1
|
Apolinario SWS. Structural evolution of particle configurations: Zero-temperature phases under increasing confinement. J Chem Phys 2025; 162:044501. [PMID: 39846800 DOI: 10.1063/5.0251112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
In this study, we investigate the phase behavior and structural organization of colloidal particles in a two-dimensional (2D) system under isotropic harmonic confinement using overdamped Langevin dynamics simulations. We employ a modified mermaid potential, which introduces an additional short-distance term resulting in a null-force region, distinct from the conventional mermaid potential. This modification facilitates a richer exploration of self-assembled structures, revealing a variety of phases influenced by the interplay between confinement strength V0 and the interaction potential. Our analysis spans a wide range of parameters, resulting in a detailed phase diagram that captures transitions from dispersed clusters to well-ordered patterns, including square, triangular, rhomboidal, and mixed configurations, as the confinement strength increases. The findings underscore the intricate balance of forces governing the self-assembly of colloidal systems and offer valuable insights for future experimental realizations.
Collapse
Affiliation(s)
- S W S Apolinario
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE, Brazil
| |
Collapse
|
2
|
Park S, Huh M, Jozwiak C, Rotenberg E, Bostwick A, Kim KS. Electronic rotons and Wigner crystallites in a two-dimensional dipole liquid. Nature 2024; 634:813-817. [PMID: 39415018 DOI: 10.1038/s41586-024-08045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
A key concept proposed by Landau to explain superfluid liquid helium is the elementary excitation of quantum particles called rotons1-8. The irregular arrangement of atoms in a liquid leads to the aperiodic dispersion of rotons, which played a pivotal role in understanding fractional quantum Hall liquids (magneto-rotons)9,10 and the supersolidity of Bose-Einstein condensates11-13. Even for a two-dimensional electron or dipole liquid, in the absence of a magnetic field, the repulsive interactions have been predicted to form a roton minimum14-19, which can be used to trace the transition to Wigner crystals20-24 and superconductivity25-27, although this has not yet been observed. Here, we report the observation of such electronic rotons in a two-dimensional dipole liquid of alkali-metal ions donating electrons to surface layers of black phosphorus. Our data reveal the striking aperiodic dispersion of rotons, which is characterized by a local minimum of energy at finite momentum. As the density of dipoles decreases so that interactions dominate over the kinetic energy, the roton gap reduces to 0, as in a crystal, signalling Wigner crystallization. Our model shows the importance of short-range order arising from repulsion between dipoles, which can be viewed as the formation of Wigner crystallites (bubbles or stripes) floating in the sea of a Fermi liquid. Our results reveal that the primary origin of electronic rotons (and the pseudogap) is strong correlations.
Collapse
Affiliation(s)
- Soobin Park
- Department of Physics, College of Science, Yonsei University, Seoul, Korea
| | - Minjae Huh
- Department of Physics, College of Science, Yonsei University, Seoul, Korea
| | - Chris Jozwiak
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eli Rotenberg
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aaron Bostwick
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Keun Su Kim
- Department of Physics, College of Science, Yonsei University, Seoul, Korea.
| |
Collapse
|
3
|
Reichhardt C, Reichhardt CJO. Peak effect and dynamics of stripe- and pattern-forming systems on a periodic one-dimensional substrate. Phys Rev E 2024; 109:054606. [PMID: 38907437 DOI: 10.1103/physreve.109.054606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/24/2024]
Abstract
We examine the ordering, pinning, and dynamics of two-dimensional pattern-forming systems interacting with a periodic one-dimensional substrate. In the absence of the substrate, particles with competing long-range repulsion and short-range attraction form anisotropic crystal, stripe, and bubble states. When the system is tuned across the stripe transition in the presence of a substrate, we find that there is a peak effect in the critical depinning force when the stripes align and become commensurate with the substrate. Under an applied drive, the anisotropic crystal and stripe states can exhibit soliton depinning and plastic flow. When the stripes depin plastically, they dynamically reorder into a moving stripe state that is perpendicular to the substrate trough direction. We also find that when the substrate spacing is smaller than the widths of the bubbles or stripes, the system forms pinned stripe states that are perpendicular to the substrate trough direction. The system exhibits multiple reentrant pinning effects as a function of increasing attraction, with the anisotropic crystal and large bubble states experiencing weak pinning but the stripe and smaller bubble states showing stronger pinning. We map out the different dynamic phases as a function of filling, the strength of the attractive interaction term, the substrate strength, and the drive, and demonstrate that the different phases produce identifiable features in the transport curves and particle orderings.
Collapse
|
4
|
Adorjáni B, Libál A, Reichhardt C, Reichhardt CJO. Motility-induced phase separation and frustration in active matter swarmalators. Phys Rev E 2024; 109:024607. [PMID: 38491624 DOI: 10.1103/physreve.109.024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/09/2024] [Indexed: 03/18/2024]
Abstract
We introduce a two dimensional system of active matter swarmalators composed of elastically interacting run-and-tumble active disks with an internal parameter ϕ_{i}. The disks experience an additional attractive or repulsive force with neighboring disks depending upon their relative difference in ϕ_{i}, making them similar to swarmalators used in robotic systems. In the absence of the internal parameter, the system forms a motility-induced phase separated (MIPS) state, but when the swarmalator interactions are present, a wide variety of other active phases appear depending upon whether the interaction is attractive or repulsive and whether the particles act to synchronize or ant-synchronize their internal parameter values. These phases include a gas-free gel regime, arrested clusters, a labyrinthine state, a regular MIPS state, a frustrated MIPS state for attractive antisynchronization, and a superlattice MIPS state for attractive synchronization.
Collapse
Affiliation(s)
- B Adorjáni
- Mathematics and Computer Science Department, Babeş-Bolyai University, Cluj 400084, Romania
| | - A Libál
- Mathematics and Computer Science Department, Babeş-Bolyai University, Cluj 400084, Romania
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
5
|
Varga L, Libál A, Reichhardt C, Reichhardt CJO. Pattern formation and flocking for particles near the jamming transition on resource gradient substrates. Phys Rev E 2022; 106:064602. [PMID: 36671186 DOI: 10.1103/physreve.106.064602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
We numerically examine a bidisperse system of active and passive particles coupled to a resource substrate. The active particles deplete the resource at a fixed rate and move toward regions with higher resources, while all of the particles interact sterically with each other. We show that at high densities, this system exhibits a rich variety of pattern-forming phases along with directed motion or flocking as a function of the relative rates of resource absorption and consumption as well as the active to passive particle ratio. These include partial phase separation into rivers of active particles flowing through passive clusters, strongly phase separated states where the active particles induce crystallization of the passive particles, mixed jammed states, and fluctuating mixed fluid phases. For higher resource recovery rates, we demonstrate that the active particles can undergo motility-induced phase separation, while at high densities, there can be a coherent flock containing only active particles or a solid mixture of active and passive particles. The directed flocking motion typically shows a transient in which the flow switches among different directions before settling into one direction, and there is a critical density below which flocking does not occur. We map out the different phases as function of system density, resource absorption and recovery rates, and the ratio of active to passive particles.
Collapse
Affiliation(s)
- L Varga
- Mathematics and Computer Science Department, Babeş-Bolyai University, Cluj-Napoca 400084, Romania
| | - A Libál
- Mathematics and Computer Science Department, Babeş-Bolyai University, Cluj-Napoca 400084, Romania
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
6
|
Xu X, Tang T, Gu M. Structural transitions in two-dimensional modulated systems under triangular confinement. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:72. [PMID: 36070024 DOI: 10.1140/epje/s10189-022-00229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
We study numerically the structural transitions of two-dimensional systems of classic particles with competing interactions under a triangular confinement with two different types of soft-wall potentials. We observe a variety of novel confinement-induced equilibrium configurations as a function of particle density and confinement steepness for each considered confinement potential. The specific role played by the confining potentials on the ordering of the particle clusters is revealed. These findings allow us to control the self-organization of modulated systems through using external confinements.
Collapse
Affiliation(s)
- Xibin Xu
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China.
| | - Tao Tang
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China
| | - Min Gu
- Collaborative Innovation Center of Advanced Microstructures, School of physics, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Neto JF, Silva CCDS. Mesoscale Phase Separation of Skyrmion-Vortex Matter in Chiral-Magnet-Superconductor Heterostructures. PHYSICAL REVIEW LETTERS 2022; 128:057001. [PMID: 35179935 DOI: 10.1103/physrevlett.128.057001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
We investigate theoretically the equilibrium configurations of many magnetic skyrmions interacting with many superconducting vortices in a superconductor-chiral-magnet bilayer. We show that miscible mixtures of vortices and skyrmions in this system break down at a particular wave number for sufficiently strong coupling, giving place to remarkably diverse mesoscale patterns: gel, stripes, clusters, intercalated stripes, and composite gel-cluster structures. We also demonstrate that, by appropriate choice of parameters, one can thermally tune between the homogeneous and density-modulated phases.
Collapse
Affiliation(s)
- José F Neto
- Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife-PE, Brazil
| | - Clécio C de Souza Silva
- Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife-PE, Brazil
| |
Collapse
|
8
|
Xu XB, Tang T, Wang ZH, Xu XN, Fang GY, Gu M. Nonequilibrium pattern formation in circularly confined two-dimensional systems with competing interactions. Phys Rev E 2021; 103:012604. [PMID: 33601588 DOI: 10.1103/physreve.103.012604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/19/2020] [Indexed: 11/07/2022]
Abstract
We numerically investigate the nonequilibrium behaviors of classic particles with competing interactions confined in a two-dimensional logarithmic trap. We reveal a quench-induced surprising dynamics exhibiting rich dynamic patterns depending upon confinement strength and trap size, which is attributed to the time-dependent competition between interparticle repulsions and attractions under a circular confinement. Moreover, in the collectively diffusive motions of the particles, we find that the emergence of dynamic structure transformation coincides with a diffusive mode transition from superdiffusion to subdiffusion. These findings are likely useful in understanding the pattern selection and evolution in various chemical and biological systems in addition to modulated systems, and add a new route to tailoring the morphology of pattern-forming systems.
Collapse
Affiliation(s)
- X B Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - T Tang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Z H Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - X N Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - G Y Fang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - M Gu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
9
|
Abstract
In this tribute to K Alex Müller, I describe how his early insights have influenced future decades of research on perovskite ferroelectrics and more broadly transition metal oxides (TMOs) and related quantum materials. I use his influence on my own research journey to discuss impacts in three areas: structural phase transitions, precursor structure, and quantum paraelectricity. I emphasize materials functionality in ground, metastable, and excited states arising from competitions among lattice, charge, and spin degrees of freedom, which results in highly tunable landscapes and complex networks of multiscale configurations controlling macroscopic functions. I discuss competitions between short- and long-range forces as particularly important in TMOs (and related materials classes) because of their localized and directional metal orbitals and the polarizable oxygen ions. I emphasize crucial consequences of elasticity and metal–oxygen charge transfer.
Collapse
|
10
|
Pȩkalski J, Rządkowski W, Panagiotopoulos AZ. Shear-induced ordering in systems with competing interactions: A machine learning study. J Chem Phys 2020; 152:204905. [DOI: 10.1063/5.0005194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- J. Pȩkalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - W. Rządkowski
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - A. Z. Panagiotopoulos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
11
|
Xu XB, Wang ZH, Xu XN, Fang GY, Gu M. Structural transitions for 2D systems with competing interactions in logarithmic traps. J Chem Phys 2020; 152:054906. [DOI: 10.1063/1.5140816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- X. B. Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Z. H. Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - X. N. Xu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - G. Y. Fang
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - M. Gu
- Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
12
|
Fomin YD, Ryzhov VN, Tsiok EN. The influence of long-range interaction on the structure of a two-dimensional multi scale potential system. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:315103. [PMID: 31039557 DOI: 10.1088/1361-648x/ab1df6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present the results of a computer simulation study of a finite temperature phase diagram of two-dimensional and quasi two-dimensional core-softened systems both taking into account long-range Coulomb-like forces and ignoring them. The system structure was determined from analysis of the behavior of radial distribution functions, order parameters and number of nearest neighbors. The system has been shown to have a large number of different phases. We have found that long-range forces substantially affected the structure and the melting point of the system at low and moderate densities, while at high densities the effect of long-range forces was negligible.
Collapse
|
13
|
Tarama S, Egelhaaf SU, Löwen H. Traveling band formation in feedback-driven colloids. Phys Rev E 2019; 100:022609. [PMID: 31574772 DOI: 10.1103/physreve.100.022609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Indexed: 06/10/2023]
Abstract
Using simulation and theory we study the dynamics of a colloidal suspension in two dimensions subject to a time-delayed repulsive feedback that depends on the positions of the colloidal particles. The colloidal particles experience an additional potential that is a superposition of repulsive potential energies centered around the positions of all the particles a delay time ago. Here we show that such a feedback leads to self-organization of the particles into traveling bands. The width of the bands and their propagation speed can be tuned by the delay time and the range of the imposed repulsive potential. The emerging traveling band behavior is observed in Brownian dynamics computer simulations as well as microscopic dynamic density functional theory. Traveling band formation also persists in systems of finite size leading to rotating traveling waves in the case of circularly confined systems.
Collapse
Affiliation(s)
- Sonja Tarama
- Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institute for Theoretical Physics II: Soft Matter, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Wang W, Díaz-Méndez R, Wallin M, Lidmar J, Babaev E. Melting of a two-dimensional monodisperse cluster crystal to a cluster liquid. Phys Rev E 2019; 99:042140. [PMID: 31108717 DOI: 10.1103/physreve.99.042140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/07/2022]
Abstract
Monodisperse ensembles of particles that have cluster crystalline phases at low temperatures can model a number of physical systems, such as vortices in type-1.5 superconductors, colloidal suspensions, and cold atoms. In this work, we study a two-dimensional cluster-forming particle system interacting via an ultrasoft potential. We present a simple mean-field characterization of the cluster-crystal ground state, corroborating with Monte Carlo simulations for a wide range of densities. The efficiency of several Monte Carlo algorithms is compared, and the challenges of thermal equilibrium sampling are identified. We demonstrate that the liquid to cluster-crystal phase transition is of first order and occurs in a single step, and the liquid phase is a cluster liquid.
Collapse
Affiliation(s)
- Wenlong Wang
- Department of Physics, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Rogelio Díaz-Méndez
- Department of Physics, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Mats Wallin
- Department of Physics, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Jack Lidmar
- Department of Physics, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| | - Egor Babaev
- Department of Physics, Royal Institute of Technology, Stockholm SE-106 91, Sweden
| |
Collapse
|
15
|
Reichhardt C, Olson Reichhardt CJ. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:026501. [PMID: 27997373 DOI: 10.1088/1361-6633/80/2/026501] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
16
|
Meng Q, Varney CN, Fangohr H, Babaev E. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:035602. [PMID: 27849628 DOI: 10.1088/1361-648x/29/3/035602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.
Collapse
Affiliation(s)
- Qingyou Meng
- Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
17
|
McDermott D, Olson Reichhardt CJ, Reichhardt C. Structural transitions and hysteresis in clump- and stripe-forming systems under dynamic compression. SOFT MATTER 2016; 12:9549-9560. [PMID: 27834430 DOI: 10.1039/c6sm01939k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using numerical simulations, we study the dynamical evolution of particles interacting via competing long-range repulsion and short-range attraction in two dimensions. The particles are compressed using a time-dependent quasi-one dimensional trough potential that controls the local density, causing the system to undergo a series of structural phase transitions from a low density clump lattice to stripes, voids, and a high density uniform state. The compression proceeds via slow elastic motion that is interrupted with avalanche-like bursts of activity as the system collapses to progressively higher densities via plastic rearrangements. The plastic events vary in magnitude from small rearrangements of particles, including the formation of quadrupole-like defects, to large-scale vorticity and structural phase transitions. In the dense uniform phase, the system compresses through row reduction transitions mediated by a disorder-order process. We characterize the rearrangement events by measuring changes in the potential energy, the fraction of sixfold coordinated particles, the local density, and the velocity distribution. At high confinements, we find power law scaling of the velocity distribution during row reduction transitions. We observe hysteresis under a reversal of the compression when relatively few plastic rearrangements occur. The decompressing system exhibits distinct phase morphologies, and the phase transitions occur at lower compression forces as the system expands compared to when it is compressed.
Collapse
Affiliation(s)
- Danielle McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. and Department of Physics, Wabash College, Crawfordsville, Indiana 47933, USA.
| | | | - Charles Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
18
|
Wei J, Song F, Dobnikar J. Assembly of Superparamagnetic Filaments in External Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:9321-8. [PMID: 27536958 DOI: 10.1021/acs.langmuir.6b02268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a theoretical and simulation study of anchored magneto-elastic filaments in external magnetic field. The filaments are composed of a mixture of superparamagnetic and nonmagnetic colloidal beads interlinked with elastic springs. We explore the steady-state structures of filaments with various composition and bending rigidity subject to external magnetic field parallel to the surface. The interplay of elastic and induced magnetic interactions results in a rich phase behavior with morphologies reminiscent of macromolecular folding: bent filaments, loops, sheets, helicoids, and other collapsed structures. Our results provide new insights into the design of hierarchically assembled supramolecular structures with controlled response to external stimuli.
Collapse
Affiliation(s)
- Jiachen Wei
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences , 15 Beisihuanxi Road, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences , 15 Beisihuanxi Road, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jure Dobnikar
- Institute of Physics, Chinese Academy of Sciences , 8 Third South Street, Zhongguancun, Beijing 100190, China
- International Research Center for Soft Matter, Beijing University of Chemical Technology , 15 Beisanhuan Road, Beijing 100029, China
| |
Collapse
|
19
|
Spontaneous symmetry breaking in vortex systems with two repulsive lengthscales. Sci Rep 2015; 5:15569. [PMID: 26492969 PMCID: PMC4616066 DOI: 10.1038/srep15569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/24/2015] [Indexed: 11/12/2022] Open
Abstract
Scanning Hall probe microscopy (SHPM) has been used to study vortex structures in thin epitaxial films of the superconductor MgB2. Unusual vortex patterns observed in MgB2 single crystals have previously been attributed to a competition between short-range repulsive and long-range attractive vortex-vortex interactions in this two band superconductor; the type 1.5 superconductivity scenario. Our films have much higher levels of disorder than bulk single crystals and therefore both superconducting condensates are expected to be pushed deep into the type 2 regime with purely repulsive vortex interactions. We observe broken symmetry vortex patterns at low fields in all samples after field-cooling from above Tc. These are consistent with those seen in systems with competing repulsions on disparate length scales, and remarkably similar structures are reproduced in dirty two band Ginzburg-Landau calculations, where the simulation parameters have been defined by experimental observations. This suggests that in our dirty MgB2 films, the symmetry of the vortex structures is broken by the presence of vortex repulsions with two different lengthscales, originating from the two distinct superconducting condensates. This represents an entirely new mechanism for spontaneous symmetry breaking in systems of superconducting vortices, with important implications for pinning phenomena and high current density applications.
Collapse
|
20
|
Das T, Lookman T, Bandi MM. A minimal description of morphological hierarchy in two-dimensional aggregates. SOFT MATTER 2015; 11:6740-6746. [PMID: 26107688 DOI: 10.1039/c5sm01222h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A dimensionless parameter Λ is proposed to describe a hierarchy of morphologies in two-dimensional (2D) aggregates formed due to varying competition between short-range attraction and long-range repulsion. Structural transitions from finite non-compact to compact to percolated structures are observed in the configurations simulated by molecular dynamics at a constant temperature and density. Configurational randomness across the transition, measured by the two-body excess entropy S2, exhibits data collapse with the average potential energy [small epsilon, Greek, macron] of the systems. Independent master curves are presented among S2, the reduced second virial coefficient B2* and Λ, justifying this minimal description. This work lays out a coherent basis for the study of 2D aggregate morphologies relevant to diverse nano- and bio-processes.
Collapse
Affiliation(s)
- Tamoghna Das
- Collective Interactions Unit, OIST Graduate University, Onna, Okinawa 9040495, Japan.
| | | | | |
Collapse
|
21
|
Guerrero AI, Stariolo DA, Almarza NG. Nematic phase in the J(1)-J(2) square-lattice Ising model in an external field. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052123. [PMID: 26066135 DOI: 10.1103/physreve.91.052123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Indexed: 06/04/2023]
Abstract
The J(1)-J(2) Ising model in the square lattice in the presence of an external field is studied by two approaches: the cluster variation method (CVM) and Monte Carlo simulations. The use of the CVM in the square approximation leads to the presence of a new equilibrium phase, not previously reported for this model: an Ising-nematic phase, which shows orientational order but not positional order, between the known stripes and disordered phases. Suitable order parameters are defined, and the phase diagram of the model is obtained. Monte Carlo simulations are in qualitative agreement with the CVM results, giving support to the presence of the new Ising-nematic phase. Phase diagrams in the temperature-external field plane are obtained for selected values of the parameter κ=J(2)/|J(1)| which measures the relative strength of the competing interactions. From the CVM in the square approximation we obtain a line of second order transitions between the disordered and nematic phases, while the nematic-stripes phase transitions are found to be of first order. The Monte Carlo results suggest a line of second order nematic-disordered phase transitions in agreement with the CVM results. Regarding the stripes-nematic transitions, the present Monte Carlo results are not precise enough to reach definite conclusions about the nature of the transitions.
Collapse
Affiliation(s)
- Alejandra I Guerrero
- Departamento de Física, Universidade Federal do Rio Grande do Sul CP 15051, 91501-970 Porto Alegre, RS, Brazil
| | - Daniel A Stariolo
- Departamento de Física, Universidade Federal do Rio Grande do Sul and National Institute of Science and Technology for Complex Systems, CP 15051, 91501-970 Porto Alegre, RS, Brazil
| | - Noé G Almarza
- Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
| |
Collapse
|
22
|
Jin W, Liu Q, Dougherty DB, Cullen WG, Reutt-Robey JE, Weeks J, Robey SW. C60 chain phases on ZnPc/Ag(111) surfaces: Supramolecular organization driven by competing interactions. J Chem Phys 2015; 142:101910. [DOI: 10.1063/1.4906044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- W. Jin
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, Maryland 20742, USA
| | - Q. Liu
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - D. B. Dougherty
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - W. G. Cullen
- Department of Physics, University of Maryland at College Park, College Park, Maryland 20742, USA
| | - J. E. Reutt-Robey
- Department of Chemistry and Biochemistry, University of Maryland at College Park, College Park, Maryland 20742, USA
| | - J. Weeks
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - S. W. Robey
- National Institute of Standards and Technology, Gaithersburg, Maryland 20878-8372, USA
| |
Collapse
|
23
|
Lin SZ. Ground state, collective mode, phase soliton and vortex in multiband superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:493202. [PMID: 25398159 DOI: 10.1088/0953-8984/26/49/493202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This article reviews theoretical and experimental work on the novel physics in multiband superconductors. Multiband superconductors are characterized by multiple superconducting energy gaps in different bands with interaction between Cooper pairs in these bands. The discovery of prominent multiband superconductors MgB2 and later iron-based superconductors, has triggered enormous interest in multiband superconductors. The most recently discovered superconductors exhibit multiband features. The multiband superconductors possess novel properties that are not shared with their single-band counterpart. Examples include: the time-reversal symmetry broken state in multiband superconductors with frustrated interband couplings; the collective oscillation of number of Cooper pairs between different bands, known as the Leggett mode; and the phase soliton and fractional vortex, which are the main focus of this review. This review presents a survey of a wide range of theoretical exploratory and experimental investigations of novel physics in multiband superconductors. A vast amount of information derived from these studies is shown to highlight unusual and unique properties of multiband superconductors and to reveal the challenges and opportunities in the research on the multiband superconductivity.
Collapse
Affiliation(s)
- Shi-Zeng Lin
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
24
|
Schuman AW, Bsaibes TS, Schlossman ML. Microphase formation at a 2D solid-gas phase transition. SOFT MATTER 2014; 10:7353-7360. [PMID: 25088351 DOI: 10.1039/c4sm01197j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Density modulated micro-separated phases (microphases) occur at 2D liquid interfaces in the form of alternating regions of high and low density domains. Brewster angle microscopy (BAM) images demonstrate the existence of microphases in cluster, stripe, and mosaic morphologies at the buried interface between hexane and water with fluoro-alkanol surfactant dissolved in the bulk hexane. At high temperature, the surfactant assembles at the interface in a 2D gaseous state. As the system is cooled additional surfactants condense onto the interface, which undergoes a 2D gas-solid phase transition. Microphase structure is observed within a few degrees of this transition in the form of clusters and labyrinthine stripes. Microphases have been observed previously in a number of other systems; nevertheless, we demonstrate that adsorption transitions at the liquid-liquid interface provide a convenient way to observe a full sequence of temperature-dependent 2D phases, from gas to cluster to stripe to mosaic to inverted stripe phases, as well as coexistence between some of these microphases. Cracking and fracture of the clusters reveal that they are a solid microphase. Theories of microphases often predict a single length scale for cluster and stripe phases as a result of the competition between an attractive and a repulsive interaction. Our observation that two characteristic length scales are required to describe clusters whose diameter is much larger than the stripe period, combined with the solid nature of the clusters, suggests that a long-range elastic interaction is relevant. These results complement earlier X-ray measurements on the same system.
Collapse
Affiliation(s)
- Adam W Schuman
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | | |
Collapse
|
25
|
McDermott D, Olson Reichhardt CJ, Reichhardt C. Stripe systems with competing interactions on quasi-one dimensional periodic substrates. SOFT MATTER 2014; 10:6332-6338. [PMID: 25030212 DOI: 10.1039/c4sm01341g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We numerically examine the two-dimensional ordering of a stripe forming system of particles with competing long-range repulsion and short-range attraction in the presence of a quasi-one-dimensional corrugated substrate. As a function of increasing substrate strength or period we show that a remarkable variety of distinct orderings can be realized, including modulated stripes, prolate clump phases, two dimensional ordered kink structures, crystalline void phases, and smectic phases. Additionally in some cases the stripes align perpendicular to the substrate troughs. Our results suggest that a new route to self assembly for systems with competing interactions can be achieved through the addition of a simple periodic modulated substrate.
Collapse
Affiliation(s)
- Danielle McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | |
Collapse
|
26
|
Almarza NG, Pȩkalski J, Ciach A. Periodic ordering of clusters and stripes in a two-dimensional lattice model. II. Results of Monte Carlo simulation. J Chem Phys 2014; 140:164708. [DOI: 10.1063/1.4871901] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
27
|
Vlasko-Vlasov VK, Clem JR, Koshelev AE, Welp U, Kwok WK. Stripe domains and first-order phase transition in the vortex matter of anisotropic high-temperature superconductors. PHYSICAL REVIEW LETTERS 2014; 112:157001. [PMID: 24785065 DOI: 10.1103/physrevlett.112.157001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Indexed: 06/03/2023]
Abstract
We report the direct imaging of a novel modulated flux striped domain phase in a nearly twin-free YBCO crystal. These domains arise from instabilities in the vortex structure within a narrow region of tilted magnetic fields at small angles from the in-plane direction. By comparing the experimental and theoretically derived vortex phase diagrams we infer that the stripe domains emerge from a first-order phase transition of the vortex structure. The size of domains containing vortices of certain orientations is controlled by the balance between the vortex stray field energy and the positive energy of the domain boundaries. Our results confirm the existence of the kinked vortex chain phase in an anisotropic high temperature superconductor and reveal a sharp transition in the state of this phase resulting in regular vortex domains.
Collapse
Affiliation(s)
- V K Vlasko-Vlasov
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J R Clem
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011-3160, USA
| | - A E Koshelev
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - U Welp
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - W K Kwok
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
28
|
McDermott D, Amelang J, Reichhardt CJO, Reichhardt C. Dynamic regimes for driven colloidal particles on a periodic substrate at commensurate and incommensurate fillings. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062301. [PMID: 24483438 DOI: 10.1103/physreve.88.062301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Indexed: 06/03/2023]
Abstract
We numerically examine colloidal particles driven over a muffin tin substrate. Previous studies of this model identified a variety of commensurate and incommensurate static phases in which topological defects can form domain walls, ordered stripes, superlattices, or disordered patchy regimes as a function of the filling fraction. Here, we show that the addition of an external drive to these static phases can produce distinct dynamical responses. At incommensurate fillings the flow occurs in the form of localized pulses or solitons correlated with topological defect structures. Transitions between different modes of motion can occur as a function of increasing drive. We measure the average particle velocity for specific ranges of external drive and show that changes in the velocity response correlate with changes in the topological defect arrangements. We also demonstrate that in the different dynamic phases, the particles have distinct trajectories and velocity distributions. Dynamic transitions between ordered and disordered flows exhibit hysteresis, while in strongly disordered regimes there is no hysteresis and the velocity-force curves are smooth. When stripe patterns are present, transport can occur at an angle to the driving direction.
Collapse
Affiliation(s)
- D McDermott
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA and Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - J Amelang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA and Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125 USA
| | - C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA
| |
Collapse
|
29
|
Varney CN, Sellin KAH, Wang QZ, Fangohr H, Babaev E. Hierarchical structure formation in layered superconducting systems with multi-scale inter-vortex interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:415702. [PMID: 24061107 DOI: 10.1088/0953-8984/25/41/415702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We demonstrate the formation of hierarchical structures in two-dimensional systems with multiple length scales in the inter-particle interaction. These include states such as clusters of clusters, concentric rings, clusters inside a ring, and stripes in a cluster. We propose to realize such systems in vortex matter (where a vortex is mapped onto a particle with multi-scale interactions) in layered superconducting systems with varying inter-layer thicknesses and different layer materials.
Collapse
Affiliation(s)
- Christopher N Varney
- Department of Physics, University of Massachusetts, Amherst, MA 01003, USA. Department of Physics, University of West Florida, Pensacola, FL 32514, USA
| | | | | | | | | |
Collapse
|
30
|
Zhang G, Stillinger FH, Torquato S. Probing the limitations of isotropic pair potentials to produce ground-state structural extremes via inverse statistical mechanics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042309. [PMID: 24229174 DOI: 10.1103/physreve.88.042309] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Indexed: 06/02/2023]
Abstract
Inverse statistical-mechanical methods have recently been employed to design optimized short-range radial (isotropic) pair potentials that robustly produce novel targeted classical ground-state many-particle configurations. The target structures considered in those studies were low-coordinated crystals with a high degree of symmetry. In this paper, we further test the fundamental limitations of radial pair potentials by targeting crystal structures with appreciably less symmetry, including those in which the particles have different local structural environments. These challenging target configurations demanded that we modify previous inverse optimization techniques. In particular, we first find local minima of a candidate enthalpy surface and determine the enthalpy difference ΔH between such inherent structures and the target structure. Then we determine the lowest positive eigenvalue λ(0) of the Hessian matrix of the enthalpy surface at the target configuration. Finally, we maximize λ(0)ΔH so that the target structure is both locally stable and globally stable with respect to the inherent structures. Using this modified optimization technique, we have designed short-range radial pair potentials that stabilize the two-dimensional kagome crystal, the rectangular kagome crystal, and rectangular lattices, as well as the three-dimensional structure of the CaF(2) crystal inhabited by a single-particle species. We verify our results by cooling liquid configurations to absolute zero temperature via simulated annealing and ensuring that such states have stable phonon spectra. Except for the rectangular kagome structure, all of the target structures can be stabilized with monotonic repulsive potentials. Our work demonstrates that single-component systems with short-range radial pair potentials can counterintuitively self-assemble into crystal ground states with low symmetry and different local structural environments. Finally, we present general principles that offer guidance in determining whether certain target structures can be achieved as ground states by radial pair potentials.
Collapse
Affiliation(s)
- G Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
31
|
Costa Campos LQ, Apolinario SWS, Löwen H. Structural ordering of trapped colloids with competing interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042313. [PMID: 24229178 DOI: 10.1103/physreve.88.042313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Indexed: 06/02/2023]
Abstract
The structure of colloids with competing interactions which are confined in a harmonic external trap potential is analyzed numerically by energy minimization in two spatial dimensions. A wealth of different cluster structures is found to be stable including clusters with a fringed outer rim (reminiscent to an ornamental border), clusters perforated with voids, as well as clusters with a crystalline core and a disordered rim. All cluster structures occur in a two-dimensional parameter space. The structural ordering can therefore be efficiently tuned by changing few parameters only providing access to a controlled fabrication of colloidal clusters.
Collapse
Affiliation(s)
- L Q Costa Campos
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
32
|
Drocco JA, Olson Reichhardt CJ, Reichhardt C, Bishop AR. Static and dynamic phases for magnetic vortex matter with attractive and repulsive interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2013; 25:345703. [PMID: 23912884 DOI: 10.1088/0953-8984/25/34/345703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Exotic vortex states with long range attraction and short range repulsion have recently been proposed to arise in certain superconducting hybrid structures such as type-I/type-II layered systems as well as multi-band superconductors. In previous work it has been shown that such systems can form clump or phase separated states, but little is known about how they behave in the presence of pinning and under an applied drive. Using large scale simulations we examine the static and dynamic properties of such vortex states interacting with random and periodic pinning. In the absence of pinning this system does not form patterns but instead undergoes complete phase separation. When pinning is present there is a transition from inhomogeneous to homogeneous vortex configurations similar to a wetting phenomenon. Under an applied drive, a dynamical dewetting process can occur from a strongly pinned homogeneous state into pattern forming states, such as moving stripes that are aligned with the direction of drive or moving labyrinth or clump phases. We show that a signature of the exotic vortex interactions observable with transport measurements is a robust double peak feature in the differential resistance curves. Our results should be valuable for determining whether such vortex interactions are occurring in these systems and also for addressing the general problem of systems with competing interactions in the presence of random and periodic pinning.
Collapse
Affiliation(s)
- J A Drocco
- Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | |
Collapse
|
33
|
Costa Campos LQ, de Souza Silva CC, Apolinario SWS. Structural phases of colloids interacting via a flat-well potential. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:051402. [PMID: 23214779 DOI: 10.1103/physreve.86.051402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Indexed: 06/01/2023]
Abstract
Using Langevin dynamics simulations we investigate the self-assembly of colloidal particles in two dimensions interacting via an isotropic potential, which comprises both a hard-core repulsion and an additional softened square-well potential of controllable width α. In dilute concentrations, the particles assemble in small clusters with a well-defined crystalline order. For small values of α the particles form triangular lattices. As α is increased, more particles can be captured by the potential well giving rise to different crystalline symmetries and the structural phase transitions between them. The main structures observed are triangular, square, and a mixture of square and triangular cells forming an Archimedean tiling. In the concentrated regime the particles form a single percolated cluster with essentially the same orderings at the same ranges of α values as observed in the dilute regime, thus showing that cluster boundary effects have a minor influence on the cluster crystal symmetry. By using energy analysis and geometry arguments we discuss how the different observed structures minimize the system energy at different values of α.
Collapse
Affiliation(s)
- L Q Costa Campos
- Departamento de Fisica, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Anthonyd Dinsmore
- Department of Physics, University of Massachusetts Amherst, Amherst, MA, USA
| | | | | |
Collapse
|
35
|
Olson Reichhardt CJ, Reichhardt C, Bishop AR. Anisotropic sliding dynamics, peak effect, and metastability in stripe systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:041501. [PMID: 21599163 DOI: 10.1103/physreve.83.041501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Indexed: 05/30/2023]
Abstract
A variety of soft and hard condensed matter systems are known to form stripe patterns. Here we use numerical simulations to analyze how such stripe states depin and slide when interacting with a random substrate and with driving in different directions with respect to the orientation of the stripes. Depending on the strength and density of the substrate disorder, we find that there can be pronounced anisotropy in the transport produced by different dynamical flow phases. We also find a disorder-induced "peak effect" similar to that observed for superconducting vortex systems, which is marked by a transition from elastic depinning to a state where the stripe structure fragments or partially disorders at depinning. Under the sudden application of a driving force, we observe pronounced metastability effects similar to those found near the order-disorder transition associated with the peak effect regime for three-dimensional superconducting vortices. The characteristic transient time required for the system to reach a steady state diverges in the region where the flow changes from elastic to disordered. We also find that anisotropy of the flow persists in the presence of thermal disorder when thermally induced particle hopping along the stripes dominates. The thermal effects can wash out the effects of the quenched disorder, leading to a thermally induced stripe state. We map out the dynamical phase diagram for this system, and discuss how our results could be explored in electron liquid crystal systems, type-1.5 superconductors, and pattern-forming colloidal assemblies.
Collapse
Affiliation(s)
- C J Olson Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|