1
|
Numerical simulation of a drying colloidal suspension on a wettable substrate using the lattice Boltzmann method. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
2
|
Tang Y, McLaughlan JE, Grest GS, Cheng S. Modeling Solution Drying by Moving a Liquid-Vapor Interface: Method and Applications. Polymers (Basel) 2022; 14:polym14193996. [PMID: 36235944 PMCID: PMC9573352 DOI: 10.3390/polym14193996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
A method of simulating the drying process of a soft matter solution with an implicit solvent model by moving the liquid-vapor interface is applied to various solution films and droplets. For a solution of a polymer and nanoparticles, we observe “polymer-on-top” stratification, similar to that found previously with an explicit solvent model. Furthermore, “polymer-on-top” is found even when the nanoparticle size is smaller than the radius of gyration of the polymer chains. For a suspension droplet of a bidisperse mixture of nanoparticles, we show that core-shell clusters of nanoparticles can be obtained via the “small-on-outside” stratification mechanism at fast evaporation rates. “Large-on-outside” stratification and uniform particle distribution are also observed when the evaporation rate is reduced. Polymeric particles with various morphologies, including Janus spheres, core-shell particles, and patchy particles, are produced from drying droplets of polymer solutions by combining fast evaporation with a controlled interaction between the polymers and the liquid-vapor interface. Our results validate the applicability of the moving interface method to a wide range of drying systems. The limitations of the method are pointed out and cautions are provided to potential practitioners on cases where the method might fail.
Collapse
Affiliation(s)
- Yanfei Tang
- Department of Physics, Center for Soft Matter and Biological Physics, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - John E. McLaughlan
- Department of Physics, Center for Soft Matter and Biological Physics, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Gary S. Grest
- Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Shengfeng Cheng
- Department of Physics, Center for Soft Matter and Biological Physics, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +1-540-231-5767
| |
Collapse
|
3
|
Lee S, A. M. T, Cho G, Lee J. Control of the Drying Patterns for Complex Colloidal Solutions and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2600. [PMID: 35957030 PMCID: PMC9370329 DOI: 10.3390/nano12152600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
The uneven deposition at the edges of an evaporating droplet, termed the coffee-ring effect, has been extensively studied during the past few decades to better understand the underlying cause, namely the flow dynamics, and the subsequent patterns formed after drying. The non-uniform evaporation rate across the colloidal droplet hampers the formation of a uniform and homogeneous film in printed electronics, rechargeable batteries, etc., and often causes device failures. This review aims to highlight the diverse range of techniques used to alleviate the coffee-ring effect, from classic methods such as adding chemical additives, applying external sources, and manipulating geometrical configurations to recently developed advancements, specifically using bubbles, humidity, confined systems, etc., which do not involve modification of surface, particle or liquid properties. Each of these methodologies mitigates the edge deposition via multi-body interactions, for example, particle-liquid, particle-particle, particle-solid interfaces and particle-flow interactions. The mechanisms behind each of these approaches help to find methods to inhibit the non-uniform film formation, and the corresponding applications have been discussed together with a critical comparison in detail. This review could pave the way for developing inks and processes to apply in functional coatings and printed electronic devices with improved efficiency and device yield.
Collapse
Affiliation(s)
- Saebom Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tiara A. M.
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Research Engineering Center for R2R Printed Flexible Computer, Sungkyunkwan University, Suwon 16419, Korea
| | - Gyoujin Cho
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Research Engineering Center for R2R Printed Flexible Computer, Sungkyunkwan University, Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
4
|
Lee YK, Ahn KH. Particle dynamics at fluid interfaces studied by the color gradient lattice Boltzmann method coupled with the smoothed profile method. Phys Rev E 2020; 101:053302. [PMID: 32575323 DOI: 10.1103/physreve.101.053302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/12/2020] [Indexed: 11/07/2022]
Abstract
We suggest a numerical method to describe particle dynamics at the fluid interface. We adopt a coupling strategy by combining the color gradient lattice Boltzmann method (CGLBM) and smoothed profile method (SPM). The proposed scheme correctly resolves the momentum transfer among the solid particles and fluid phases while effectively controlling the wetting condition. To validate the present algorithm (CGLBM-SPM), we perform several simulation tests like wetting a single solid particle and capillary interactions in two solid particles floating at the fluid interface. Simulation results show a good agreement with the analytical solutions available and look qualitatively reasonable. From these analyses, we conclude that the key features of the particle dynamics at the fluid interface are correctly resolved in our simulation method. In addition, we apply the present method for spinodal decomposition of a ternary mixture, which contains two-immiscible fluids with solid particles. By adding solid particles, fluid segregation is much suppressed than in the binary liquid mixture case. Furthermore, it has different morphology, such as with the jamming structure of the particles at the fluid interface, and captured images are similar to bicontinuous interfacially jammed emulsion gels in literature. From these results, we confirm the feasibility of the present method to describe soft matters; in particular, emulsion systems that contain solid particles at the interface.
Collapse
Affiliation(s)
- Young Ki Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Korea
| | - Kyung Hyun Ahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
5
|
He Q, Li Y, Huang W, Hu Y, Wang Y. Phase-field-based lattice Boltzmann model for liquid-gas-solid flow. Phys Rev E 2019; 100:033314. [PMID: 31639949 DOI: 10.1103/physreve.100.033314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Indexed: 11/07/2022]
Abstract
Based on phase-field theory, we develop a lattice Boltzmann (LB) model for liquid-gas-solid flow from multiphase and particle dynamics algorithms. A modified bounce-back method is developed for the velocity-based LB approach. A curved boundary treatment with second-order accuracy based on velocity interpolation is developed. We propose a predictor-corrector scheme algorithm for specifying the three-phase contact angle on curved boundaries within the framework of structured Cartesian grids. In order to make the algorithm more stable, we combine the implicit particle velocity update scheme and the Galilean invariant momentum exchange method. The proposed method is validated through several single- and multicomponent fluid test cases. It was found the surface tension force associated with the interface acting on the solid structures can be captured. We simulate the sinking of a circular cylinder due to gravity, the numerical results agree well with the experimental data. Finally, we apply the method to the self-assembly process of multiple floating cylinders on water surface.
Collapse
Affiliation(s)
- Qiang He
- Department of Mechanical Engineering, Tsinghua University, Beijing 10084, China
| | - Yongjian Li
- Department of Mechanical Engineering, Tsinghua University, Beijing 10084, China
| | - Weifeng Huang
- Department of Mechanical Engineering, Tsinghua University, Beijing 10084, China
| | - Yang Hu
- Department of Mechanical Engineering, Tsinghua University, Beijing 10084, China
| | - Yuming Wang
- Department of Mechanical Engineering, Tsinghua University, Beijing 10084, China
| |
Collapse
|
6
|
Qin F, Mazloomi Moqaddam A, Del Carro L, Kang Q, Brunschwiler T, Derome D, Carmeliet J. Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures. Phys Rev E 2019; 99:053306. [PMID: 31212433 DOI: 10.1103/physreve.99.053306] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Indexed: 06/09/2023]
Abstract
A tricoupled hybrid lattice Boltzmann model (LBM) is developed to simulate colloidal liquid evaporation and colloidal particle deposition during the nonisothermal drying of colloidal suspensions in micropore structures. An entropic multiple-relaxation-time multirange pseudopotential two-phase LBM for isothermal interfacial flow is first coupled to an extended temperature equation for simulating nonisothermal liquid drying. Then the coupled model is further coupled with a modified convection diffusion equation to consider the nonisothermal drying of colloidal suspensions. Two drying examples are considered. First, drying of colloidal suspensions in a two-pillar micropore structure is simulated in two dimensions (2D), and the final configuration of colloidal particles is compared with the experimental one. Good agreement is observed. Second, at the temperature of 343.15 K (70^{∘}C), drying of colloidal suspensions in a complex spiral-shaped micropore structure containing 220 pillars is simulated (also in 2D). The drying pattern follows the designed spiral shape due to capillary pumping, i.e., transport of the liquid from larger pores to smaller ones by capillary pressure difference. Since the colloidal particles are passively carried with liquid, they accumulate at the small menisci as drying proceeds. As liquid evaporates at the small menisci, colloidal particles are deposited, eventually forming solid structures between the pillars (primarily), and at the base of the pillars (secondarily). As a result, the particle deposition conforms to the spiral route. Qualitatively, the simulated liquid and particle configurations agree well with the experimental ones during the entire drying process. Quantitatively, the model demonstrates that the evaporation rate and the particle accumulation rate slowly decrease during drying, similar to what is seen in the experimental results, which is due to the reduction of the liquid-vapor interfacial area. In conclusion, the hybrid model shows the capability and accuracy for simulating nonisothermal drying of colloidal suspensions in a complex micropore structure both qualitatively and quantitatively, as it includes all the required physics and captures all the complex features observed experimentally. Such a tricoupled LBM has a high potential to become an efficient numerical tool for further investigation of real and complex engineering problems incorporating drying of colloidal suspensions in porous media.
Collapse
Affiliation(s)
- Feifei Qin
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8093, Switzerland
- Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Ali Mazloomi Moqaddam
- Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Luca Del Carro
- Smart System Integration, IBM Research-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Qinjun Kang
- Earth and Environment Sciences Division (EES-16), Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, USA
| | - Thomas Brunschwiler
- Smart System Integration, IBM Research-Zürich, Saumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Dominique Derome
- Laboratory of Multiscale Studies in Building Physics, Empa (Swiss Federal Laboratories for Materials Science and Technology), Dübendorf 8600, Switzerland
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), Zürich 8093, Switzerland
| |
Collapse
|
7
|
Qin F, Mazloomi Moqaddam A, Kang Q, Derome D, Carmeliet J. LBM Simulation of Self-Assembly of Clogging Structures by Evaporation of Colloidal Suspension in 2D Porous Media. Transp Porous Media 2018. [DOI: 10.1007/s11242-018-1157-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Mazloomi Moqaddam A, Derome D, Carmeliet J. Dynamics of Contact Line Pinning and Depinning of Droplets Evaporating on Microribs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5635-5645. [PMID: 29667830 DOI: 10.1021/acs.langmuir.8b00409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The contact line dynamics of evaporating droplets deposited on a set of parallel microribs is analyzed with the use of a recently developed entropic lattice Boltzmann model for two-phase flow. Upon deposition, part of the droplet penetrates into the space between ribs because of capillary action, whereas the remaining liquid of the droplet remains pinned on top of the microribs. In the first stage, evaporation continues until the droplet undergoes a series of pinning-depinning events, showing alternatively the constant contact radius and constant contact angle modes. While the droplet is pinned, evaporation results in a contact angle reduction, whereas the contact radius remains constant. At a critical contact angle, the contact line depins, the contact radius reduces, and the droplet rearranges to a larger apparent contact angle. This pinning-depinning behavior goes on until the liquid above the microribs is evaporated. By computing the Gibbs free energy taking into account the interfacial energy, pressure terms, and viscous dissipation due to drop internal flow, we found that the mechanism that causes the unpinning of the contact line results from an excess in Gibbs free energy. The spacing distance and the rib height play an important role in controlling the pinning-depinning cycling, the critical contact angle, and the excess Gibbs free energy. However, we found that neither the critical contact angle nor the maximum excess Gibbs free energy depends on the rib width. We show that the different terms, that is, pressure term, viscous dissipation, and interfacial energy, contributing to the excess Gibbs free energy, can be varied differently by varying different geometrical properties of the microribs. It is demonstrated that, by varying the spacing distance between the ribs, the energy barrier is controlled by the interfacial energy while the contribution of the viscous dissipation is dominant if either rib height or width is changed. Main finding of this is study is that, for microrib patterned surfaces, the energy barrier required for the contact line to depin can be enlarged by increasing the spacing or the rib height, which can be important for practical applications.
Collapse
Affiliation(s)
- Ali Mazloomi Moqaddam
- Chair of Building Physics, Department of Mechanical and Process Engineering , ETH Zurich , 8092 Zurich , Switzerland
- Laboratory for Multiscale Studies in Building Physics, Empa , Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| | - Dominique Derome
- Laboratory for Multiscale Studies in Building Physics, Empa , Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| | - Jan Carmeliet
- Chair of Building Physics, Department of Mechanical and Process Engineering , ETH Zurich , 8092 Zurich , Switzerland
- Laboratory for Multiscale Studies in Building Physics, Empa , Swiss Federal Laboratories for Materials Science and Technology , 8600 Dübendorf , Switzerland
| |
Collapse
|
9
|
Chalmers C, Smith R, Archer AJ. Dynamical Density Functional Theory for the Evaporation of Droplets of Nanoparticle Suspension. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14490-14501. [PMID: 29155593 DOI: 10.1021/acs.langmuir.7b03096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We develop a lattice gas model for the drying of droplets of a nanoparticle suspension on a planar surface, using dynamical density functional theory (DDFT) to describe the time evolution of the solvent and nanoparticle density profiles. The DDFT assumes a diffusive dynamics but does not include the advective hydrodynamics of the solvent, so the model is relevant to highly viscous or near to equilibrium systems. Nonetheless, we see an equivalent of the coffee-ring stain effect, but in the present model it occurs for thermodynamic rather the fluid-mechanical reasons. The model incorporates the effect of phase separation and vertical density variations within the droplet and the consequence of these on the nanoparticle deposition pattern on the surface. We show how to include the effect of slip or no-slip at the surface and how this is related to the receding contact angle. We also determine how the equilibrium contact angle depends on the microscopic interaction parameters.
Collapse
Affiliation(s)
- C Chalmers
- Department of Mathematical Sciences, Loughborough University , Loughborough LE11 3TU, United Kingdom
| | - R Smith
- Department of Mathematical Sciences, Loughborough University , Loughborough LE11 3TU, United Kingdom
| | - A J Archer
- Department of Mathematical Sciences, Loughborough University , Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
10
|
Zhao M, Yong X. Modeling Evaporation and Particle Assembly in Colloidal Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:5734-5744. [PMID: 28548503 DOI: 10.1021/acs.langmuir.7b00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.
Collapse
Affiliation(s)
- Mingfei Zhao
- Department of Mechanical Engineering, Binghamton University , Binghamton, New York 13902, United States
| | - Xin Yong
- Department of Mechanical Engineering, Binghamton University , Binghamton, New York 13902, United States
| |
Collapse
|
11
|
Hessling D, Xie Q, Harting J. Diffusion dominated evaporation in multicomponent lattice Boltzmann simulations. J Chem Phys 2017; 146:054111. [DOI: 10.1063/1.4975024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Dennis Hessling
- Materials Innovations Institute (M2i), Elektronicaweg 25, 2628 XG Delft, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, NL-5600MB Eindhoven, The Netherlands
| | - Qingguang Xie
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, NL-5600MB Eindhoven, The Netherlands
| | - Jens Harting
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, NL-5600MB Eindhoven, The Netherlands
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Straße 248, 90429 Nürnberg, Germany
| |
Collapse
|
12
|
Jafari Kang S, Vandadi V, Felske JD, Masoud H. Alternative mechanism for coffee-ring deposition based on active role of free surface. Phys Rev E 2016; 94:063104. [PMID: 28085318 DOI: 10.1103/physreve.94.063104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 05/12/2023]
Abstract
When a colloidal sessile droplet dries on a substrate, the particles suspended in it usually deposit in a ringlike pattern. This phenomenon is commonly referred to as the "coffee-ring" effect. One paradigm for why this occurs is as a consequence of the solutes being transported towards the pinned contact line by the flow inside the drop, which is induced by surface evaporation. From this perspective, the role of the liquid-gas interface in shaping the deposition pattern is somewhat minimized. Here, we propose an alternative mechanism for the coffee-ring deposition. It is based on the bulk flow within the drop transporting particles to the interface where they are captured by the receding free surface and subsequently transported along the interface until they are deposited near the contact line. That the interface captures the solutes as the evaporation proceeds is supported by a Lagrangian tracing of particles advected by the flow field within the droplet. We model the interfacial adsorption and transport of particles as a one-dimensional advection-generation process in toroidal coordinates and show that the theory reproduces ring-shaped depositions. Using this model, deposition patterns on both hydrophilic and hydrophobic surfaces are examined in which the evaporation is modeled as being either diffusive or uniform over the surface.
Collapse
Affiliation(s)
- Saeed Jafari Kang
- Department of Mechanical Engineering, University of Nevada, Reno, Nevada 89557, USA
| | - Vahid Vandadi
- Department of Mechanical Engineering, University of Nevada, Reno, Nevada 89557, USA
| | - James D Felske
- Department of Mechanical and Aerospace Engineering, State University of New York, Buffalo, New York 14260, USA
| | - Hassan Masoud
- Department of Mechanical Engineering, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
13
|
Sun X, Sakai M. Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles. Phys Rev E 2016; 94:063301. [PMID: 28085306 DOI: 10.1103/physreve.94.063301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 06/06/2023]
Abstract
In this study, a numerical method is developed to perform the direct numerical simulation (DNS) of gas-solid-liquid flows involving capillary effects. The volume-of-fluid method employed to track the free surface and the immersed boundary method is adopted for the fluid-particle coupling in three-phase flows. This numerical method is able to fully resolve the hydrodynamic force and capillary force as well as the particle motions arising from complicated gas-solid-liquid interactions. We present its application to liquid bridges among spherical particles in this paper. By using the DNS method, we obtain the static bridge force as a function of the liquid volume, contact angle, and separation distance. The results from the DNS are compared with theoretical equations and other solutions to examine its validity and suitability for modeling capillary bridges. Particularly, the nontrivial liquid bridges formed in triangular and tetrahedral particle clusters are calculated and some preliminary results are reported. We also perform dynamic simulations of liquid bridge ruptures subject to axial stretching and particle motions driven by liquid bridge action, for which accurate predictions are obtained with respect to the critical rupture distance and the equilibrium particle position, respectively. As shown through the simulations, the strength of the present method is the ability to predict the liquid bridge problem under general conditions, from which models of liquid bridge actions may be constructed without limitations. Therefore, it is believed that this DNS method can be a useful tool to improve the understanding and modeling of liquid bridges formed in complex gas-solid-liquid flows.
Collapse
Affiliation(s)
- Xiaosong Sun
- Resilience Engineering Research Center, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mikio Sakai
- Resilience Engineering Research Center, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Lu G, Wang XD, Duan YY. A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids. Adv Colloid Interface Sci 2016; 236:43-62. [PMID: 27521099 DOI: 10.1016/j.cis.2016.07.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 07/02/2016] [Accepted: 07/20/2016] [Indexed: 01/22/2023]
Abstract
Dynamic wetting is an important interfacial phenomenon in many industrial applications. There have been many excellent reviews of dynamic wetting, especially on super-hydrophobic surfaces with physical or chemical coatings, porous layers, hybrid micro/nano structures and biomimetic structures. This review summarizes recent research on dynamic wetting from the viewpoint of the fluids rather than the solid surfaces. The reviewed fluids range from simple Newtonian fluids to non-Newtonian fluids and complex nanofluids. The fundamental physical concepts and principles involved in dynamic wetting phenomena are also reviewed. This review focus on recent investigations of dynamic wetting by non-Newtonian fluids, including the latest experimental studies with a thorough review of the best dynamic wetting models for non-Newtonian fluids, to illustrate their successes and limitations. This paper also reports on new results on the still fledgling field of nanofluid wetting kinetics. The challenges of research on nanofluid dynamic wetting is not only due to the lack of nanoscale experimental techniques to probe the complex nanoparticle random motion, but also the lack of multiscale experimental techniques or theories to describe the effects of nanoparticle motion at the nanometer scale (10(-9) m) on the dynamic wetting taking place at the macroscopic scale (10(-3) m). This paper describes the various types of nanofluid dynamic wetting behaviors. Two nanoparticle dissipation modes, the bulk dissipation mode and the local dissipation mode, are proposed to resolve the uncertainties related to the various types of dynamic wetting mechanisms reported in the literature.
Collapse
|
15
|
Hydrodynamic Force Evaluation by Momentum Exchange Method in Lattice Boltzmann Simulations. ENTROPY 2015. [DOI: 10.3390/e17127876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Cappelli S, Xie Q, Harting J, de Jong A, Prins M. Dynamic wetting: status and prospective of single particle based experiments and simulations. N Biotechnol 2015; 32:420-32. [DOI: 10.1016/j.nbt.2015.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/16/2015] [Indexed: 11/28/2022]
|
17
|
Frank X, Perré P, Li HZ. Lattice Boltzmann investigation of droplet inertial spreading on various porous surfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052405. [PMID: 26066181 DOI: 10.1103/physreve.91.052405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Indexed: 06/04/2023]
Abstract
The spreading of liquid drops on solid surfaces is a wide-spread phenomenon of both fundamental and industrial interest. In many applications, surfaces are porous and spreading patterns are very complex with respect to the case on smooth surfaces. Focusing on the inertial spreading just before the Tanner-like viscous regime, this work investigates the spreading of a low-viscosity droplet on a porous surface using lattice Boltzmann numerical simulations. The case of a flat surface is first considered, and it reveals a dependence on the solid equilibrium contact angle θ(s)(eq), which is in good agreement with published experimental data. We conducted numerical experiments with various surfaces perforated by a regular pattern of holes of infinite length. The results show that the global spreading dynamics is independent of the porosity morphology. Through the assumption that, for wetting, the pores can be regarded as surface patches with a contact angle of θ(pore)(eq)=180°, we deduce an effective equilibrium contact angle θ(eff)(eq) on the porous surface from the Cassie-Baxter law. A spreading model is then proposed to describe both a prefactor and an exponent that are similar to a flat surface whose equilibrium contact angle is θ(eff)(eq). This model compares satisfactorily with a large number of numerical experiments under varying conditions.
Collapse
Affiliation(s)
- Xavier Frank
- IATE, INRA-CIRAD-UMII-SupAgro, 2 place Pierre Viala, 34060 Montpellier, France
| | - Patrick Perré
- École Centrale Paris, LGPM, Grande Voie des Vignes, 92290 Châtenay-Malabry, France
| | - Huai-Zhi Li
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| |
Collapse
|
18
|
van der Sman R, Meinders M. Mesoscale models of dispersions stabilized by surfactants and colloids. Adv Colloid Interface Sci 2014; 211:63-76. [PMID: 24980050 DOI: 10.1016/j.cis.2014.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
In this paper we discuss and give an outlook on numerical models describing dispersions, stabilized by surfactants and colloidal particles. Examples of these dispersions are foams and emulsions. In particular, we focus on the potential of the diffuse interface models based on a free energy approach, which describe dispersions with the surface-active agent soluble in one of the bulk phases. The free energy approach renders thermodynamic consistent models with realistic sorption isotherms and adsorption kinetics. The free energy approach is attractive because of its ability to describe highly complex dispersions, such as emulsions stabilized by ionic surfactants, or surfactant mixtures and dispersions with surfactant micelles. We have classified existing numerical methods into classes, using either a Eulerian or a Lagrangian representation for fluid and for the surfactant/colloid. A Eulerian representation gives a more coarse-grained, mean field description of the surface-active agent, while a Lagrangian representation can deal with steric effects and larger complexity concerning geometry and (amphiphilic) wetting properties of colloids and surfactants. However, the similarity between the description of wetting properties of both Eulerian and Lagrangian models allows for the development of hybrid Eulerian/Lagrangian models having advantages of both representations.
Collapse
|
19
|
Attinger D, Moore C, Donaldson A, Jafari A, Stone HA. Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities. Forensic Sci Int 2013; 231:375-96. [DOI: 10.1016/j.forsciint.2013.04.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/02/2013] [Accepted: 04/17/2013] [Indexed: 01/25/2023]
|
20
|
Lu G, Wang XD, Duan YY. Study on initial stage of capillary rise dynamics. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Jansen HP, Sotthewes K, van Swigchem J, Zandvliet HJW, Kooij ES. Lattice Boltzmann modeling of directional wetting: comparing simulations to experiments. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:013008. [PMID: 23944550 DOI: 10.1103/physreve.88.013008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 06/02/2023]
Abstract
Lattice Boltzmann Modeling (LBM) simulations were performed on the dynamic behavior of liquid droplets on chemically striped patterned surfaces, ultimately with the aim to develop a predictive tool enabling reliable design of future experiments. The simulations accurately mimic experimental results, which have shown that water droplets on such surfaces adopt an elongated shape due to anisotropic preferential spreading. Details of the contact line motion such as advancing of the contact line in the direction perpendicular to the stripes exhibit pronounced similarities in experiments and simulations. The opposite of spreading, i.e., evaporation of water droplets, leads to a characteristic receding motion first in the direction parallel to the stripes, while the contact line remains pinned perpendicular to the stripes. Only when the aspect ratio is close to unity, the contact line also starts to recede in the perpendicular direction. Very similar behavior was observed in the LBM simulations. Finally, droplet movement can be induced by a gradient in surface wettability. LBM simulations show good semiquantitative agreement with experimental results of decanol droplets on a well-defined striped gradient, which move from high- to low-contact angle surfaces. Similarities and differences for all systems are described and discussed in terms of the predictive capabilities of LBM simulations to model direction wetting.
Collapse
Affiliation(s)
- H Patrick Jansen
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Chen L, Kang Q, Robinson BA, He YL, Tao WQ. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:043306. [PMID: 23679547 DOI: 10.1103/physreve.87.043306] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Indexed: 06/02/2023]
Abstract
A pore-scale model based on the lattice Boltzmann (LB) method is developed for multiphase reactive transport with phase transitions and dissolution-precipitation processes. The model combines the single-component multiphase Shan-Chen LB model [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)], the mass transport LB model [S. P. Sullivan et al., Chem. Eng. Sci. 60, 3405 (2005)], and the dissolution-precipitation model [Q. Kang et al., J. Geophys. Res. 111, B05203 (2006)]. Care is taken to handle information on computational nodes undergoing solid-liquid or liquid-vapor phase changes to guarantee mass and momentum conservation. A general LB concentration boundary condition is proposed that can handle various concentration boundaries including reactive and moving boundaries with complex geometries. The pore-scale model can capture coupled nonlinear multiple physicochemical processes including multiphase flow with phase separations, mass transport, chemical reactions, dissolution-precipitation processes, and dynamic evolution of the pore geometries. The model is validated using several multiphase flow and reactive transport problems and then used to study the thermal migration of a brine inclusion in a salt crystal. Multiphase reactive transport phenomena with phase transitions between liquid-vapor phases and dissolution-precipitation processes of the salt in the closed inclusion are simulated and the effects of the initial inclusion size and temperature gradient on the thermal migration are investigated.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | | | | | | | | |
Collapse
|
23
|
Baram RM, Lind PG. Deposition of general ellipsoidal particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041301. [PMID: 22680463 DOI: 10.1103/physreve.85.041301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/27/2012] [Indexed: 06/01/2023]
Abstract
We present a systematic overview of granular deposits composed of ellipsoidal particles with different particle shapes and size polydispersities. We study the density and anisotropy of such deposits as functions of small to moderate size polydispersity and two shape parameters that fully describe the shape of a general ellipsoid. Our results show that, while shape influences significantly the macroscopic properties of the deposits, polydispersity in the studied range plays apparently a secondary role. The density attains a maximum for a particular family of nonsymmetrical ellipsoids, larger than the density observed for prolate or oblate ellipsoids. As for anisotropy measures, the contact forces are increasingly preferred along the vertical direction as the shape of the particles deviates from a sphere. The deposits are constructed by means of a molecular dynamics method, where the contact forces are efficiently and accurately computed. The main results are discussed in the light of applications for porous media models and sedimentation processes.
Collapse
Affiliation(s)
- Reza M Baram
- Center for Theoretical and Computational Physics, University of Lisbon, Avenida Professor Gama Pinto 2, 1649-003 Lisboa, Portugal.
| | | |
Collapse
|
24
|
Maki KL, Kumar S. Fast evaporation of spreading droplets of colloidal suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:11347-11363. [PMID: 21834573 DOI: 10.1021/la202088s] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
When a coffee droplet dries on a countertop, a dark ring of coffee solute is left behind, a phenomenon often referred to as the coffee-ring effect. A closely related yet less-well-explored phenomenon is the formation of a layer of particles, or skin, at the surface of the droplet during drying. In this work, we explore the behavior of a mathematical model that can qualitatively describe both phenomena. We consider a thin axisymmetric droplet of a colloidal suspension on a horizontal substrate undergoing spreading and evaporation. In contrast to prior work, precursor films (rather than pinned contact lines) are present at the droplet edge, and evaporation is assumed to be limited by how quickly molecules can transfer out of the liquid phase (rather than by how quickly they can diffuse through the gas phase). The lubrication approximation is applied to simplify the mass and momentum conservation equations, and the colloidal particles are allowed to influence the droplet rheology through their effect on the viscosity. By describing the transport of the colloidal particles with the full convection-diffusion equation, we are able to capture depthwise gradients in particle concentration and thus describe skin formation, a feature neglected in prior models of droplet evaporation. The highly coupled model equations are solved for a range of problem parameters using a finite-difference scheme based on a moving overset grid. The presence of evaporation and a large particle Peclet number leads to the accumulation of particles at the liquid-air interface. Whereas capillarity creates a flow that drives particles to the droplet edge to produce a coffee ring, Marangoni flows can compete with this and promote skin formation. Increases in viscosity due to particle concentration slow down droplet dynamics and can lead to a reduction in the spreading rate.
Collapse
Affiliation(s)
- Kara L Maki
- Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
25
|
Sandu I, Fleaca CT. The influence of gravity on the distribution of the deposit formed onto a substrate by sessile, hanging, and sandwiched hanging drop evaporation. J Colloid Interface Sci 2011; 358:621-5. [DOI: 10.1016/j.jcis.2011.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/16/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
|