1
|
Mabillard J, Gaspard P. Vacancy diffusion and the hydrodynamics of crystals. Phys Rev E 2025; 111:034103. [PMID: 40247549 DOI: 10.1103/physreve.111.034103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/11/2025] [Indexed: 04/19/2025]
Abstract
The hydrodynamics of crystals with vacancies is developed on the basis of local-equilibrium thermodynamics, where the chemical potential of vacancies plays a key role together with a constraint relating the concentration of vacancies to the density of mass and the strain tensor. The microscopic foundations are established, leading to Green-Kubo and Einstein-Helfand formulas for the transport coefficients, including the vacancy conductivities and the coefficients of vacancy thermodiffusion. As a consequence of having introduced the chemical potential of vacancies, a relationship is obtained between the conductivities and the Fickian diffusion coefficients for the vacancies. The macroscopic equations are linearized around equilibrium to deduce the dispersion relations of the eight hydrodynamic modes. The theoretical predictions are confirmed by numerical simulations of the hard-sphere crystal with vacancies. The study explicitly shows that the eighth hydrodynamic mode of nonperfect monatomic crystals is indeed a mode of vacancy diffusion.
Collapse
Affiliation(s)
- Joël Mabillard
- Université Libre de Bruxelles (U.L.B.), Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Pierre Gaspard
- Université Libre de Bruxelles (U.L.B.), Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| |
Collapse
|
2
|
Goh S, Menzel AM, Wittmann R, Löwen H. Density functional approach to elastic properties of three-dimensional dipole-spring models for magnetic gels. J Chem Phys 2023; 158:054909. [PMID: 36754783 DOI: 10.1063/5.0133207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Magnetic gels are composite materials consisting of a polymer matrix and embedded magnetic particles. Those are mechanically coupled to each other, giving rise to the magnetostrictive effects as well as to a controllable overall elasticity responsive to external magnetic fields. Due to their inherent composite and thereby multiscale nature, a theoretical framework bridging different levels of description is indispensable for understanding the magnetomechanical properties of magnetic gels. In this study, we extend a recently developed density functional approach from two spatial dimensions to more realistic three-dimensional systems. Along these lines, we connect a mesoscopic characterization resolving the discrete structure of the magnetic particles to macroscopic continuum parameters of magnetic gels. In particular, we incorporate the long-range nature of the magnetic dipole-dipole interaction and consider the approximate incompressibility of the embedding media and relative rotations with respect to an external magnetic field breaking rotational symmetry. We then probe the shape of the model system in its reference state, confirming the dependence of magnetostrictive effects on the configuration of the magnetic particles and on the shape of the considered sample. Moreover, calculating the elastic and rotational coefficients on the basis of our mesoscopic approach, we examine how the macroscopic types of behavior are related to the mesoscopic properties. Implications for real systems of random particle configurations are also discussed.
Collapse
Affiliation(s)
- Segun Goh
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
Schoonen C, Lutsko JF. Crystal Polymorphism Induced by Surface Tension. PHYSICAL REVIEW LETTERS 2022; 129:246101. [PMID: 36563279 DOI: 10.1103/physrevlett.129.246101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
We use classical density functional theory (cDFT) to calculate fluid-solid surface tensions for fcc and bcc crystals formed by hard spheres and Lennard-Jones (LJ) particles. For hard spheres, our results show that the recently introduced "explicitly stable" functionals perform as well as the state of the art, and for both interaction potentials, our results compare well to simulation. We use the resulting bulk and interfacial energies for LJ to parametrize a capillary model for the free energy of small solid clusters and thereby determine the relative stability of bcc and fcc LJ clusters. We show a crossover from bcc to fcc stability as cluster size increases, thus providing insight into long-standing tension between simulation results and theoretical expectations. We also confirm that the bcc phase in contact with a vapor is unstable, thus extending earlier zero-temperature results. Our Letter demonstrates the potential of cDFT as an important tool in understanding crystallization and polymorphism.
Collapse
Affiliation(s)
- Cédric Schoonen
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Bültmann M, Härtel A. The primitive model in classical density functional theory: beyond the standard mean-field approximation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:235101. [PMID: 35294927 DOI: 10.1088/1361-648x/ac5e7a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The primitive model describes ions by point charges with an additional hard-core interaction. In classical density-functional theory (DFT) the mean-field electrostatic contribution can be obtained from the first order of a functional perturbation of the pair potential for an uncharged reference system of hard spheres. This mean-field electrostatic term particularly contributes at particle separations that are forbidden due to hard-core overlap. In this work we modify the mean-field contribution such that the pair potential is constant for distances smaller than the contact distance of the ions. We motivate our modification by the underlying splitting of the potential, which is similar to the splitting of the Weeks-Chandler-Andersen potential and leads to higher-order terms in the respective expansion of the functional around the reference system. The resulting formalism involves weighted densities similar to the ones found in fundamental measure theory. To test our modifications, we analyze and compare density profiles, direct and total correlation functions, and the thermodynamic consistency of the functional via a widely established sum rule and the virial pressure formula for our modified functional, for established functionals, and for data from computer simulations. We found that our modifications clearly show improvements compared to the standard mean-field functional, especially when predicting layering effects and direct correlation functions in high concentration scenarios; for the latter we also find improved consistency when calculated via different thermodynamic routes. In conclusion, we demonstrate how modifications toward higher order corrections beyond mean-field functionals can be made and how they perform, by this providing a basis for systematic future improvements in classical DFT for the description of electrostatic interactions.
Collapse
Affiliation(s)
- Moritz Bültmann
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| | - Andreas Härtel
- Physikalisches Institut, Albert-Ludwigs-Universität, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Pelagejcev P, Glatzel F, Härtel A. Extension of the primitive model by hydration shells and its impact on the reversible heat production during the buildup of the electric double layer. J Chem Phys 2022; 156:034901. [DOI: 10.1063/5.0077526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philipp Pelagejcev
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Fabian Glatzel
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Andreas Härtel
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
6
|
Sprik M. Chemomechanical equilibrium at the interface between a simple elastic solid and its liquid phase. J Chem Phys 2021; 155:244701. [PMID: 34972353 DOI: 10.1063/5.0073316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Applying diffusion coupled deformation theory, we investigate how the elastic properties of a solid body are modified when forced to keep its chemical potential aligned with that of its melt. The theory is implemented at the classical level of continuum mechanics, treating materials as simple continua defined by uniform constitutive relations. A phase boundary is a sharp dividing surface separating two continua in mechanical and chemical equilibrium. We closely follow the continuum theory of the swelling of elastomers (gels) but now applied to a simple two phase one-component system. The liquid is modeled by a local free energy density defining a chemical potential and hydrostatic pressure as usual. The model is extended to a solid by adding a non-linear shear elastic energy term with an effective modulus depending on density. Imposing chemomechanical equilibrium with the liquid reservoir reduces the bulk modulus of the solid to zero. The shear modulus remains finite. The stability of the hyper-compressible solid is investigated in a thought experiment. A mechanical load is applied to a rectangular bar under the constraint of fixed lateral dimensions. The linear elastic modulus for axial loading is evaluated and found to be larger than zero, implying that the bar, despite the zero bulk modulus, can support a weight placed on its upper surface. The weight is stabilized by the induced shear stress. The density dependence of the shear modulus is found to be a second order effect reducing the density of the stressed solid (chemostriction).
Collapse
Affiliation(s)
- Michiel Sprik
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Sang J, Wei F, Dong X. Gas adsorption and separation in metal-organic frameworks by PC-SAFT based density functional theory. J Chem Phys 2021; 155:124113. [PMID: 34598591 DOI: 10.1063/5.0067172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we examine the theoretical performance of perturbed-chain statistical associating fluid theory based density functional theory (DFT) in predicting gas adsorption and separation in metal-organic frameworks by using simulation and experimental data as the benchmark. Adsorption isotherms of methane and ethane in pure gas and mixtures and selectivities for ethane/methane mixtures are calculated. The predicted isotherms by DFT are in excellent agreement with simulation and experimental data for pure methane and ethane, whereas for the mixture, DFT is in semi-quantitative accordance with simulation results. For fast and high-throughput screening of material purpose, three algorithms including Picard iteration with line search, Anderson mixing, and Picard-Anderson-hybrid algorithm are proposed to calculate the three dimensional density distribution of confined gases. The advantages and limitations of the three algorithms under various conditions are discussed.
Collapse
Affiliation(s)
- Jiarong Sang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Feng Wei
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| | - Xinyan Dong
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, China
| |
Collapse
|
8
|
Lin SC, Oettel M, Häring JM, Haussmann R, Fuchs M, Kahl G. Direct Correlation Function of a Crystalline Solid. PHYSICAL REVIEW LETTERS 2021; 127:085501. [PMID: 34477411 DOI: 10.1103/physrevlett.127.085501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Direct correlation functions (DCFs), linked to the second functional derivative of the free energy with respect to the one-particle density, play a fundamental role in a statistical mechanics description of matter. This holds, in particular, for the ordered phases: DCFs contain information about the local structure including defects and encode the thermodynamic properties of crystalline solids; they open a route to the elastic constants beyond low temperature expansions. Via a demanding numerical approach, we have explicitly calculated for the first time the DCF of a solid: based on the fundamental measure concept, we provide results for the DCF of a hard sphere crystal. We demonstrate that this function differs at coexistence significantly from its liquid counterpart-both in shape as well as in its order of magnitude-because it is dominated by vacancies. We provide evidence that the traditional use of liquid DCFs in functional Taylor expansions of the free energy is conceptually wrong and show that the emergent elastic constants are in good agreement with simulation-based results.
Collapse
Affiliation(s)
- S-C Lin
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - M Oettel
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - J M Häring
- Fachbereich für Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - R Haussmann
- Fachbereich für Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - M Fuchs
- Fachbereich für Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - G Kahl
- Institut für Theoretische Physik, TU Wien, 1040 Vienna, Austria
| |
Collapse
|
9
|
Lutsko JF. Explicitly stable fundamental-measure-theory models for classical density functional theory. Phys Rev E 2021; 102:062137. [PMID: 33465965 DOI: 10.1103/physreve.102.062137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 11/07/2022]
Abstract
The derivation of the state of the art tensorial versions of Fundamental Measure Theory (a form of classical Density Functional Theory for hard spheres) is reexamined in the light of the recently introduced concept of global stability of the density functional based on its boundedness [Lutsko and Lam, Phys. Rev. E 98, 012604 (2018)2470-004510.1103/PhysRevE.98.012604]. It is shown that within the present paradigm, explicit stability of the functional can be achieved only at the cost of giving up accuracy at low densities. It is argued that this is an acceptable trade-off since the main value of DFT lies in the study of dense systems. Explicit calculations for a wide variety of systems show that a proposed explicitly stable functional is competitive in all ways with the popular White Bear models while sharing some of their weaknesses when applied to non-close-packed solids.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, Blvd. du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Lutsko JF, Schoonen C. Classical density-functional theory applied to the solid state. Phys Rev E 2020; 102:062136. [PMID: 33466033 DOI: 10.1103/physreve.102.062136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
The standard model of classical density-functional theory (cDFT) for pair potentials consists of a hard-sphere functional plus a mean-field term accounting for long ranged attraction. However, most implementations using sophisticated fundamental measure hard-sphere functionals suffer from potential numerical instabilities either due to possible instabilities in the functionals themselves or due to implementations that mix real- and Fourier-space components inconsistently. Here we present a new implementation based on a demonstrably stable hard-sphere functional that is implemented in a completely consistent manner. The present work does not depend on approximate spherical integration schemes and so is much more robust than previous algorithms. The methods are illustrated by calculating phase diagrams for the solid state using the standard Lennard-Jones potential as well as a new class of potentials recently proposed by Wang et al. [Phys. Chem. Chem. Phys. 22, 10624 (2020)PPCPFQ1463-907610.1039/C9CP05445F]. The latter span the range from potentials for small molecules to those appropriate to colloidal systems simply by varying a parameter. We verify that cDFT is able to semiquantitatively reproduce the phase diagram in all cases. We also show that for these problems computationally cheap Gaussian approximations are nearly as good as full minimization based on finite differences.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Cédric Schoonen
- Center for Nonlinear Phenomena and Complex Systems CP 231, Université Libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
11
|
Bültmann M, Schilling T. Computation of the solid-liquid interfacial free energy in hard spheres by means of thermodynamic integration. Phys Rev E 2020; 102:042123. [PMID: 33212611 DOI: 10.1103/physreve.102.042123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/18/2020] [Indexed: 11/07/2022]
Abstract
We used a thermodynamic integration scheme, which is specifically designed for disordered systems, to compute the interfacial free energy of the solid-liquid interface in the hard-sphere model. We separated the bulk contribution to the total free energy from the interface contribution, performed a finite-size scaling analysis, and obtained for the (100)-interface γ=0.591(11)k_{B}Tσ^{-2}.
Collapse
Affiliation(s)
- M Bültmann
- Physikalisches Institut, Albert-Ludwigs-Universitt, 79104 Freiburg, Germany
| | - T Schilling
- Physikalisches Institut, Albert-Ludwigs-Universitt, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Bernet T, Müller EA, Jackson G. A tensorial fundamental measure density functional theory for the description of adsorption in substrates of arbitrary three-dimensional geometry. J Chem Phys 2020. [DOI: 10.1063/5.0010974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Bernet
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, Total, LFCR, Anglet, France
| | - Erich A. Müller
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
13
|
Goh S, Wittmann R, Menzel AM, Löwen H. Classical density functional theory for a two-dimensional isotropic ferrogel model with labeled particles. Phys Rev E 2019; 100:012605. [PMID: 31499838 DOI: 10.1103/physreve.100.012605] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 01/30/2023]
Abstract
In this study, we formulate a density functional theory (DFT) for systems of labeled particles, considering a two-dimensional bead-spring lattice with a magnetic dipole on every bead as a model for ferrogels. On the one hand, DFT has been widely studied to investigate fluidlike states of materials, in which constituent particles are not labeled as they can exchange their positions without energy cost. On the other hand, in ferrogels consisting of magnetic particles embedded in elastic polymer matrices, the particles are labeled by their positions as their neighbors do not change over time. We resolve such an issue of particle labeling, introducing a mapping of the elastic interaction mediated by springs onto a pairwise additive interaction (pseudosprings) between unlabeled particles. We further investigate magnetostriction and changes in the elastic constants under altered magnetic interactions employing the pseudospring potential. It is revealed that there are two different response scenarios in the mechanical properties of the dipole-spring systems: While systems at low packing fractions are hardened as the magnetic moments increase in magnitude, at high packing fractions softening due to diminishing effects from the steric force, associated with increases in the volume, is observed. The validity of the theory is also verified by Monte Carlo simulations with both real springs and pseudosprings. We expect that our DFT approach may promote our understanding of materials with particle inclusions.
Collapse
Affiliation(s)
- Segun Goh
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas M Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Coupette F, Lee AA, Härtel A. Screening Lengths in Ionic Fluids. PHYSICAL REVIEW LETTERS 2018; 121:075501. [PMID: 30169089 DOI: 10.1103/physrevlett.121.075501] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The decay of correlations in ionic fluids is a classical problem in soft matter physics that underpins applications ranging from controlling colloidal self-assembly to batteries and supercapacitors. The conventional wisdom, based on analyzing a solvent-free electrolyte model, suggests that all correlation functions between species decay with a common decay length in the asymptotic far field limit. Nonetheless, a solvent is present in many electrolyte systems. We show using an analytical theory and molecular dynamics simulations that multiple decay lengths can coexist in the asymptotic limit as well as at intermediate distances once a hard sphere solvent is considered. Our analysis provides an explanation for the recently observed discontinuous change in the structural force across a thin film of ionic liquid-solvent mixtures as the composition is varied, as well as reframes recent debates in the literature about the screening length in concentrated electrolytes.
Collapse
Affiliation(s)
- Fabian Coupette
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Alpha A Lee
- Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Andreas Härtel
- Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Lin SC, Oettel M. Phase diagrams and crystal-fluid surface tensions in additive and nonadditive two-dimensional binary hard-disk mixtures. Phys Rev E 2018; 98:012608. [PMID: 30110806 DOI: 10.1103/physreve.98.012608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 06/08/2023]
Abstract
Using density functionals from fundamental measure theory, phase diagrams and crystal-fluid surface tensions in additive and nonadditive (Asakura-Oosawa model) two-dimensional binary hard-disk mixtures are determined for the whole range of size ratios q=smalldiameter/largediameter, assuming random disorder (lattice points or interstitial occupied by large or small disks at random) in the crystal phase. The fluid-crystal transitions are first order due to the assumption of a periodic unit cell in the density-functional calculations. Qualitatively, the shape of the phase diagrams is similar to the case of three-dimensional hard-sphere mixtures. For the nonadditive case, a broadening of the fluid-crystal coexistence region is found for small q, whereas for large q a vapor-fluid transition intervenes. In the additive case, we find a sequence of spindle-type, azeotropic, and eutectic phase diagrams upon lowering q from 1 to 0.6. The transition from azeotropic to eutectic is different from the three-dimensional case. Surface tensions in general become smaller (up to a factor 2) upon addition of a second species and they are rather small. The minimization of the functionals proceeds without restrictions and optimized graphics card routines are used.
Collapse
Affiliation(s)
- Shang-Chun Lin
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Martin Oettel
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Lutsko JF, Lam J. Classical density functional theory, unconstrained crystallization, and polymorphic behavior. Phys Rev E 2018; 98:012604. [PMID: 30110790 DOI: 10.1103/physreve.98.012604] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 06/08/2023]
Abstract
While in principle, classical density functional theory (cDFT) should be a powerful tool for the study of crystallization, in practice this has not so far been the case. Progress has been hampered by technical problems which have plagued the study of the crystalline systems using the most sophisticated fundamental measure theory models. In this paper, the reasons for the difficulties are examined and it is proposed that the tensor functionals currently favored are in fact numerically unstable. By reverting to an older, more heuristic model it is shown that all of the technical difficulties are eliminated. Application to a Lennard-Jones fluid results in a demonstration of power of cDFT to describe crystallization in a highly inhomogeneous system. First, we show that droplets attached to a slightly hydrophobic wall crystallize spontaneously upon being quenched. The resulting crystallites are clearly faceted structures and are predominantly HCP structures. In contrast, droplets in a fully periodic calculational cell remain stable to lower temperatures and eventually show the same spontaneous localization of the density into "atoms" but in an amorphous structure having many of the structural characteristics of a glass. A small change of the protocol leads, at the same temperature, to the formation of crystals, this time with the fcc structure typical of bulk Lennard-Jones solids. The fcc crystals have lower free energy than the amorphous structures which in turn are more stable than the liquid droplets. It is demonstrated that as the temperature is raised, the free energy differences between the structures decrease until the solid clusters become less stable than the liquid droplets and spontaneously melt. The presence of energy barriers separating the various structures is therefore clearly demonstrated.
Collapse
Affiliation(s)
- James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
17
|
|
18
|
Härtel A. Structure of electric double layers in capacitive systems and to what extent (classical) density functional theory describes it. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:423002. [PMID: 28898203 DOI: 10.1088/1361-648x/aa8342] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ongoing scientific interest is aimed at the properties and structure of electric double layers (EDLs), which are crucial for capacitive energy storage, water treatment, and energy harvesting technologies like supercapacitors, desalination devices, blue engines, and thermocapacitive heat-to-current converters. A promising tool to describe their physics on a microscopic level is (classical) density functional theory (DFT), which can be applied in order to analyze pair correlations and charge ordering in the primitive model of charged hard spheres. This simple model captures the main properties of ionic liquids and solutions and it predicts many of the phenomena that occur in EDLs. The latter often lead to anomalous response in the differential capacitance of EDLs. This work constructively reviews the powerful theoretical framework of DFT and its recent developments regarding the description of EDLs. It explains to what extent current approaches in DFT describe structural ordering and in-plane transitions in EDLs, which occur when the corresponding electrodes are charged. Further, the review briefly summarizes the history of modeling EDLs, presents applications, and points out limitations and strengths in present theoretical approaches. It concludes that DFT as a sophisticated microscopic theory for ionic systems is expecting a challenging but promising future in both fundamental research and applications in supercapacitive technologies.
Collapse
Affiliation(s)
- Andreas Härtel
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| |
Collapse
|
19
|
Stopper D, Roth R. Massively parallel GPU-accelerated minimization of classical density functional theory. J Chem Phys 2017; 147:064508. [DOI: 10.1063/1.4997636] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
20
|
Marechal M, Dussi S, Dijkstra M. Density functional theory and simulations of colloidal triangular prisms. J Chem Phys 2017; 146:124905. [DOI: 10.1063/1.4978502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matthieu Marechal
- Institut für Theoretische Physik, Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Simone Dussi
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
21
|
Stopper D, Roth R, Hansen-Goos H. Structural relaxation and diffusion in a model colloid-polymer mixture: dynamical density functional theory and simulation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:455101. [PMID: 27608916 DOI: 10.1088/0953-8984/28/45/455101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Within the Asakura-Oosawa model, we study structural relaxation in mixtures of colloids and polymers subject to Brownian motion in the overdamped limit. We obtain the time evolution of the self and distinct parts of the van Hove distribution function G(r,t) by means of dynamical density functional theory (DDFT) using an accurate free-energy functional based on Rosenfeld's fundamental measure theory. In order to remove unphysical interactions within the self part, we extend the recently proposed quenched functional framework (Stopper et al 2015 J. Chem. Phys. 143 181105) toward mixtures. In addition, we obtain results for the long-time self diffusion coefficients of colloids and polymers from dynamic Monte Carlo simulations, which we incorporate into the DDFT. From the resulting DDFT equations we calculate G(r, t), which we find to agree very well with our simulations. In particular, we examine the influence of polymers which are slow relative to the colloids-a scenario for which both DDFT and simulation show a significant peak forming at r = 0 in the colloid-colloid distribution function, akin to experimental findings involving gelation of colloidal suspensions. Moreover, we observe that, in the presence of slow polymers, the long-time self diffusivity of the colloids displays a maximum at an intermediate colloid packing fraction. This behavior is captured by a simple semi-empirical formula, which provides an excellent description of the data.
Collapse
Affiliation(s)
- Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | | | | |
Collapse
|
22
|
Hansen-Goos H. Long-range weight functions in fundamental measure theory of the non-uniform hard-sphere fluid. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244001. [PMID: 27115721 DOI: 10.1088/0953-8984/28/24/244001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We introduce long-range weight functions to the framework of fundamental measure theory (FMT) of the non-uniform, single-component hard-sphere fluid. While the range of the usual weight functions is equal to the hard-sphere radius R, the modified weight functions have range 3R. Based on the augmented FMT, we calculate the radial distribution function g(r) up to second order in the density within Percus' test particle theory. Consistency of the compressibility and virial routes on this level allows us to determine the free parameter γ of the theory. As a side result, we obtain a value for the fourth virial coefficient B 4 which deviates by only 0.01% from the exact result. The augmented FMT is tested for the dense fluid by comparing results for g(r) calculated via the test particle route to existing results from molecular dynamics simulations. The agreement at large distances (r > 6R) is significantly improved when the FMT with long-range weight functions is used. In order to improve agreement close to contact (r = 2R) we construct a free energy which is based on the accurate Carnahan-Starling equation of state, rather than the Percus-Yevick compressibility equation underlying standard FMT.
Collapse
Affiliation(s)
- Hendrik Hansen-Goos
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
23
|
Mortazavifar M, Oettel M. A fundamental measure density functional for fluid and crystal phases of the Asakura-Oosawa model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244018. [PMID: 27116650 DOI: 10.1088/0953-8984/28/24/244018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We investigate a density functional for the Asakura-Oosawa model of colloid-polymer mixtures, describing both fluid and crystal phases. It is derived by linearizing the two-component fundamental-measure hard sphere tensor functional in the second (polymer) component. We discuss the formulation of an effective density functional for colloids only. For small polymer-colloid size ratios the effective, polymer-induced potential between colloids is short-range attractive and of two-body form but we show that the effective density functional is not equivalent to standard mean-field approaches where attractions are taken into account by terms second order in the colloid density. We calculate numerically free energies and phase diagrams in good agreement with available simulations, furthermore we discuss the colloid and polymer distributions in the crystal and determine equilibrium vacancy concentrations. Numerical results reveal a fairly strong sensitivity to the specific type of underlying fundamental measure hard sphere functional which could aid further development of fundamental measure theory.
Collapse
Affiliation(s)
- Mostafa Mortazavifar
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | | |
Collapse
|
24
|
Wittmann R, Marechal M, Mecke K. Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244003. [PMID: 27115987 DOI: 10.1088/0953-8984/28/24/244003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.
Collapse
Affiliation(s)
- René Wittmann
- Department of Physics, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland. Institut für Theoretische Physik, Universität Erlangen-Nürnberg, Staudtstr 7, 91058 Erlangen, Germany
| | | | | |
Collapse
|
25
|
Zimmermann U, Smallenburg F, Löwen H. Flow of colloidal solids and fluids through constrictions: dynamical density functional theory versus simulation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244019. [PMID: 27116706 DOI: 10.1088/0953-8984/28/24/244019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Using both dynamical density functional theory and particle-resolved Brownian dynamics simulations, we explore the flow of two-dimensional colloidal solids and fluids driven through a linear channel with a constriction. The flow is generated by a constant external force acting on all colloids. The initial configuration is equilibrated in the absence of flow and then the external force is switched on instantaneously. Upon starting the flow, we observe four different scenarios: a complete blockade, a monotonic decay to a constant particle flux (typical for a fluid), a damped oscillatory behaviour in the particle flux, and a long-lived stop-and-go behaviour in the flow (typical for a solid). The dynamical density functional theory describes all four situations but predicts infinitely long undamped oscillations in the flow which are always damped in the simulations. We attribute the mechanisms of the underlying stop-and-go flow to symmetry conditions on the flowing solid. Our predictions are verifiable in real-space experiments on magnetic colloidal monolayers which are driven through structured microchannels and can be exploited to steer the flow throughput in microfluidics.
Collapse
Affiliation(s)
- Urs Zimmermann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|
26
|
Härtel A, Samin S, van Roij R. Dense ionic fluids confined in planar capacitors: in- and out-of-plane structure from classical density functional theory. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:244007. [PMID: 27116552 DOI: 10.1088/0953-8984/28/24/244007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ongoing scientific interest in the properties and structure of electric double layers (EDLs) stems from their pivotal role in (super)capacitive energy storage, energy harvesting, and water treatment technologies. Classical density functional theory (DFT) is a promising framework for the study of the in- and out-of-plane structural properties of double layers. Supported by molecular dynamics simulations, we demonstrate the adequate performance of DFT for analyzing charge layering in the EDL perpendicular to the electrodes. We discuss charge storage and capacitance of the EDL and the impact of screening due to dielectric solvents. We further calculate, for the first time, the in-plane structure of the EDL within the framework of DFT. While our out-of-plane results already hint at structural in-plane transitions inside the EDL, which have been observed recently in simulations and experiments, our DFT approach performs poorly in predicting in-plane structure in comparison to simulations. However, our findings isolate fundamental issues in the theoretical description of the EDL within the primitive model and point towards limitations in the performance of DFT in describing the out-of-plane structure of the EDL at high concentrations and potentials.
Collapse
Affiliation(s)
- Andreas Härtel
- Institute of Physics, Johannes Gutenberg-University Mainz, Staudinger Weg 9, 55128 Mainz, Germany. Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | | | | |
Collapse
|
27
|
Härtel A, Kohl M, Schmiedeberg M. Anisotropic pair correlations in binary and multicomponent hard-sphere mixtures in the vicinity of a hard wall: A combined density functional theory and simulation study. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042310. [PMID: 26565243 DOI: 10.1103/physreve.92.042310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Indexed: 06/05/2023]
Abstract
The fundamental measure approach to classical density functional theory has been shown to be a powerful tool to predict various thermodynamic properties of hard-sphere systems. We employ this approach to determine not only one-particle densities but also two-particle correlations in binary and six-component mixtures of hard spheres in the vicinity of a hard wall. The broken isotropy enables us to carefully test a large variety of theoretically predicted two-particle features by quantitatively comparing them to the results of Brownian dynamics simulations. Specifically, we determine and compare the one-particle density, the total correlation functions, their contact values, and the force distributions acting on a particle. For this purpose, we follow the compressibility route and theoretically calculate the direct correlation functions by taking functional derivatives. We usually observe an excellent agreement between theory and simulations, except for small deviations in cases where local crystal-like order sets in. Our results set the course for further investigations on the consistency of functionals as well as for structural analysis on, e.g., the primitive model. In addition, we demonstrate that due to the suppression of local crystallization, the predictions of six-component mixtures are better than those in bidisperse or monodisperse systems. Finally, we are confident that our results of the structural modulations induced by the wall lead to a deeper understanding of ordering in anisotropic systems in general, the onset of heterogeneous crystallization, caging effects, and glassy dynamics close to a wall, as well as structural properties in systems with confinement.
Collapse
Affiliation(s)
- Andreas Härtel
- Institut of Physics, Johannes Gutenberg-University Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Matthias Kohl
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Schmiedeberg
- Institute for Theoretical Physics II: Soft Matter, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Bharadwaj AS, Singh Y. Fluid-solid transition in simple systems using density functional theory. J Chem Phys 2015; 143:124503. [PMID: 26429020 DOI: 10.1063/1.4931376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A free energy functional for a crystal which contains both the symmetry-conserved and symmetry-broken parts of the direct pair correlation function has been used to investigate the fluid-solid transition in systems interacting via purely repulsive Weeks-Chandler-Anderson Lennard-Jones potential and the full Lennard-Jones potential. The results found for freezing parameters for the fluid-face centred cubic crystal transition are in very good agreement with simulation results. It is shown that although the contribution made by the symmetry broken part to the grand thermodynamic potential at the freezing point is small compared to that of the symmetry conserving part, its role is crucial in stabilizing the crystalline structure and on values of the freezing parameters.
Collapse
Affiliation(s)
- Atul S Bharadwaj
- Department of Physics, Banaras Hindu University, Varanasi-221 005, India
| | - Yashwant Singh
- Department of Physics, Banaras Hindu University, Varanasi-221 005, India
| |
Collapse
|
29
|
Stopper D, Marolt K, Roth R, Hansen-Goos H. Modeling diffusion in colloidal suspensions by dynamical density functional theory using fundamental measure theory of hard spheres. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022151. [PMID: 26382387 DOI: 10.1103/physreve.92.022151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 06/05/2023]
Abstract
We study the dynamics of colloidal suspensions of hard spheres that are subject to Brownian motion in the overdamped limit. We obtain the time evolution of the self- and distinct parts of the van Hove function by means of dynamical density functional theory. The free-energy model for the hard-sphere fluid that we use is the very accurate White Bear II version of Rosenfeld's fundamental measure theory. However, in order to remove interactions within the self-part of the van Hove function, a nontrivial modification has to be applied to the free-energy functional. We compare our theoretical results with data that we obtain from dynamical Monte Carlo simulations, and we find that the latter are well described by our approach even for colloid packing fractions as large as 40%.
Collapse
Affiliation(s)
- Daniel Stopper
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Kevin Marolt
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Hendrik Hansen-Goos
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
30
|
Härtel A, Janssen M, Samin S, van Roij R. Fundamental measure theory for the electric double layer: implications for blue-energy harvesting and water desalination. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:194129. [PMID: 25923717 DOI: 10.1088/0953-8984/27/19/194129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Capacitive mixing (CAPMIX) and capacitive deionization (CDI) are promising candidates for harvesting clean, renewable energy and for the energy efficient production of potable water, respectively. Both CAPMIX and CDI involve water-immersed porous carbon (supercapacitors) electrodes at voltages of the order of hundreds of millivolts, such that counter-ionic packing is important for the electric double layer (EDL) which forms near the surfaces of these porous materials. Thus, we propose a density functional theory (DFT) to model the EDL, where the White-Bear mark II fundamental measure theory functional is combined with a mean-field Coulombic and a mean spherical approximation-type correction to describe the interplay between dense packing and electrostatics, in good agreement with molecular dynamics simulations. We discuss the concentration-dependent potential rise due to changes in the chemical potential in capacitors in the context of an over-ideal theoretical description and its impact on energy harvesting and water desalination. Compared to less elaborate mean-field models our DFT calculations reveal a higher work output for blue-energy cycles and a higher energy demand for desalination cycles.
Collapse
Affiliation(s)
- Andreas Härtel
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | | | | | | |
Collapse
|
31
|
Hansen-Goos H, Mortazavifar M, Oettel M, Roth R. Fundamental measure theory for the inhomogeneous hard-sphere system based on Santos' consistent free energy. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052121. [PMID: 26066133 DOI: 10.1103/physreve.91.052121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Based on Santos' general solution for the scaled-particle differential equation [Phys. Rev. E 86, 040102(R) (2012)], we construct a free-energy functional for the hard-sphere system. The functional is obtained by a suitable generalization and extension of the set of scaled-particle variables using the weighted densities from Rosenfeld's fundamental measure theory for the hard-sphere mixture [Phys. Rev. Lett. 63, 980 (1989)]. While our general result applies to the hard-sphere mixture, we specify remaining degrees of freedom by requiring the functional to comply with known properties of the pure hard-sphere system. Both for mixtures and pure systems, the functional can be systematically extended following the lines of our derivation. We test the resulting functionals regarding their behavior upon dimensional reduction of the fluid as well as their ability to accurately describe the hard-sphere crystal and the liquid-solid transition.
Collapse
Affiliation(s)
- Hendrik Hansen-Goos
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Mostafa Mortazavifar
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Martin Oettel
- Institute for Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
32
|
|
33
|
Wang X, Wang S, Xu Q, Mi J. Thermodynamics of Ice Nucleation in Liquid Water. J Phys Chem B 2015; 119:1660-8. [DOI: 10.1021/jp512280p] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Organic-Inorganic
Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shui Wang
- State Key Laboratory of Organic-Inorganic
Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qinzhi Xu
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing, 100029, China
| | - Jianguo Mi
- State Key Laboratory of Organic-Inorganic
Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
34
|
Gunawardana KGSH, Song X. Free Energy Calculations of Crystalline Hard Sphere Complexes Using Density Functional Theory. J Phys Chem B 2014; 119:9160-6. [DOI: 10.1021/jp5090907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. G. S. H. Gunawardana
- Ames
Laboratory and ‡Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Xueyu Song
- Ames
Laboratory and ‡Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
35
|
Wang X, Sang DK, Chen J, Mi J. Theoretical insights into nucleation of CO2and CH4hydrates for CO2capture and storage. Phys Chem Chem Phys 2014; 16:26929-37. [DOI: 10.1039/c4cp03709j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Binder K, Virnau P, Statt A. Perspective: The Asakura Oosawa model: A colloid prototype for bulk and interfacial phase behavior. J Chem Phys 2014; 141:140901. [DOI: 10.1063/1.4896943] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
37
|
Marechal M, Korden S, Mecke K. Deriving fundamental measure theory from the virial series: consistency with the zero-dimensional limit. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042131. [PMID: 25375462 DOI: 10.1103/physreve.90.042131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 06/04/2023]
Abstract
Fundamental measure theory (FMT) for hard particles has great potential for predicting the phase behavior of colloidal and nanometric shapes. The modern versions of FMT are usually derived from the zero-dimensional limit, a system of at most one particle confined in a collection of cavities in the limit that all cavities shrink to the size of the particle. In Phys. Rev. E 85, 041150 (2012), a derivation from an approximated and resummed virial expansion was presented, whose result was not fully consistent with the FMT from the zero-dimensional limit. Here we improve on this derivation and obtain exactly the same FMT functional as was obtained earlier from the zero-dimensional limit. As a result, further improvements of FMT based on the virial expansion can now be formulated, some of which we suggest in the outlook.
Collapse
Affiliation(s)
- Matthieu Marechal
- Institut für Theoretische Physik, Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| | - Stephan Korden
- Institute of Technical Thermodynamics, RWTH Aachen University, Schinkelstraße 8, 52062 Aachen, Germany
| | - Klaus Mecke
- Institut für Theoretische Physik, Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
| |
Collapse
|
38
|
Chang Y, Mi J, Zhong C. Density functional theory for carbon dioxide crystal. J Chem Phys 2014; 140:204706. [PMID: 24880310 DOI: 10.1063/1.4878413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a density functional approach to describe the solid-liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO2. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO2 at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.
Collapse
Affiliation(s)
- Yiwen Chang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianguo Mi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chongli Zhong
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
39
|
Yamani MH, Oettel M. Stable and metastable hard-sphere crystals in fundamental measure theory. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022301. [PMID: 24032827 DOI: 10.1103/physreve.88.022301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 06/02/2023]
Abstract
Using fully minimized fundamental measure functionals, we investigate free energies, vacancy concentrations, and density distributions for bcc, fcc, and hcp hard-sphere crystals. Results are complemented by an approach due to Stillinger, which is based on expanding the crystal partition function in terms of the number n of free particles while the remaining particles are frozen at their ideal lattice positions. The free energies of fcc and hcp and one branch of bcc agree well with Stillinger's approach truncated at n=2. A second branch of bcc solutions features rather spread-out density distributions around lattice sites and large equilibrium vacancy concentrations and is presumably linked to the shear instability of the bcc phase. Within fundamental measure theory and the Stillinger approach (n=2), hcp is more stable than fcc by a free energy per particle of about 0.001k(B)T. In previous simulation work, the reverse situation has been found, which can be rationalized in terms of effects due to a correlated motion of at least five particles in the Stillinger picture.
Collapse
Affiliation(s)
- M H Yamani
- Johannes Gutenberg-Universität Mainz, Institut für Physik, WA 331, D-55099 Mainz, Germany and Institut für Angewandte Physik, Eberhard Karls-Universität Tübingen, D-72076 Tübingen, Germany
| | | |
Collapse
|
40
|
Wang X, Mi J, Zhong C. Density functional theory for crystal-liquid interfaces of Lennard-Jones fluid. J Chem Phys 2013; 138:164704. [DOI: 10.1063/1.4802633] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
41
|
Marechal M, Löwen H. Density functional theory for hard polyhedra. PHYSICAL REVIEW LETTERS 2013; 110:137801. [PMID: 23581374 DOI: 10.1103/physrevlett.110.137801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Indexed: 06/02/2023]
Abstract
Using the framework of geometry-based fundamental-measure theory, we develop a classical density functional for hard polyhedra and their mixtures and apply it to inhomogeneous fluids of Platonic solids near a hard wall. As revealed by Monte Carlo simulations, the faceted shape of the polyhedra leads to complex layering and orientational ordering near the wall, which is excellently reproduced by our theory. These effects can be verified in real-space experiments on polyhedral colloids.
Collapse
Affiliation(s)
- Matthieu Marechal
- Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | | |
Collapse
|
42
|
Oettel M. Mode expansion for the density profiles of crystal-fluid interfaces: hard spheres as a test case. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:464124. [PMID: 23114279 DOI: 10.1088/0953-8984/24/46/464124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present a technique for analyzing the full three-dimensional density profiles of planar crystal-fluid interfaces in terms of density modes. These density modes can also be related to crystallinity order parameter profiles which are used in coarse-grained, phase field type models of the statics and dynamics of crystal-fluid interfaces and are an alternative to crystallinity order parameters extracted from simulations using local crystallinity criteria. We illustrate our results for the hard sphere system using finely resolved, three-dimensional density profiles from a density functional theory of fundamental measure type.
Collapse
Affiliation(s)
- M Oettel
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Mainz, Germany.
| |
Collapse
|
43
|
Belli S, Dijkstra M, van Roij R. Free minimization of the fundamental measure theory functional: Freezing of parallel hard squares and cubes. J Chem Phys 2012; 137:124506. [DOI: 10.1063/1.4754836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Oettel M, Dorosz S, Berghoff M, Nestler B, Schilling T. Description of hard-sphere crystals and crystal-fluid interfaces: a comparison between density functional approaches and a phase-field crystal model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021404. [PMID: 23005760 DOI: 10.1103/physreve.86.021404] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Indexed: 06/01/2023]
Abstract
In materials science the phase-field crystal approach has become popular to model crystallization processes. Phase-field crystal models are in essence Landau-Ginzburg-type models, which should be derivable from the underlying microscopic description of the system in question. We present a study on classical density functional theory in three stages of approximation leading to a specific phase-field crystal model, and we discuss the limits of applicability of the models that result from these approximations. As a test system we have chosen the three-dimensional suspension of monodisperse hard spheres. The levels of density functional theory that we discuss are fundamental measure theory, a second-order Taylor expansion thereof, and a minimal phase-field crystal model. We have computed coexistence densities, vacancy concentrations in the crystalline phase, interfacial tensions, and interfacial order parameter profiles, and we compare these quantities to simulation results. We also suggest a procedure to fit the free parameters of the phase-field crystal model. Thereby it turns out that the order parameter of the phase-field crystal model is more consistent with a smeared density field (shifted and rescaled) than with the shifted and rescaled density itself. In brief, we conclude that fundamental measure theory is very accurate and can serve as a benchmark for the other theories. Taylor expansion strongly affects free energies, surface tensions, and vacancy concentrations. Furthermore it is phenomenologically misleading to interpret the phase-field crystal model as stemming directly from Taylor-expanded density functional theory.
Collapse
Affiliation(s)
- M Oettel
- Johannes Gutenberg-Universität Mainz, Institut für Physik, WA 331, D-55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
45
|
Härtel A, Oettel M, Rozas RE, Egelhaaf SU, Horbach J, Löwen H. Tension and stiffness of the hard sphere crystal-fluid interface. PHYSICAL REVIEW LETTERS 2012; 108:226101. [PMID: 23003625 DOI: 10.1103/physrevlett.108.226101] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Indexed: 06/01/2023]
Abstract
A combination of fundamental measure density functional theory and Monte Carlo computer simulation is used to determine the orientation-resolved interfacial tension and stiffness for the equilibrium hard-sphere crystal-fluid interface. Microscopic density functional theory is in quantitative agreement with simulations and predicts a tension of 0.66k(B)T/σ(2) with a small anisotropy of about 0.025k(B)T and stiffnesses with, e.g., 0.53k(B)T/σ(2) for the (001) orientation and 1.03k(B)T/σ(2) for the (111) orientation. Here k(B)T is denoting the thermal energy and σ the hard-sphere diameter. We compare our results with existing experimental findings.
Collapse
Affiliation(s)
- A Härtel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Marechal M, Zimmermann U, Löwen H. Freezing of parallel hard cubes with rounded edges. J Chem Phys 2012; 136:144506. [DOI: 10.1063/1.3699086] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Kruppa T, Neuhaus T, Messina R, Löwen H. Soft repulsive mixtures under gravity: Brazil-nut effect, depletion bubbles, boundary layering, nonequilibrium shaking. J Chem Phys 2012; 136:134106. [DOI: 10.1063/1.3698622] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Roth R, Mecke K, Oettel M. Communication: Fundamental measure theory for hard disks: Fluid and solid. J Chem Phys 2012; 136:081101. [DOI: 10.1063/1.3687921] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Marechal M, Goetzke HH, Härtel A, Löwen H. Inhomogeneous fluids of colloidal hard dumbbells: Fundamental measure theory and Monte Carlo simulations. J Chem Phys 2011; 135:234510. [DOI: 10.1063/1.3664742] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Löwen H, Allahyarov E. Doubled heterogeneous crystal nucleation in sediments of hard sphere binary-mass mixtures. J Chem Phys 2011; 135:134115. [PMID: 21992290 DOI: 10.1063/1.3646212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Crystallization during the sedimentation process of a binary colloidal hard spheres mixture is explored by Brownian dynamics computer simulations. The two species are different in buoyant mass but have the same interaction diameter. Starting from a completely mixed system in a finite container, gravity is suddenly turned on, and the crystallization process in the sample is monitored. If the Peclet numbers of the two species are both not too large, crystalline layers are formed at the bottom of the cell. The composition of lighter particles in the sedimented crystal is non-monotonic in the altitude: it is first increasing, then decreasing, and then increasing again. If one Peclet number is large and the other is small, we observe the occurrence of a doubled heterogeneous crystal nucleation process. First, crystalline layers are formed at the bottom container wall which are separated from an amorphous sediment. At the amorphous-fluid interface, a secondary crystal nucleation of layers is identified. This doubled heterogeneous nucleation can be verified in real-space experiments on colloidal mixtures.
Collapse
Affiliation(s)
- Hartmut Löwen
- Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | |
Collapse
|