Corberi F, Smaldone L. Ordering kinetics of the two-dimensional voter model with long-range interactions.
Phys Rev E 2024;
109:034133. [PMID:
38632821 DOI:
10.1103/physreve.109.034133]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
We study analytically the ordering kinetics of the two-dimensional long-range voter model on a two-dimensional lattice, where agents on each vertex take the opinion of others at distance r with probability P(r)∝r^{-α}. The model is characterized by different regimes, as α is varied. For α>4, the behavior is similar to that of the nearest-neighbor model, with the formation of ordered domains of a typical size growing as L(t)∝sqrt[t], until consensus is reached in a time of the order of NlnN, with N being the number of agents. Dynamical scaling is violated due to an excess of interfacial sites whose density decays as slowly as ρ(t)∝1/lnt. Sizable finite-time corrections are also present, which are absent in the case of nearest-neighbor interactions. For 0<α≤4, standard scaling is reinstated and the correlation length increases algebraically as L(t)∝t^{1/z}, with 1/z=2/α for 3<α<4 and 1/z=2/3 for 0<α<3. In addition, for α≤3, L(t) depends on N at any time t>0. Such coarsening, however, only leads the system to a partially ordered metastable state where correlations decay algebraically with distance, and whose lifetime diverges in the N→∞ limit. In finite systems, consensus is reached in a time of the order of N for any α<4.
Collapse