1
|
Irfan M. Instability of modified Zakharov-Kuznetsov solitons in an inhomogeneous partially degenerate electron-ion magnetoplasma. Phys Rev E 2022; 106:065204. [PMID: 36671087 DOI: 10.1103/physreve.106.065204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Linear and nonlinear propagation characteristics of multidimensional drift ion-acoustic (IA) solitons are studied in an inhomogeneous partially degenerate electron-ion magnetoplasma. A modified Zakharov-Kuznetsov (mZK) equation is deduced, accounting for the longitudinal as well as the transverse dispersions. It is shown that the mZK equation admits a distinct solution, revealing excitation of a pulse-shaped soliton when the phase speed exceeds by the wave dispersion. For the instability condition of the waves, a novel growth rate (γ) is derived by modifying the standard small-k expansion scheme. The instability criterion, given for long-wavelength IA waves, has not been described elsewhere. Numerical analysis show that solitary pulses gain energy from the ion drift, involving into instability: it saturates with amplification of the unstable potentials. Similarly trapped electrons lead to unstable growth of the solitary waves by enhancing γ. This study is relevant to compact stars and to high-density facilities where density inhomogeneity ensues the unstable drift modes. The instability analysis is important in understanding anomalous diffusion, which reduces the lifespan (τ=γ^{-1}) of magnetically confined plasma.
Collapse
Affiliation(s)
- M Irfan
- Department of Physics, University of Malakand Chakdara Dir(L), Khyber Pakhtun Khwa 18800, Pakistan
| |
Collapse
|
2
|
Beuermann TN, Redmer R, Bornath T. Thomson scattering from dense inhomogeneous plasmas. Phys Rev E 2019; 99:053205. [PMID: 31212444 DOI: 10.1103/physreve.99.053205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/07/2022]
Abstract
X-ray Thomson scattering experiments in the soft and hard x-ray regime yield information on fundamental parameters of high-density systems. Pump-probe experiments with variable time delay provide insight into the excitation and relaxation dynamics in dense plasmas. On short time scales, a local thermodynamic equilibrium description might not be sufficient. Besides nonequilibrium effects on the electron distribution function, spatial inhomogeneities influence the scattering signal. Generalizing previous approaches of Belyi [Phys. Rev. E 97, 053204 (2018)2470-004510.1103/PhysRevE.97.053204] and Kozlowski et al. [Sci. Rep. 6, 24283 (2016)2045-232210.1038/srep24283], we discuss implications for Thomson scattering spectra for inhomogeneous plasmas in the warm dense matter regime based on a gradient expansion within real-time Green's-functions theory. Especially in the collective scattering regime, Thomson scattering spectra are modifed substantially by spatial inhomogeneities. Within a first-order gradient expansion, the dispersion relation for plasmons is determined. In particular, the ratio of the heights of the plasmon peaks is changed which prevents a simple estimation of the plasma temperature from the detailed balance relation.
Collapse
Affiliation(s)
- T-N Beuermann
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - R Redmer
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - Th Bornath
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| |
Collapse
|
3
|
Abstract
A self-consistent kinetic theory of Thomson scattering of an electromagnetic field by a nonuniform plasma is derived. We show that not only the imaginary part, but also the time and space derivatives of the real part of the dielectric susceptibility determine the amplitude and the width of the Thomson scattering spectral lines. As a result of inhomogeneity, these properties become asymmetric with respect to inversion of the sign of the frequency. Our theory provides a method of a remote probing and measurement of electron density gradients in plasma; this is based on the demonstrated asymmetry of the Thomson scattering lines.
Collapse
Affiliation(s)
- V V Belyi
- IZMIRAN, Russian Academy of Sciences, Troitsk, Moscow, 108840, Russia
| |
Collapse
|
4
|
Diaw A, Murillo MS. A viscous quantum hydrodynamics model based on dynamic density functional theory. Sci Rep 2017; 7:15352. [PMID: 29127308 PMCID: PMC5681597 DOI: 10.1038/s41598-017-14414-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022] Open
Abstract
Dynamic density functional theory (DDFT) is emerging as a useful theoretical technique for modeling the dynamics of correlated systems. We extend DDFT to quantum systems for application to dense plasmas through a quantum hydrodynamics (QHD) approach. The DDFT-based QHD approach includes correlations in the the equation of state self-consistently, satisfies sum rules and includes irreversibility arising from collisions. While QHD can be used generally to model non-equilibrium, heterogeneous plasmas, we employ the DDFT-QHD framework to generate a model for the electronic dynamic structure factor, which offers an avenue for measuring hydrodynamic properties, such as transport coefficients via x-ray Thomson scattering.
Collapse
Affiliation(s)
- Abdourahmane Diaw
- Department of Computational Mathematics, Science and Engineering, Michigan State University East Lansing, Michigan, 48823, USA.
| | - Michael S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University East Lansing, Michigan, 48823, USA
| |
Collapse
|
5
|
Vorberger J, Gericke DO. Ab initio approach to model x-ray diffraction in warm dense matter. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033112. [PMID: 25871229 DOI: 10.1103/physreve.91.033112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 06/04/2023]
Abstract
It is demonstrated how the static electron-electron structure factor in warm dense matter can be obtained from density functional theory in combination with quantum Monte Carlo data. In contrast to theories assuming well-separated bound and free states, this ab initio approach yields also valid results for systems close to the Mott transition (pressure ionization), where bound states are strongly modified and merge with the continuum. The approach is applied to x-ray Thomson scattering and compared to predictions of the Chihara formula whereby we use the ion-ion and electron-ion structure from the same simulations. The results show significant deviations of the screening cloud from the often applied Debye-like form.
Collapse
Affiliation(s)
- J Vorberger
- Max-Planck-Institut für die Physik Komplexer Systeme, 01187 Dresden, Germany
| | - D O Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
6
|
Arkhipov YV, Ashikbayeva AB, Askaruly A, Davletov AE, Tkachenko IM. Dielectric function of dense plasmas, their stopping power, and sum rules. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:053102. [PMID: 25493892 DOI: 10.1103/physreve.90.053102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 06/04/2023]
Abstract
Mathematical, particularly, asymptotic properties of the random-phase approximation, Mermin approximation, and extended Mermin-type approximation of the coupled plasma dielectric function are analyzed within the method of moments. These models are generalized for two-component plasmas. Some drawbacks and advantages of the above models are pointed out. The two-component plasma stopping power is shown to be enhanced with respect to that of the electron fluid.
Collapse
Affiliation(s)
- Yu V Arkhipov
- Department of Physics and Technology, IETP, al-Farabi Kazakh National University, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - A B Ashikbayeva
- Department of Physics and Technology, IETP, al-Farabi Kazakh National University, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - A Askaruly
- Department of Physics and Technology, IETP, al-Farabi Kazakh National University, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - A E Davletov
- Department of Physics and Technology, IETP, al-Farabi Kazakh National University, al-Farabi 71, 050040 Almaty, Kazakhstan
| | - I M Tkachenko
- Instituto de Matemática Pura y Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
7
|
Mc Kerr M, Haas F, Kourakis I. Relativistic theory for localized electrostatic excitations in degenerate electron-ion plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033112. [PMID: 25314552 DOI: 10.1103/physreve.90.033112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Indexed: 06/04/2023]
Abstract
A self-consistent relativistic two-fluid model is proposed for electron-ion plasma dynamics. A one-dimensional geometry is adopted. Electrons are treated as a relativistically degenerate fluid, governed by an appropriate equation of state. The ion fluid is also allowed to be relativistic, but is cold, nondegenerate, and subject only to an electrostatic potential. Exact stationary-profile solutions are sought, at the ionic scale, via the Sagdeev pseudopotential method. The analysis provides the pulse existence region, in terms of characteristic relativistic parameters, associated with the (ultrahigh) particle density.
Collapse
Affiliation(s)
- Michael Mc Kerr
- Center for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN Northern Ireland, United Kingdom
| | - Fernando Haas
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 3308-7286 Av. Bento Gonalves 9500, Porto Alegre, RS, Brazil
| | - Ioannis Kourakis
- Center for Plasma Physics, Department of Physics and Astronomy, Queen's University Belfast, BT7 1NN Northern Ireland, United Kingdom
| |
Collapse
|
8
|
Magyar P, Donkó Z, Kalman GJ, Golden KI. Linear and quadratic static response functions and structure functions in Yukawa liquids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:023102. [PMID: 25215834 DOI: 10.1103/physreve.90.023102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 06/03/2023]
Abstract
We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.
Collapse
Affiliation(s)
- Péter Magyar
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós Street 29-33, Hungary
| | - Zoltán Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós Street 29-33, Hungary and Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Gabor J Kalman
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Kenneth I Golden
- Department of Mathematics and Statistics, and Department of Physics, University of Vermont, Burlington, Vermont USA
| |
Collapse
|
9
|
Varin C, Peltz C, Brabec T, Fennel T. Attosecond plasma wave dynamics in laser-driven cluster nanoplasmas. PHYSICAL REVIEW LETTERS 2012; 108:175007. [PMID: 22680878 DOI: 10.1103/physrevlett.108.175007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Indexed: 05/11/2023]
Abstract
We introduce a microscopic particle-in-cell approach that allows bridging the microscopic and macroscopic realms of laser-driven plasma physics. As a first application, resonantly driven cluster nanoplasmas are investigated. Our analysis reveals an attosecond plasma-wave dynamics in clusters with radii R is approximately equal to 30 nm. The plasma waves are excited by electrons recolliding with the cluster surface and travel toward the center, where they collide and break. In this process, energetic electron hot spots are generated along with highly localized attosecond electric field fluctuations, whose intensity exceeds the driving laser by more than 2 orders of magnitude. The ionization enhancement resulting from both effects generates a strongly nonuniform ion charge distribution. The observed nonlinear plasma-wave phenomena have a profound effect on the ionization dynamics of nanoparticles and offer a route to extreme nanoplasmonic field enhancements.
Collapse
Affiliation(s)
- Charles Varin
- Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|