1
|
Blanch-Mercader C, Orlandi JG, Casademunt J. Unraveling the hidden complexity of quasideterministic ratchets: Random walks, graphs, and circle maps. Phys Rev E 2020; 101:012203. [PMID: 32069660 DOI: 10.1103/physreve.101.012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 06/10/2023]
Abstract
Brownian ratchets are shown to feature a nontrivial vanishing-noise limit where the dynamics is reduced to a stochastic alternation between two deterministic circle maps (quasideterministic ratchets). Motivated by cooperative dynamics of molecular motors, here we solve exactly the problem of two interacting quasideterministic ratchets. We show that the dynamics can be described as a random walk on a graph that is specific to each set of parameters. We compute point by point the exact velocity-force V(f) function as a summation over all paths in the specific graph for each f, revealing a complex structure that features self-similarity and nontrivial continuity properties. From a general perspective, we unveil that the alternation of two simple piecewise linear circle maps unfolds a very rich variety of dynamical complexity, in particular the phenomenon of piecewise chaos, where chaos emerges from the combination of nonchaotic maps. We show convergence of the finite-noise case to our exact solution.
Collapse
Affiliation(s)
- Carles Blanch-Mercader
- Departamento de Física de la Matèria Condensada, University of Barcelona, 08028 Barcelona, Spain
- Departament of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Javier G Orlandi
- Departamento de Física de la Matèria Condensada, University of Barcelona, 08028 Barcelona, Spain
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Canada T2N 1N4
| | - Jaume Casademunt
- Departamento de Física de la Matèria Condensada, University of Barcelona, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Abstract
Kinesin motor proteins that drive intracellular transport share an overall architecture of two motor domain-containing subunits that dimerize through a coiled-coil stalk. Dimerization allows kinesins to be processive motors, taking many steps along the microtubule track before detaching. However, whether dimerization is required for intracellular transport remains unknown. Here, we address this issue using a combination of in vitro and cellular assays to directly compare dimeric motors across the kinesin-1, -2, and -3 families to their minimal monomeric forms. Surprisingly, we find that monomeric motors are able to work in teams to drive peroxisome dispersion in cells. However, peroxisome transport requires minimal force output, and we find that most monomeric motors are unable to disperse the Golgi complex, a high-load cargo. Strikingly, monomeric versions of the kinesin-2 family motors KIF3A and KIF3B are able to drive Golgi dispersion in cells, and teams of monomeric KIF3B motors can generate over 8 pN of force in an optical trap. We find that intracellular transport and force output by monomeric motors, but not dimeric motors, are significantly decreased by the addition of longer and more flexible motor-to-cargo linkers. Together, these results suggest that dimerization of kinesin motors is not required for intracellular transport; however, it enables motor-to-motor coordination and high force generation regardless of motor-to-cargo distance. Dimerization of kinesin motors is thus critical for cellular events that require an ability to generate or withstand high forces.
Collapse
|
3
|
Bameta T, Das D, Das D, Padinhateeri R, Inamdar MM. Sufficient conditions for the additivity of stall forces generated by multiple filaments or motors. Phys Rev E 2017; 95:022406. [PMID: 28297971 DOI: 10.1103/physreve.95.022406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Molecular motors and cytoskeletal filaments work collectively most of the time under opposing forces. This opposing force may be due to cargo carried by motors or resistance coming from the cell membrane pressing against the cytoskeletal filaments. Some recent studies have shown that the collective maximum force (stall force) generated by multiple cytoskeletal filaments or molecular motors may not always be just a simple sum of the stall forces of the individual filaments or motors. To understand this excess or deficit in the collective force, we study a broad class of models of both cytoskeletal filaments and molecular motors. We argue that the stall force generated by a group of filaments or motors is additive, that is, the stall force of N number of filaments (motors) is N times the stall force of one filament (motor), when the system is reversible at stall. Conversely, we show that this additive property typically does not hold true when the system is irreversible at stall. We thus present a novel and unified understanding of the existing models exhibiting such non-addivity, and generalise our arguments by developing new models that demonstrate this phenomena. We also propose a quantity similar to thermodynamic efficiency to easily predict this deviation from stall-force additivity for filament and motor collectives.
Collapse
Affiliation(s)
- Tripti Bameta
- UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Vidhyanagari Campus, Mumbai-400098, India
| | - Dipjyoti Das
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai-400 076, India
| | - Dibyendu Das
- Department of Physics, Indian Institute of Technology, Bombay, Powai, Mumbai-400 076, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400 076, India
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai-400 076, India
| |
Collapse
|
4
|
Levien E, Bressloff PC. Quasi-steady-state analysis of coupled flashing ratchets. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042129. [PMID: 26565190 DOI: 10.1103/physreve.92.042129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 06/05/2023]
Abstract
We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.
Collapse
Affiliation(s)
- Ethan Levien
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA
| | - Paul C Bressloff
- Department of Mathematics, University of Utah, 155 South 1400 East, Salt Lake City, Utah 84112, USA
| |
Collapse
|
5
|
Formation of helical membrane tubes around microtubules by single-headed kinesin KIF1A. Nat Commun 2015; 6:8025. [PMID: 26268542 PMCID: PMC4557341 DOI: 10.1038/ncomms9025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/09/2015] [Indexed: 12/23/2022] Open
Abstract
The kinesin-3 motor KIF1A is in charge of vesicular transport in neuronal axons. Its single-headed form is known to be very inefficient due to the presence of a diffusive state in the mechanochemical cycle. However, recent theoretical studies have suggested that these motors could largely enhance force generation by working in teams. Here we test this prediction by challenging single-headed KIF1A to extract membrane tubes from giant vesicles along microtubule filaments in a minimal in vitro system. Remarkably, not only KIF1A motors are able to extract tubes but they feature a novel phenomenon: tubes are wound around microtubules forming tubular helices. This finding reveals an unforeseen combination of cooperative force generation and self-organized manoeuvreing capability, suggesting that the diffusive state may be a key ingredient for collective motor performance under demanding traffic conditions. Hence, we conclude that KIF1A is a genuinely cooperative motor, possibly explaining its specificity to axonal trafficking.
Collapse
|
6
|
Kohler F, Rohrbach A. Synchronization of elastically coupled processive molecular motors and regulation of cargo transport. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012701. [PMID: 25679637 DOI: 10.1103/physreve.91.012701] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 06/04/2023]
Abstract
The collective work of motor proteins plays an important role in cellular transport processes. Since measuring intermotor coupling and hence a comparison to theoretical predictions is difficult, we introduce the synchronization as an alternative observable for motor cooperativity. This synchronization can be determined from the ratio of the mean times of motor resting and stepping. Results from a multistate Markov chain model and Brownian dynamics simulations, describing the elastically coupled motors, coincide well. Our model can explain the experimentally observed effect of strongly increased transport velocities and powers by the synchronization and coupling of myosin V and kinesin I.
Collapse
Affiliation(s)
- Felix Kohler
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering-IMTEK, University of Freiburg, Germany and Centre for Biological Signalling Studies (bioss), University of Freiburg, Germany
| | - Alexander Rohrbach
- Laboratory for Bio- and Nano-Photonics, Department of Microsystems Engineering-IMTEK, University of Freiburg, Germany and Centre for Biological Signalling Studies (bioss), University of Freiburg, Germany
| |
Collapse
|
7
|
Oriola D, Casademunt J. Cooperative action of KIF1A Brownian motors with finite dwell time. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032722. [PMID: 24730889 DOI: 10.1103/physreve.89.032722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Indexed: 06/03/2023]
Abstract
We study in detail the cooperative action of small groups of KIF1A motors in its monomeric (single-headed) form within an arrangement relevant to vesicle traffic or membrane tube extraction. It has been recently shown that under these circumstances, the presence of a finite dwell time in the motor cycle contributes to remarkably enhance collective force generation [D. Oriola and J. Casademunt, Phys. Rev. Lett. 111, 048103 (2013)]. We analyze this mechanism in detail by means of a two-state noise-driven ratchet model with hard-core repulsive interactions. We obtain staircase-shaped velocity-force curves and show that motors self-organize in clusters with a nontrivial force distribution that conveys a large part of the load to the central motors. Under heavy loads, large clusters adopt a synchronic mode of totally asymmetric steps. We also find a dramatic increase of the collective efficiency with the number of motors. Finally, we complete the study by addressing different interactions that impose spatial constraints such as rigid coupling and raft-induced confinement. Our results reinforce the hypothesis that the specificity of KIF1A to axonal vesicular transport may be deeply related to its high cooperativity.
Collapse
Affiliation(s)
- David Oriola
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, E-08028 Barcelona, Spain
| | - Jaume Casademunt
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, E-08028 Barcelona, Spain
| |
Collapse
|
8
|
Oriola D, Casademunt J. Cooperative force generation of KIF1A Brownian motors. PHYSICAL REVIEW LETTERS 2013; 111:048103. [PMID: 23931411 DOI: 10.1103/physrevlett.111.048103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Indexed: 06/02/2023]
Abstract
KIF1A is a kinesin motor protein that can work processively in a monomeric (single-headed) form by using a noise-driven ratchet mechanism. Here, we show that the combination of a passive diffusive state and finite-time kinetics of adenosine triphosphate hydrolysis provides a powerful mechanism of cooperative force generation, implying for instance that ∼10 monomeric KIF1As can team up to become ∼100 times stronger than a single one. Consequently, we propose that KIF1A could outperform conventional (double-headed) kinesin collectively and thus explain its specificity in axonal trafficking. We elucidate the cooperativity mechanism with a lattice model that includes multiparticle transitions.
Collapse
Affiliation(s)
- David Oriola
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Avinguda Diagonal 647, E-08028 Barcelona, Spain
| | | |
Collapse
|
9
|
Recho P, Truskinovsky L. Asymmetry between pushing and pulling for crawling cells. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022720. [PMID: 23496561 DOI: 10.1103/physreve.87.022720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 02/13/2013] [Indexed: 06/01/2023]
Abstract
Eukaryotic cells possess motility mechanisms allowing them not only to self-propel but also to exert forces on obstacles (to push) and to carry cargoes (to pull). To study the inherent asymmetry between active pushing and pulling we model a crawling acto-myosin cell extract as a one-dimensional layer of active gel subjected to external forces. We show that pushing is controlled by protrusion and that the macroscopic signature of the protrusion dominated motility mechanism is concavity of the force-velocity relation. In contrast, pulling is driven by protrusion only at small values of the pulling force and it is replaced by contraction when the pulling force is sufficiently large. This leads to more complex convex-concave structure of the force-velocity relation; in particular, competition between protrusion and contraction can produce negative mobility in a biologically relevant range. The model illustrates active readjustment of the force generating machinery in response to changes in the dipole structure of external forces. The possibility of switching between complementary active mechanisms implies that if necessary "pushers" can replace "pullers" and vice versa.
Collapse
Affiliation(s)
- Pierre Recho
- LMS, CNRS-UMR 7649, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| | | |
Collapse
|
10
|
Nam W, Epureanu BI. Metrics for characterizing collective transport by multiple dimeric kinesins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:051916. [PMID: 23214823 DOI: 10.1103/physreve.86.051916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 08/03/2012] [Indexed: 06/01/2023]
Abstract
Kinesin is a processive molecular motor which transports various cellular cargos by converting chemical energy into mechanical movements. Although the motion of a single molecule has been characterized in several studies, the dynamics of collective transport remains controversial. Since the chemical reactions fueling molecular motors are stochastic processes, the movements of coupled motors are not perfectly synchronized. The goal of this study is to develop metrics to analyze the level of synchronization of coupled (stochastic) motors. The correlation among movements of coupled motors, the slackness, the cooperativity, and the power loss of kinesins are explored using the developed metrics. These metrics can be extended to characterize collective work done by other molecular motors also.
Collapse
Affiliation(s)
- Woochul Nam
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
11
|
Gay G, Courtheoux T, Reyes C, Tournier S, Gachet Y. A stochastic model of kinetochore-microtubule attachment accurately describes fission yeast chromosome segregation. ACTA ACUST UNITED AC 2012; 196:757-74. [PMID: 22412019 PMCID: PMC3308688 DOI: 10.1083/jcb.201107124] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In fission yeast, erroneous attachments of spindle microtubules to kinetochores are frequent in early mitosis. Most are corrected before anaphase onset by a mechanism involving the protein kinase Aurora B, which destabilizes kinetochore microtubules (ktMTs) in the absence of tension between sister chromatids. In this paper, we describe a minimal mathematical model of fission yeast chromosome segregation based on the stochastic attachment and detachment of ktMTs. The model accurately reproduces the timing of correct chromosome biorientation and segregation seen in fission yeast. Prevention of attachment defects requires both appropriate kinetochore orientation and an Aurora B-like activity. The model also reproduces abnormal chromosome segregation behavior (caused by, for example, inhibition of Aurora B). It predicts that, in metaphase, merotelic attachment is prevented by a kinetochore orientation effect and corrected by an Aurora B-like activity, whereas in anaphase, it is corrected through unbalanced forces applied to the kinetochore. These unbalanced forces are sufficient to prevent aneuploidy.
Collapse
Affiliation(s)
- Guillaume Gay
- Laboratoire de biologie cellulaire et moléculaire du contrôle de la proliferation, Université de Toulouse, F-31062 Toulouse, France
| | | | | | | | | |
Collapse
|