1
|
Dos Santos G, Cisternas E, Vogel EE, Ramirez-Pastor AJ. Orientational phase transition in monolayers of multipolar straight rigid rods: The case of 2-thiophene molecule adsorption on the Au(111) surface. Phys Rev E 2023; 107:014133. [PMID: 36797890 DOI: 10.1103/physreve.107.014133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Monte Carlo simulations and finite-size scaling theory have been carried out to study the critical behavior and universality for the isotropic-nematic (IN) phase transition in a system of straight rigid pentamers adsorbed on a triangular lattice with polarized nonhomogeneous intermolecular interactions. The model was inspired by the deposition of 2-thiophene molecules over the Au(111) surface, which was previously characterized by experimental techniques and density functional theory. A nematic phase, observed experimentally by the formation of a self-assembled monolayer of parallel molecules, is separated from the isotropic state by a continuous transition occurring at a finite density. The precise determination of the critical exponents indicates that the transition belongs to the three-state Potts universality class. The finite-size scaling analysis includes the study of mutability and diversity. These two quantities are derived from information theory and they have not previously been considered as part of the conventional treatment of critical phenomena for the determination of critical exponents. The results obtained here contribute to the understanding of formation processes of self-assembled monolayers, phase transitions, and critical phenomena from novel compression algorithms for studying mutual information in sequences of data.
Collapse
Affiliation(s)
- G Dos Santos
- Facultad de Ingeniería, Universidad de Mendoza, CONICET Mendoza, Argentina and Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, D5700HHW San Luis, Argentina
| | - E Cisternas
- Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - E E Vogel
- Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54-D, Temuco, Chile and Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile
| | - A J Ramirez-Pastor
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, D5700HHW San Luis, Argentina
| |
Collapse
|
2
|
Wang Q, He Z, Wang J, Hu H. Percolation thresholds of randomly rotating patchy particles on Archimedean lattices. Phys Rev E 2022; 105:034118. [PMID: 35428067 DOI: 10.1103/physreve.105.034118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
We study the percolation of randomly rotating patchy particles on 11 Archimedean lattices in two dimensions. Each vertex of the lattice is occupied by a particle, and in each model the patch size and number are monodisperse. When there are more than one patches on the surface of a particle, they are symmetrically decorated. As the proportion χ of the particle surface covered by the patches increases, the clusters connected by the patches grow and the system percolates at the threshold χ_{c}. We combine Monte Carlo simulations and the critical polynomial method to give precise estimates of χ_{c} for disks with one to six patches and spheres with one to two patches on the 11 lattices. For one-patch particles, we find that the order of χ_{c} values for particles on different lattices is the same as that of threshold values p_{c} for site percolation on these lattices, which implies that χ_{c} for one-patch particles mainly depends on the geometry of lattices. For particles with more patches, symmetry becomes very important in determining χ_{c}. With the estimates of χ_{c} for disks with one to six patches, using analyses related to symmetry, we are able to give precise values of χ_{c} for disks with an arbitrary number of patches on all 11 lattices. The following rules are found for patchy disks on each of these lattices: (1) as the number of patches n increases, values of χ_{c} repeat in a periodic way, with the period n_{0} determined by the symmetry of the lattice; (2) when mod(n,n_{0})=0, the minimum threshold value χ_{min} appears, and the model is equivalent to site percolation with χ_{min}=p_{c}; and (3) disks with mod(n,n_{0})=m and n_{0}-m (m<n_{0}/2) share the same χ_{c} value. The results can be useful references for studying the connectivity of patchy particles on two-dimensional lattices at finite temperatures.
Collapse
Affiliation(s)
- Quancheng Wang
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Zhenfang He
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Junfeng Wang
- School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Hao Hu
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
3
|
Cisternas E, dos Santos GJ, Flores M, Vogel EE, Ramirez-Pastor AJ. Self-assembled monolayer formation of pentamers-like molecules onto FCC(111) surfaces: the case of curcuminoids onto Au(111) surface. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab8961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The adsorption of rigid straight electrically polarized pentamers over a FCC(111) surface is studied. The model was inspired by the deposition of 2-thiophene molecules over the Au(111) surface, which was previously characterized by experimental techniques and simulated under the frame of the density functional theory. We now obtain and report the charge distribution of the molecule which allows to propose a deposition model followed by Monte Carlo simulations over an ad-hoc lattice gas model. We show that for a certain value of the chemical potential there exists an isotropic-nematic phase transition which can explain the formation of a self-assembled monolayer like the one observed in the transmission electron microscopy images. An order parameter is defined to characterize the transition which presents a step-like behavior at a critical chemical potential value. The possible nature of the nematic transition in conjunction with an ergodicity breakdown is discussed as future work by means of statistical physics techniques.
Collapse
|
4
|
Díaz-De Armas A, Martínez-Ratón Y. Role of length polydispersity in the phase behavior of freely rotating hard-rectangle fluids. Phys Rev E 2017; 95:052702. [PMID: 28618522 DOI: 10.1103/physreve.95.052702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Indexed: 11/07/2022]
Abstract
We use the density-functional formalism, in particular the scaled-particle theory, applied to a length-polydisperse hard-rectangle fluid to study its phase behavior as a function of the mean particle aspect ratio κ_{0} and polydispersity Δ_{0}. The numerical solutions of the coexistence equations are calculated by transforming the original problem with infinite degrees of freedoms to a finite set of equations for the amplitudes of the Fourier expansion of the moments of the density profiles. We divide the study into two parts. The first one is devoted to the calculation of the phase diagrams in the packing fraction η_{0}-κ_{0} plane for a fixed Δ_{0} and selecting parent distribution functions with exponential (the Schulz distribution) or Gaussian decays. In the second part we study the phase behavior in the η_{0}-Δ_{0} plane for fixed κ_{0} while Δ_{0} is changed. We characterize in detail the orientational ordering of particles and the fractionation of different species between the coexisting phases. Also we study the character (second vs first order) of the isotropic-nematic phase transition as a function of polydispersity. We particularly focus on the stability of the tetratic phase as a function of κ_{0} and Δ_{0}. The isotropic-nematic transition becomes strongly of first order when polydispersity is increased: The coexistence gap widens and the location of the tricritical point moves to higher values of κ_{0} while the tetratic phase is slightly destabilized with respect to the nematic one. The results obtained here can be tested in experiments on shaken monolayers of granular rods.
Collapse
Affiliation(s)
- Ariel Díaz-De Armas
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
| | - Yuri Martínez-Ratón
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain
| |
Collapse
|
5
|
López LG, Linares DH, Ramirez-Pastor AJ, Stariolo DA, Cannas SA. Critical behavior of self-assembled rigid rods on two-dimensional lattices: Bethe-Peierls approximation and Monte Carlo simulations. J Chem Phys 2013; 138:234706. [PMID: 23802975 DOI: 10.1063/1.4809987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The critical behavior of adsorbed monomers that reversibly polymerize into linear chains with restricted orientations relative to the substrate has been studied. In the model considered here, which is known as self-assembled rigid rods (SARRs) model, the surface is represented by a two-dimensional lattice and a continuous orientational transition occurs as a function of temperature and coverage. The phase diagrams were obtained for the square, triangular, and honeycomb lattices by means of Monte Carlo simulations and finite-size scaling analysis. The numerical results were compared with Bethe-Peierls analytical predictions about the orientational transition for the square and triangular lattices. The analysis of the phase diagrams, along with the behavior of the critical average rod lengths, showed that the critical properties of the model do not depend on the structure of the lattice at low temperatures (coverage), revealing a quasi-one-dimensional behavior in this regime. Finally, the universality class of the SARRs model, which has been subject of controversy, has been revisited.
Collapse
Affiliation(s)
- L G López
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis, CONICET, 5700 San Luis, Argentina
| | | | | | | | | |
Collapse
|
6
|
Almarza NG, Tavares JM, Noya EG, Telo da Gama MM. Three-dimensional patchy lattice model for empty fluids. J Chem Phys 2012; 137:244902. [DOI: 10.1063/1.4771591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
López LG, Ramirez-Pastor AJ. Adsorption of self-assembled rigid rods on two-dimensional lattices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14917-14924. [PMID: 23009131 DOI: 10.1021/la302693n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Monte Carlo (MC) simulations have been carried out to study the adsorption on square and triangular lattices of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with a discrete number of allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The process has been monitored by following the behavior of the adsorption isotherms (chemical potential μ as a function of the surface coverage θ) for different values of lateral interaction energy/temperature. The numerical data were compared with mean-field analytical predictions and exact functions for noninteracting and 1D systems. The obtained results revealed the existence of three adsorption regimes in temperature. (1) At high temperatures, above the critical one characterizing the IN transition at full coverage T(c)(θ = 1), the particles are distributed at random on the surface and the adlayer behaves as a noninteracting 2D system. (2) At very low temperatures, the asymmetric monomers adsorb, forming chains over almost the entire range of coverage, and the adsorption process behaves as a 1D problem. (3) In the intermediate regime, the system exhibits a mixed regime and the filling of the lattice proceeds according to two different processes. In the first stage, the monomers adsorb isotropically on the lattice until the IN transition occurs in the system and, from this point, particles adsorb, forming chains so that the adlayer behaves as a 1D fluid. The two adsorption processes are present in the adsorption isotherms, and a marked singularity can be observed that separates both regimes. Thus, the adsorption isotherms appear as sensitive quantities with respect to the IN phase transition, allowing us (i) to reproduce the phase diagram of the system for square lattices and (ii) to obtain an accurate determination of the phase diagram for triangular lattices.
Collapse
Affiliation(s)
- L G López
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis-CONICET, San Luis, Argentina
| | | |
Collapse
|
8
|
Almarza NG. Closed-loop liquid-vapor equilibrium in a one-component system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:030101. [PMID: 23030851 DOI: 10.1103/physreve.86.030101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Indexed: 06/01/2023]
Abstract
We report Monte Carlo simulations that show a closed-loop liquid-vapor equilibrium in a pure substance. This finding has been achieved on a two-dimensional lattice model for patchy particles that can form network fluids. We have considered related models with a slightly different patch distribution in order to understand the features of the distribution of patches on the surface of the particles that make possible the presence of the closed-loop liquid-vapor equilibrium, and its relation to the phase diagram containing so-called empty liquids. Finally we discuss the likelihood of finding the closed-loop liquid-vapor equilibria on related models for three-dimensional models of patchy particles in the continuum, and speculate on the possible relationship between the mechanism behind the closed-loop liquid-vapor equilibrium of our simple lattice model and the salt-induced reentrant condensation found in complex systems.
Collapse
Affiliation(s)
- N G Almarza
- Instituto de Química-Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain
| |
Collapse
|
9
|
Almarza NG, Tavares JM, Telo da Gama MM. The nature of the ordered phase of the confined self-assembled rigid rod model. J Chem Phys 2012; 137:074901. [DOI: 10.1063/1.4745196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Bertoldi DS, Bringa EM, Miranda EN. Analytical solution of the mean field Ising model for finite systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:226004. [PMID: 22555147 DOI: 10.1088/0953-8984/24/22/226004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Ising model for finite systems, e.g. for clusters of different sizes and crystal lattices, was solved analytically by the mean field approach. The magnetization was calculated from the number of accessible microstates, using the gamma function and its derivatives, unlike the usual solution in the microcanonical which uses the Stirling approximation. We determined a scaling exponent of ∼1/3, which shows how the Curie temperature decreases with decreasing nanoparticle size. Moreover, the model predicts the behaviour of surface and core regions and it explains in simple terms several effects previously observed in experiments and Monte Carlo simulations of small magnetic systems.
Collapse
|
11
|
López LG, Linares DH, Ramirez-Pastor AJ. Comment on "effect of polydispersity on the ordering transition of adsorbed self-assembled rigid rods". PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:053101-053102. [PMID: 23004806 DOI: 10.1103/physreve.85.053101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Indexed: 06/01/2023]
Abstract
The critical behavior of self-assembled rigid rods on a square lattice was recently reinvestigated by Almarza et al. [Phys. Rev. E 82, 061117 (2010)]. Based on the Binder cumulants and the value of the critical exponent of the correlation length, the authors found that the isotropic-nematic phase transition occurring in the system is in the two-dimensional Ising universality class. This conclusion contrasts with that of a previous study [López et al., Phys. Rev. E 80, 040105(R) (2009)] which indicates that the transition at intermediate density belongs to the q=1 Potts universality class. Almarza et al. attributed the discrepancy to the use of the density as the control parameter by López et al. The present work shows that this suggestion is not sufficient, and that the discrepancy arises solely from the use of different statistical ensembles. Finally, the necessity of making corrections to the scaling functions in the canonical ensemble is discussed.
Collapse
Affiliation(s)
- L G López
- Departamento de Física, Instituto de Física Aplicada, Universidad Nacional de San Luis, CONICET, 5700 San Luis, Argentina.
| | | | | |
Collapse
|
12
|
Almarza NG, Tavares JM, Simões M, Telo da Gama MM. The condensation and ordering of models of empty liquids. J Chem Phys 2011; 135:174903. [DOI: 10.1063/1.3657406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
|
14
|
Almarza NG, Tavares JM, da Gama MMT. Communication: The criticality of self-assembled rigid rods on triangular lattices. J Chem Phys 2011; 134:071101. [DOI: 10.1063/1.3556665] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|