. [PMID: 37403605 DOI: 10.1039/d3sm00504f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
This paper investigates the phase separation kinetics of ternary fluid mixtures composed of a polymeric component (C) and two simple fluids (A and B) using dissipative particle dynamics simulations with a system dimensionality of d = 3. We model the affinities between the components to enable the settling of the polymeric component at the interface of fluids A and B. Thus, the system evolves to form polymer coated morphologies, enabling alteration of the fluids' interfacial properties. This manipulation can be utilized across various disciplines, such as the stabilization of emulsions and foams, rheological control, biomimetic design, and surface modification. We probe the effects of various parameters, such as the polymeric concentration, chain stiffness, and length, on the phase separation kinetics of the system. The simulation results show that changes in the concentration of flexible polymers exhibit perfect dynamic scaling for coated morphologies. The growth rate decreases as the polymeric composition is increased due to reduced surface tension and restricted connectivity between A- and B-rich clusters. Variations in the polymer chain rigidity at fixed composition ratios and degrees of polymerization slow the evolution kinetics of AB fluids marginally, although the effect is more pronounced for perfectly rigid chains. Whereas flexible polymer chain lengths at fixed composition ratios slow down the segregation kinetics of AB fluids slightly, varying the chain lengths of perfectly rigid polymers leads to a significant deviation in the length scale and dynamic scaling for the evolved coated morphologies. The characteristic length scale follows a power-law growth with a growth exponent ϕ that shows a crossover from the viscous to the inertial hydrodynamic regime, where the values of ϕ depend on the constraints imposed on the system.
Collapse
Affiliation(s)
- Dorothy Gogoi
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Avinash Chauhan
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh-221005, India.
| |
Collapse
|
11
|
Singh AK, Banerjee V. Accelerated inertial regime in the spinodal decomposition of magnetic fluids. SOFT MATTER 2023; 19:2370-2376. [PMID: 36920058 DOI: 10.1039/d3sm00285c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Furukawa predicted that at late times, the domain growth in binary fluids scales as (t) ∼ t2/3, and the growth is driven by fluid inertia. The inertial growth regime has been highly elusive in molecular dynamics (MD) simulations. We perform coarsening studies of the (d = 3) Stockmayer (SM) model comprising of magnetic dipoles that interact via long-range dipolar interactions as well as the usual Lennard-Jones (LJ) potential. This fascinating polar fluid exhibits a gas-liquid phase coexistence, and magnetic order even in the absence of an external field. From comprehensive MD simulations, we observe the inertial scaling [(t) ∼ t2/3] in the SM fluid for an extended time window. Intriguingly, the fluid inertia is overwhelming from the outset - our simulations do not show the early diffusive regime [(t) ∼ t1/3] and the intermediate viscous regime [(t) ∼ t] prevalent in LJ fluids.
Collapse
Affiliation(s)
- Anuj Kumar Singh
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Varsha Banerjee
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
12
|
Ma W, Zhou Z, Ismail N, Tocci E, Figoli A, Khayet M, Matsuura T, Cui Z, Tavajohi N. Membrane formation by thermally induced phase separation: Materials, involved parameters, modeling, current efforts and future directions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Zaidi SSH, Jaiswal PK, Priya M, Puri S. Universal fast mode regime in wetting kinetics. Phys Rev E 2022; 106:L052801. [PMID: 36559410 DOI: 10.1103/physreve.106.l052801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/02/2022] [Indexed: 06/17/2023]
Abstract
We present simulation results from a comprehensive molecular dynamics (MD) study of surface-directed spinodal decomposition (SDSD) in unstable symmetric binary mixtures at wetting surfaces. We consider long-ranged and short-ranged surface fields to investigate the early stage wetting kinetics. The attractive part of the long-ranged potential is of the form V(z)∼z^{-n}, where z is the distance from the surface and n is the power-law exponent. We find that the wetting-layer thickness R_{1}(t) at very early times exhibits a power-law growth with an exponent α=1/(n+2). It then crosses over to a universal fast-mode regime with α=3/2. In contrast, for the short-ranged surface potential, a logarithmic behavior in R_{1}(t) is observed at initial times. Remarkably, similar rapid growth is seen in this case too. We provide phenomenological arguments to understand these growth laws. Our MD results firmly establish the existence of universal fast-mode kinetics and settle the related controversy.
Collapse
Affiliation(s)
| | - Prabhat K Jaiswal
- Department of Physics, Indian Institute of Technology Jodhpur, Karwar 342030, India
| | - Madhu Priya
- Department of Physics, Birla Institute of Technology Mesra, Ranchi 835215, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Bhattacharyya R, Gupta BS. Effect of annealed disorder on phase separation kinetics and aging phenomena in fluid mixtures. Phys Rev E 2021; 104:054612. [PMID: 34942791 DOI: 10.1103/physreve.104.054612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/03/2021] [Indexed: 11/07/2022]
Abstract
We use state-of-the-art molecular dynamics simulations to study the effects of annealed disorder on the phase-separating kinetics and aging phenomena of a segregating binary fluid mixture. In the presence of disorder, we observe a dramatic slowing down in the phase separation dynamics. The domain growth follows the power law with a disorder-dependent exponent. Due to the energetically favorable positions, the domain boundary roughens, which modifies the correlation function and structure factor to a non-Porod behavior. The correlation function and structure factor provide clear evidence that superuniversality does not hold in our system. The role of annealed disorder on the nonequilibrium aging dynamics is studied qualitatively by computing the two-time order-parameter autocorrelation function. The decay of the correlation function slows down significantly with the disorder. This quantity exhibits scaling laws with respect to the ratio of the domain length at the observation time and the age of the system. We find the scaling laws hold good for the disordered system and are therefore robust and generic to such segregating fluid mixtures.
Collapse
Affiliation(s)
- Rounak Bhattacharyya
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Bhaskar Sen Gupta
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
15
|
Singh A, Chakraborti A, Singh A. Role of a polymeric component in the phase separation of ternary fluid mixtures: a dissipative particle dynamics study. SOFT MATTER 2018; 14:4317-4326. [PMID: 29757341 DOI: 10.1039/c8sm00625c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present the results from dissipative particle dynamics (DPD) simulations of phase separation dynamics in ternary (ABC) fluids mixture in d = 3 where components A and B represent the simple fluids, and component C represents a polymeric fluid. Here, we study the role of polymeric fluid (C) on domain morphology by varying composition ratio, polymer chain length, and polymer stiffness. We observe that the system under consideration lies in the same dynamical universality class as a simple ternary fluids mixture. However, the scaling functions depend upon the parameters mentioned above as they change the time scale of the evolution morphologies. In all cases, the characteristic domain size follows l(t) ∼ tφ with dynamic growth exponent φ, showing a crossover from the viscous hydrodynamic regime (φ = 1) to the inertial hydrodynamic regime (φ = 2/3) in the system at late times.
Collapse
Affiliation(s)
- Amrita Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | |
Collapse
|
16
|
Krishnan R, Puri S. Molecular dynamics study of phase separation in fluids with chemical reactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052316. [PMID: 26651704 DOI: 10.1103/physreve.92.052316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 06/05/2023]
Abstract
We present results from the first d=3 molecular dynamics (MD) study of phase-separating fluid mixtures (AB) with simple chemical reactions (A⇌B). We focus on the case where the rates of forward and backward reactions are equal. The chemical reactions compete with segregation, and the coarsening system settles into a steady-state mesoscale morphology. However, hydrodynamic effects destroy the lamellar morphology which characterizes the diffusive case. This has important consequences for the phase-separating structure, which we study in detail. In particular, the equilibrium length scale (ℓ(eq)) in the steady state suggests a power-law dependence on the reaction rate ε:ℓ(eq)∼ε(-θ) with θ≃1.0.
Collapse
Affiliation(s)
- Raishma Krishnan
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
17
|
Testard V, Berthier L, Kob W. Intermittent dynamics and logarithmic domain growth during the spinodal decomposition of a glass-forming liquid. J Chem Phys 2015; 140:164502. [PMID: 24784282 DOI: 10.1063/1.4871624] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use large-scale molecular dynamics simulations of a simple glass-forming system to investigate how its liquid-gas phase separation kinetics depends on temperature. A shallow quench leads to a fully demixed liquid-gas system whereas a deep quench makes the dense phase undergo a glass transition and become an amorphous solid. This glass has a gel-like bicontinuous structure that evolves very slowly with time and becomes fully arrested in the limit where thermal fluctuations become negligible. We show that the phase separation kinetics changes qualitatively with temperature, the microscopic dynamics evolving from a surface tension-driven diffusive motion at high temperature to a strongly intermittent, heterogeneous, and thermally activated dynamics at low temperature, with a logarithmically slow growth of the typical domain size. These results elucidate the microscopic mechanisms underlying a specific class of viscoelastic phase separation.
Collapse
Affiliation(s)
- Vincent Testard
- Laboratoire Charles Coulomb, UMR 5221 CNRS and Université Montpellier 2, 34095 Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS and Université Montpellier 2, 34095 Montpellier, France
| | - Walter Kob
- Laboratoire Charles Coulomb, UMR 5221 CNRS and Université Montpellier 2, 34095 Montpellier, France
| |
Collapse
|
18
|
Singh A, Puri S. Phase separation in ternary fluid mixtures: a molecular dynamics study. SOFT MATTER 2015; 11:2213-2219. [PMID: 25643209 DOI: 10.1039/c4sm02726d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present detailed results from molecular dynamics (MD) simulations of phase separation in ternary (ABC) fluid mixtures for d = 2 and d = 3 systems. Our MD simulations naturally incorporate hydrodynamic effects. The domain growth law is l(t) ∼ t(ϕ) with dynamic growth exponent ϕ. Our data clearly indicate that a ternary fluid mixture reaches a dynamical scaling regime at late times with a gradual crossover from ϕ = 1/3 → 1/2 → 2/3 in d = 2 and ϕ = 1/3 → 1 in d = 3 resulting from the hydrodynamic effect in the system. These MD simulations do not yet access the inertial hydrodynamic regime (with l(t) ∼ t(2/3)) of phase separation in ternary fluid mixtures in d = 3.
Collapse
Affiliation(s)
- Awaneesh Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | | |
Collapse
|
19
|
Kikkinides ES, Monson PA. Dynamic density functional theory with hydrodynamic interactions: Theoretical development and application in the study of phase separation in gas-liquid systems. J Chem Phys 2015; 142:094706. [DOI: 10.1063/1.4913636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- E. S. Kikkinides
- Department of Mechanical Engineering, University of Western Macedonia, 50100 Kozani, Greece and Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi-Thessaloniki, Greece
| | - P. A. Monson
- Department of Chemical Engineering, University of Massachusetts, 159 Goessmann Laboratory, 686 North Pleasant Street, Amherst, Massachusetts 01003-9303, USA
| |
Collapse
|
20
|
Das SK. Atomistic simulations of liquid–liquid coexistence in confinement: comparison of thermodynamics and kinetics with bulk. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.998214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Ahmad S, Puri S, Das SK. Phase separation of fluids in porous media: a molecular dynamics study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:040302. [PMID: 25375423 DOI: 10.1103/physreve.90.040302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Indexed: 06/04/2023]
Abstract
We present comprehensive molecular dynamics results for phase-separation kinetics of fluids in a porous medium. This system is modeled by a symmetric Lennard-Jones fluid mixture with a quenched random field. The presence of disorder slows down domain growth from power-law to a logarithmic form. It also modifies the correlation functions and structure factors which characterize the morphology. In particular, the structure-factor tail shows a non-Porod behavior, which is the consequence of scattering from rough interfaces.
Collapse
Affiliation(s)
- Shaista Ahmad
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
22
|
Shrivastav GP, Banerjee V, Puri S. Non-Porod behavior in systems with rough morphologies. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:98. [PMID: 25348663 DOI: 10.1140/epje/i2014-14098-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/24/2014] [Accepted: 10/10/2014] [Indexed: 05/28/2023]
Abstract
Many experiments yield multi-scale morphologies which are smooth on some length scales and fractal on others. Accurate statements about morphological properties, e.g., roughness exponent, fractal dimension, domain size, interfacial width, etc. are obtained from the correlation function and structure factor. In this paper, we present structure factor data for two systems: (a) droplet-in-droplet morphologies of double-phase-separating mixtures; and (b) ground-state morphologies in dilute anti-ferromagnets. An important characteristic of the scattering data is a non-Porod tail, which is associated with scattering off rough domains and interfaces.
Collapse
Affiliation(s)
- Gaurav P Shrivastav
- School of Physical Sciences, Jawaharlal Nehru University, 110067, New Delhi, India
| | | | | |
Collapse
|
23
|
Singh A, Puri S, Dasgupta C. Kinetics of phase separation in polymer mixtures: A molecular dynamics study. J Chem Phys 2014; 140:244906. [DOI: 10.1063/1.4884824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Awaneesh Singh
- Department of Physics, Indian Institute of Science, Bangalore – 560012, India
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi – 110067, India
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi – 110067, India
| | - Chandan Dasgupta
- Department of Physics, Indian Institute of Science, Bangalore – 560012, India
| |
Collapse
|
24
|
Tran C, Kalra V. Molecular dynamics study on effect of elongational flow on morphology of immiscible mixtures. J Chem Phys 2014; 140:134902. [DOI: 10.1063/1.4869404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Krishnan R, Jaiswal PK, Puri S. Phase separation in antisymmetric films: a molecular dynamics study. J Chem Phys 2013; 139:174705. [PMID: 24206320 DOI: 10.1063/1.4827882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have used molecular dynamics (MD) simulations to study phase-separation kinetics in a binary fluid mixture (AB) confined in an antisymmetric thin film. One surface of the film (located at z = 0) attracts the A-atoms, and the other surface (located at z = D) attracts the B-atoms. We study the kinetic processes which lead to the formation of equilibrium morphologies subsequent to a deep quench below the miscibility gap. In the initial stages, one observes the formation of a layered structure, consisting of an A-rich layer followed by a B-rich layer at z = 0; and an analogous structure at z = D. This multi-layered morphology is time-dependent and propagates into the bulk, though it may break up into a laterally inhomogeneous structure at a later stage. We characterize the evolution morphologies via laterally averaged order parameter profiles; the growth laws for wetting-layer kinetics and layer-wise length scales; and the scaling properties of layer-wise correlation functions.
Collapse
Affiliation(s)
- Raishma Krishnan
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
26
|
Majumder S, Das SK. Effects of density conservation and hydrodynamics on aging in nonequilibrium processes. PHYSICAL REVIEW LETTERS 2013; 111:055503. [PMID: 23952418 DOI: 10.1103/physrevlett.111.055503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 06/02/2023]
Abstract
Aging in kinetics of three different phase transitions, viz., magnetic, a binary solid, and a single component fluid, are studied via Monte Carlo and molecular dynamics simulations in three space dimensions with the objective of identifying the effects of order-parameter conservation and hydrodynamics. We observe that the relevant autocorrelations exhibit power-law decay in a ferromagnet and binary solid but with different exponents. At early time the fluid autocorrelation function nicely follows that of the binary solid, the order parameter being conserved for both of them, as opposed to a ferromagnet. At a late time the fluid data crosses over to an exponential decay which we identify as a hydrodynamic effect and we provide analytical justification for this behavior.
Collapse
Affiliation(s)
- Suman Majumder
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India
| | | |
Collapse
|
27
|
Winkler A, Virnau P, Binder K, Winkler RG, Gompper G. Hydrodynamic mechanisms of spinodal decomposition in confined colloid-polymer mixtures: a multiparticle collision dynamics study. J Chem Phys 2013; 138:054901. [PMID: 23406143 DOI: 10.1063/1.4789267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A multiscale model for a colloid-polymer mixture is developed. The colloids are described as point particles interacting with each other and with the polymers with strongly repulsive potentials, while polymers interact with each other with a softer potential. The fluid in the suspension is taken into account by the multiparticle collision dynamics method (MPC). Considering a slit geometry where the suspension is confined between parallel repulsive walls, different possibilities for the hydrodynamic boundary conditions (b.c.) at the walls (slip versus stick) are treated. Quenching experiments are considered, where the system volume is suddenly reduced (keeping the density of the solvent fluid constant, while the colloid and polymer particle numbers are kept constant) and thus an initially homogeneous system is quenched deeply into the miscibility gap, where it is unstable. For various relative concentrations of colloids and polymers, the time evolution of the growing colloid-rich and polymer-rich domains are studied by molecular dynamics simulation, taking hydrodynamic effects mediated by the solvent into account via MPC. It is found that the domain size [script-l](d)(t) grows with time t as [script-l](d)(t) [proportionality] t(1/3) for stick and (at late stages) as [script-l](d)(t) [proportionality] t(2/3) for slip b.c., while break-up of percolating structures can cause a transient "arrest" of growth. While these findings apply for films that are 5-10 colloid diameters wide, for ultrathin films (1.5 colloid diameters wide) a regime with [script-l](d)(t) [proportionality] t(1/2) is also identified for rather shallow quenches.
Collapse
Affiliation(s)
- Alexander Winkler
- Insitut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
28
|
Majumder S, Das SK. Temperature and composition dependence of kinetics of phase separation in solid binary mixtures. Phys Chem Chem Phys 2013; 15:13209-18. [DOI: 10.1039/c3cp50612f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Ahmad S, Corberi F, Das SK, Lippiello E, Puri S, Zannetti M. Aging and crossovers in phase-separating fluid mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:061129. [PMID: 23367915 DOI: 10.1103/physreve.86.061129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/22/2012] [Indexed: 06/01/2023]
Abstract
We use state-of-the-art molecular dynamics simulations to study hydrodynamic effects on aging during kinetics of phase separation in a fluid mixture. The domain growth law shows a crossover from a diffusive regime to a viscous hydrodynamic regime. There is a corresponding crossover in the autocorrelation function from a power-law behavior to an exponential decay. While the former is consistent with theories for diffusive domain growth, the latter results as a consequence of faster advective transport in fluids for which an analytical justification has been provided.
Collapse
Affiliation(s)
- Shaista Ahmad
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India
| | | | | | | | | | | |
Collapse
|
30
|
Roy S, Das SK. Nucleation and growth of droplets in vapor-liquid transitions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:050602. [PMID: 23004695 DOI: 10.1103/physreve.85.050602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 06/01/2023]
Abstract
Results for the kinetics of vapor-liquid transitions, following temperature quenches with different densities, are presented from molecular dynamics simulations of a Lennard-Jones system. For a critical density, bicontinuous liquid and vapor domains are observed which grow with time, obeying the predictions for the hydrodynamic mechanism. On the other hand, for quenches with density significantly below the critical one, phase separation progresses via nucleation and growth of liquid droplets. In the latter case, the Brownian diffusion and collision mechanism for the droplet growth is confirmed. We also discuss the possibility of interdroplet interaction leading to a different amplitude in the growth law. Arguments for faster growth, observed at early times, are also provided.
Collapse
Affiliation(s)
- Sutapa Roy
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064, India
| | | |
Collapse
|
31
|
Jaiswal PK, Puri S, Das SK. Surface-directed spinodal decomposition: a molecular dynamics study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:051137. [PMID: 23004733 DOI: 10.1103/physreve.85.051137] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Indexed: 06/01/2023]
Abstract
We use molecular dynamics simulations to study surface-directed spinodal decomposition in unstable binary AB fluid mixtures at wetting surfaces. The thickness of the wetting layer R1 grows with time t as a power law (R1∼tθ). We find that hydrodynamic effects result in a crossover of the growth exponent from θ≃1/3 to 1. We also present results for the layerwise correlation functions and domain length scales.
Collapse
Affiliation(s)
- Prabhat K Jaiswal
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
32
|
Reith D, Bucior K, Yelash L, Virnau P, Binder K. Spinodal decomposition of polymer solutions: molecular dynamics simulations of the two-dimensional case. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:115102. [PMID: 22301356 DOI: 10.1088/0953-8984/24/11/115102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
As a generic model system for phase separation in polymer solutions, a coarse-grained model for hexadecane/carbon dioxide mixtures has been studied in two-dimensional geometry. Both the phase diagram in equilibrium (obtained from a finite size scaling analysis of Monte Carlo data) and the kinetics of state changes caused by pressure jumps (studied by large scale molecular dynamics simulations) are presented. The results are compared to previous work where the same model was studied in three-dimensional geometry and under confinement in slit geometry. For deep quenches the characteristic length scale ℓ(t) of the formed domains grows with time t according to a power law close to [Formula: see text]. Since in this problem both the polymer density ρ(p) and the solvent density ρ(s) matter, the time evolution of the density distribution P(L)(ρ(p),ρ(s),t) in L × L subboxes of the system is also analyzed. It is found that in the first stage of phase separation the system separates locally into low density carbon dioxide regions that contain no polymers and regions of high density polymer melt that are supersaturated with this solvent. The further coarsening proceeds via the growth of domains of rather irregular shapes. A brief comparison of our findings with results of other models is given.
Collapse
Affiliation(s)
- Daniel Reith
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
33
|
Ahmad S, Das SK, Puri S. Crossover in growth laws for phase-separating binary fluids: molecular dynamics simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031140. [PMID: 22587071 DOI: 10.1103/physreve.85.031140] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Indexed: 05/31/2023]
Abstract
Pattern and dynamics during phase separation in a symmetrical binary (A+B) Lennard-Jones fluid are studied via molecular dynamics simulations after quenching homogeneously mixed critical (50:50) systems to temperatures below the critical one. The morphology of the domains, rich in A or B particles, is observed to be bicontinuous. The early-time growth of the average domain size is found to be consistent with the Lifshitz-Slyozov law for diffusive domain coarsening. After a characteristic time, dependent on the temperature, we find a clear crossover to an extended viscous hydrodynamic regime where the domains grow linearly with time. Pattern formation in the present system is compared with that in solid binary mixtures, as a function of temperature. Important results for the finite-size and temperature effects on the small-wave-vector behavior of the scattering function are also presented.
Collapse
Affiliation(s)
- Shaista Ahmad
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Post Office, Bangalore, India
| | | | | |
Collapse
|
34
|
Das SK, Binder K. Thermodynamic properties of a symmetrical binary mixture in the coexistence region. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:061607. [PMID: 22304102 DOI: 10.1103/physreve.84.061607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Indexed: 05/31/2023]
Abstract
A three-dimensional symmetric binary fluid is studied, as a function of temperature, in the two-phase (liquid-liquid) coexistence region via Monte Carlo simulations. Particular focus has been in the understanding of curvature-dependent interfacial tension, which is observed to vary as σ(R) = σ(∞)/[1+2(ℓ/R)(2)], implying that a Tolman length is zero in the limit R → ∞. The length ℓ is found to have a critical divergence the same as the correlation length, but its amplitude is significantly larger (ℓ ~/= 4ξ). Our findings hence imply that the barrier against homogeneous nucleation is significantly reduced (in comparison with the classical nucleation theory) in the critical region. We also report results for the critical behavior of the flat interfacial tension σ(∞) and the concentration susceptibility, as well as the amplitude ratios involving these thermodynamic quantities. Noting that the interatomic potential in our model is described by the Lennard-Jones form that decays faster that 1/r(3), all of our results for critical phenomena are expectedly consistent with the Ising universality class of three spatial dimensions.
Collapse
Affiliation(s)
- Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur PO, Bangalore 560064, India
| | | |
Collapse
|
35
|
Majumder S, Das SK. Diffusive domain coarsening: early time dynamics and finite-size effects. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021110. [PMID: 21928952 DOI: 10.1103/physreve.84.021110] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/21/2011] [Indexed: 05/31/2023]
Abstract
We study the diffusive dynamics of phase separation in a symmetric binary (A + B) mixture with a 50:50 composition of A and B particles, following a quench below the demixing critical temperature, both in spatial dimensions d=2 and d=3. The particular focus of this work is to obtain information about the effects of system size and correction to the growth law via the appropriate application of the finite-size scaling method to the results obtained from the Kawasaki exchange Monte Carlo simulation of the Ising model. Observations of only weak size effects and a very small correction to scaling in the growth law are significant. The methods used in this work and information thus gathered will be useful in the study of the kinetics of phase separation in fluids and other problems of growing length scale. We also provide a detailed discussion of the standard methods of understanding simulation results which may lead to inappropriate conclusions.
Collapse
Affiliation(s)
- Suman Majumder
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | | |
Collapse
|