1
|
Carenza LN, Gonnella G, Lamura A, Negro G, Tiribocchi A. Lattice Boltzmann methods and active fluids. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:81. [PMID: 31250142 DOI: 10.1140/epje/i2019-11843-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/24/2019] [Indexed: 05/24/2023]
Abstract
We review the state of the art of active fluids with particular attention to hydrodynamic continuous models and to the use of Lattice Boltzmann Methods (LBM) in this field. We present the thermodynamics of active fluids, in terms of liquid crystals modelling adapted to describe large-scale organization of active systems, as well as other effective phenomenological models. We discuss how LBM can be implemented to solve the hydrodynamics of active matter, starting from the case of a simple fluid, for which we explicitly recover the continuous equations by means of Chapman-Enskog expansion. Going beyond this simple case, we summarize how LBM can be used to treat complex and active fluids. We then review recent developments concerning some relevant topics in active matter that have been studied by means of LBM: spontaneous flow, self-propelled droplets, active emulsions, rheology, active turbulence, and active colloids.
Collapse
Affiliation(s)
- Livio Nicola Carenza
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy.
| | - Antonio Lamura
- Istituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 70126, Bari, Italy
| | - Giuseppe Negro
- Dipartimento di Fisica, Università degli Studi di Bari, and INFN Sezione di Bari, Via Amendola 173, 70126, Bari, Italy
| | - Adriano Tiribocchi
- Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, 00161, Roma, Italy
| |
Collapse
|
2
|
Wang H, Zang D, Li X, Geng X. Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:115. [PMID: 29274072 DOI: 10.1140/epje/i2017-11605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
This paper presents an exploration of the phase separation behavior and pattern formation in a binary fluid with temperature-dependent viscosity via a coupled lattice Boltzmann method (LBM). By introducing a viscosity-temperature relation into the LBM, the coupling effects of the viscosity-temperature coefficient [Formula: see text] , initial viscosity [Formula: see text] and thermal diffusion coefficient [Formula: see text] , on the phase separation were successfully described. The calculated results indicated that an increase in initial viscosity and viscosity-temperature coefficient, or a decrease in the thermal diffusion coefficient, can lead to the orientation of isotropic growth fronts over a wide range of viscosity. The results showed that droplet-type phase structures and lamellar phase structures with domain orientation parallel or perpendicular to the walls can be obtained in equilibrium by controlling the initial viscosity, thermal diffusivity, and the viscosity-temperature coefficient. Furthermore, the dataset was rearranged for growth kinetics of domain growth and thermal diffusion fronts in a plot by the spherically averaged structure factor and the ratio of separated and continuous phases. The analysis revealed two different temporal regimes: spinodal decomposition and domain growth stages, which further quantified the coupled effects of temperature and viscosity on the evolution of temperature-dependent phase separation. These numerical results provide guidance for setting optimum temperature ranges to obtain expected phase separation structures for systems with temperature-dependent viscosity.
Collapse
Affiliation(s)
- Heping Wang
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Duyang Zang
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Xiaoguang Li
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Xingguo Geng
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China.
| |
Collapse
|
3
|
Fadda F, Gonnella G, Lamura A, Tiribocchi A. Lattice Boltzmann study of chemically-driven self-propelled droplets. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2017; 40:112. [PMID: 29256179 DOI: 10.1140/epje/i2017-11603-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
We numerically study the behavior of self-propelled liquid droplets whose motion is triggered by a Marangoni-like flow. This latter is generated by variations of surfactant concentration which affect the droplet surface tension promoting its motion. In the present paper a model for droplets with a third amphiphilic component is adopted. The dynamics is described by Navier-Stokes and convection-diffusion equations, solved by the lattice Boltzmann method coupled with finite-difference schemes. We focus on two cases. First, the study of self-propulsion of an isolated droplet is carried on and, then, the interaction of two self-propelled droplets is investigated. In both cases, when the surfactant migrates towards the interface, a quadrupolar vortex of the velocity field forms inside the droplet and causes the motion. A weaker dipolar field emerges instead when the surfactant is mainly diluted in the bulk. The dynamics of two interacting droplets is more complex and strongly depends on their reciprocal distance. If, in a head-on collision, droplets are close enough, the velocity field initially attracts them until a motionless steady state is achieved. If the droplets are vertically shifted, the hydrodynamic field leads to an initial reciprocal attraction followed by a scattering along opposite directions. This hydrodynamic interaction acts on a separation of some droplet radii otherwise it becomes negligible and droplets motion is only driven by the Marangoni effect. Finally, if one of the droplets is passive, this latter is generally advected by the fluid flow generated by the active one.
Collapse
Affiliation(s)
- F Fadda
- Dipartimento di Fisica and Sezione INFN Bari, Via Amendola 173, 70126, Bari, Italy
| | - G Gonnella
- Dipartimento di Fisica and Sezione INFN Bari, Via Amendola 173, 70126, Bari, Italy
| | - A Lamura
- Istituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 70126, Bari, Italy
| | - A Tiribocchi
- Dipartimento di Fisica e Astronomia, Via Marzolo 8, I-35131, Padova, Italy.
| |
Collapse
|
4
|
Heping W, Xingguo G, Xiaoguang L, Duyang Z. Lattice Boltzmann simulation of phase separation under dynamic temperature and shear: Coupling effects of shear convection and thermal diffusion. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:102. [PMID: 27783224 DOI: 10.1140/epje/i2016-16102-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
This paper presents an exploration of the separation behavior and pattern formation in a shear binary fluid with dynamic temperature after slow cooling via coupled lattice Boltzmann method. The phase separation procedure can be divided into three different stages: spinodal decomposition, domain growth, and domain stretch. The effect of thermal diffusion was observed to be more significant than that of shear convection in the spinodal decomposition stage, while the opposite was observed in the domain growth stage. The slow cooling temperature field significantly prolonged the spinodal decomposition stage, and decreased the separated domain size in domain growth stage. The phase behavior and pattern formation from the disordered state into the coexistence state after slow cooling was investigated during the domain stretch stage. Two typical length scales were obtained according to the equilibrium of two phases, where the number of layers in the corresponding domains was controllable by adjusting the Prandtl number for systems of different scales. The manner in which various viscosities and thermal diffusivities influence the morphologies and kinetic characterizations of the materials was also demonstrated: numerical results indicated that decrease in viscosity can cause increase in the growth exponents of separation fronts and velocity of domain growth, as well as increase in thermal diffusion.
Collapse
Affiliation(s)
- Wang Heping
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Geng Xingguo
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Li Xiaoguang
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China
| | - Zang Duyang
- Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, 710129, Xi'an, China.
| |
Collapse
|
5
|
Coclite A, Gonnella G, Lamura A. Pattern formation in liquid-vapor systems under periodic potential and shear. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:063303. [PMID: 25019908 DOI: 10.1103/physreve.89.063303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Indexed: 06/03/2023]
Abstract
In this paper the phase behavior and pattern formation in a sheared nonideal fluid under a periodic potential is studied. An isothermal two-dimensional formulation of a lattice Boltzmann scheme for a liquid-vapor system with the van der Waals equation of state is presented and validated. Shear is applied by moving walls and the periodic potential varies along the flow direction. A region of the parameter space, where in the absence of flow a striped phase with oscillating density is stable, will be considered. At low shear rates the periodic patterns are preserved and slightly distorted by the flow. At high shear rates the striped phase loses its stability and traveling waves on the interface between the liquid and vapor regions are observed. These waves spread over the whole system with wavelength only depending on the length of the system. Velocity field patterns, characterized by a single vortex, will also be shown.
Collapse
Affiliation(s)
- A Coclite
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via Re David 200, 70126 Bari, Italy
| | - G Gonnella
- Dipartimento di Fisica, Università di Bari, and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, Italy
| | - A Lamura
- Istituto Applicazioni Calcolo, CNR, Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
6
|
Kamali MR, Gillissen JJJ, van den Akker HEA, Sundaresan S. Lattice-Boltzmann-based two-phase thermal model for simulating phase change. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:033302. [PMID: 24125380 DOI: 10.1103/physreve.88.033302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 06/02/2023]
Abstract
A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A nonideal equation of state (EOS) is introduced by using a pseudopotential LB model. The evolution equation for the pseudotemperature variable is constructed in such a manner that in the continuum limit one recovers the well known macroscopic energy conservation equation for the mixtures. Heats of reaction, the enthalpy change associated with the phase change, and the diffusive transport of enthalpy are all taken into account; but the dependence of enthalpy on pressure, which is usually a small effect in most nonisothermal flows encountered in chemical reaction systems, is ignored. The energy equation is coupled to the LB equations for species transport and pseudopotential interaction forces through the EOS by using the filtered local pseudotemperature field. The proposed scheme is validated against simple test problems for which analytical solutions can readily be obtained.
Collapse
Affiliation(s)
- M R Kamali
- Transport Phenomena Group, Department of Chemical Engineering, Delft University of Technology, Delft, Netherlands
| | | | | | | |
Collapse
|
7
|
Cogan NG, Donahue M, Whidden M. Marginal stability and traveling fronts in two-phase mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:056204. [PMID: 23214854 DOI: 10.1103/physreve.86.056204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Indexed: 06/01/2023]
Abstract
Mixtures of materials that move relative to each other arise in a variety of applications, especially in biophysical problems where the mixture consists of materials with different material properties. The variety of applications leads to a bewildering array of multiphase models, each with slightly different behaviors and interpretations, depending on the application. Some of the behaviors include phase separation, traveling waves, and linear instabilities. Because of the variability of the predicted behaviors, there has been considerable attention paid to minimal models to determine the fundamental solutions, bifurcations, and instabilities. In this paper we describe a new solution for the simplest two-phase system where both phases are dominated by viscous forces, one-phase response to osmotic forces, and the phases interact through a drag term. The system develops a traveling front separating an unstable, uniform solution from a patterned, phase separated solution. We seek the velocity of the traveling front and show that, for large diffusion, marginal stability gives a simple and accurate prediction for the velocity. For smaller diffusion constants, the front is "pushed," and the linear prediction fails.
Collapse
Affiliation(s)
- N G Cogan
- Department of Mathematics, Florida State University, Tallahassee, Florida 32306, USA
| | | | | |
Collapse
|
8
|
Lüsebrink D, Ripoll M. Temperature inhomogeneities simulated with multiparticle-collision dynamics. J Chem Phys 2012; 136:084106. [DOI: 10.1063/1.3687168] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Foard EM, Wagner AJ. Survey of morphologies formed in the wake of an enslaved phase-separation front in two dimensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:011501. [PMID: 22400571 DOI: 10.1103/physreve.85.011501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Indexed: 05/31/2023]
Abstract
A phase-separation front will leave in its wake a phase-separated morphology that differs markedly from homogeneous phase-separation morphologies. For a purely diffusive system such a front, moving with constant velocity, will generate very regular, nonequilibrium structures. We present here a numerical study of these fronts using a lattice Boltzmann method. In two dimensions these structures are regular stripes or droplet arrays. In general the kind and orientation of the selected morphology and the size of the domains depends on the speed of the front as well as the composition of the material overtaken by the phase-separation front. We present a survey of morphologies as a function of these two parameters. We show that the resulting morphologies are initial condition dependent. We then examine which of the potential morphologies is the most stable. An analytical analysis for symmetrical compositions predicts the transition point from orthogonal to parallel stripes.
Collapse
Affiliation(s)
- E M Foard
- Department of Physics, North Dakota State University, Fargo, North Dakota 58105, USA
| | | |
Collapse
|
10
|
Gan Y, Xu A, Zhang G, Li Y, Li H. Phase separation in thermal systems: a lattice Boltzmann study and morphological characterization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:046715. [PMID: 22181315 DOI: 10.1103/physreve.84.046715] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 09/11/2011] [Indexed: 05/31/2023]
Abstract
We investigate thermal and isothermal symmetric liquid-vapor separations via a fast Fourier transform thermal lattice Boltzmann (FFT-TLB) model. Structure factor, domain size, and Minkowski functionals are employed to characterize the density and velocity fields, as well as to understand the configurations and the kinetic processes. Compared with the isothermal phase separation, the freedom in temperature prolongs the spinodal decomposition (SD) stage and induces different rheological and morphological behaviors in the thermal system. After the transient procedure, both the thermal and isothermal separations show power-law scalings in domain growth, while the exponent for thermal system is lower than that for isothermal system. With respect to the density field, the isothermal system presents more likely bicontinuous configurations with narrower interfaces, while the thermal system presents more likely configurations with scattered bubbles. Heat creation, conduction, and lower interfacial stresses are the main reasons for the differences in thermal system. Different from the isothermal case, the release of latent heat causes the changing of local temperature, which results in new local mechanical balance. When the Prandtl number becomes smaller, the system approaches thermodynamical equilibrium much more quickly. The increasing of mean temperature makes the interfacial stress lower in the following way: σ=σ(0)[(T(c)-T)/(T(c)-T(0))](3/2), where T(c) is the critical temperature and σ(0) is the interfacial stress at a reference temperature T(0), which is the main reason for the prolonged SD stage and the lower growth exponent in the thermal case. Besides thermodynamics, we probe how the local viscosities influence the morphology of the phase separating system. We find that, for both the isothermal and thermal cases, the growth exponents and local flow velocities are inversely proportional to the corresponding viscosities. Compared with the isothermal case, the local flow velocity depends not only on viscosity but also on temperature.
Collapse
Affiliation(s)
- Yanbiao Gan
- State Key Laboratory for GeoMechanics and Deep Underground Engineering, SMCE, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | | | | | | | | |
Collapse
|
11
|
Sam EM, Hayase Y, Auernhammer GK, Vollmer D. Pattern formation in phase separating binary mixtures. Phys Chem Chem Phys 2011; 13:13333-40. [PMID: 21701760 DOI: 10.1039/c1cp20889f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We experimentally investigate the interplay of thermodynamics with hydrodynamics during phase separation of (quasi-) binary mixtures. Well defined patterns emerge while slowly crossing the cloud point curve. Depending on the material parameters of the experimental system, two distinct scenarios are observed. In quasi-binary mixtures of methanol-hexane patterns appear before macroscopic phase separation sets in. In course of time the patterns turn faint while the overall turbidity of the sample increases until the mixtures become completely turbid. We attribute this pattern formation to a latent heat induced instability resembling a Rayleigh-Bénard instability. This is confirmed by calorimetric data and an estimate of its Rayleigh number. Mixtures of C(4)E(1)-water doped with decane phase separate under heating. After passing the cloud point curve these mixtures first become homogenously turbid. While clearing up, pattern formation is observed. We attribute this type of pattern formation to an interfacial tension induced Bénard-Marangoni instability. The occurrence of the two scenarios is supported by the relevant dimensionless numbers.
Collapse
Affiliation(s)
- Ebie M Sam
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany
| | | | | | | |
Collapse
|
12
|
Biferale L, Mantovani F, Pozzati F, Sbragaglia M, Scagliarini A, Schifano F, Toschi F, Tripiccione R. Numerical simulations of Rayleigh-Taylor front evolution in turbulent stratified fluids. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:2448-2455. [PMID: 21576159 DOI: 10.1098/rsta.2011.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present state-of-the-art numerical simulations of a two-dimensional Rayleigh-Taylor instability for a compressible stratified fluid. We describe the computational algorithm and its implementation on the QPACE supercomputer. High resolution enables the statistical properties of the evolving interface that we characterize in terms of its fractal dimension to be studied.
Collapse
Affiliation(s)
- L Biferale
- Department of Physics, University of Tor Vergata and INFN, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gonnella G, Lamura A, Tiribocchi A. Thermal and hydrodynamic effects in the ordering of lamellar fluids. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:2592-2599. [PMID: 21576175 DOI: 10.1098/rsta.2011.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Phase separation in a complex fluid with lamellar order has been studied in the case of cold thermal fronts propagating diffusively from external walls. The velocity hydrodynamic modes are taken into account by coupling the convection-diffusion equation for the order parameter to a generalized Navier-Stokes equation. The dynamical equations are simulated by implementing a hybrid method based on a lattice Boltzmann algorithm coupled to finite difference schemes. Simulations show that the ordering process occurs with morphologies depending on the speed of the thermal fronts or, equivalently, on the value of the thermal conductivity ξ. At large values of ξ, as in instantaneous quenching, the system is frozen in entangled configurations at high viscosity while it consists of grains with well-ordered lamellae at low viscosity. By decreasing the value of ξ, a regime with very ordered lamellae parallel to the thermal fronts is found. At very low values of ξ the preferred orientation is perpendicular to the walls in d=2, while perpendicular order is lost moving far from the walls in d=3.
Collapse
Affiliation(s)
- G Gonnella
- Dipartimento di Fisica, Università di Bari, and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, Italy
| | | | | |
Collapse
|