1
|
Plummer D, Svensson P, Gericke DO, Hollebon P, Vinko SM, Gregori G. Ionization calculations using classical molecular dynamics. Phys Rev E 2025; 111:015204. [PMID: 39972830 DOI: 10.1103/physreve.111.015204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/03/2025] [Indexed: 02/21/2025]
Abstract
By performing an ensemble of molecular dynamics simulations, the model-dependent ionization state is computed for strongly interacting systems self-consistently. This is accomplished through a free energy minimization framework based on the technique of thermodynamic integration. To illustrate the method, two simple models applicable to partially ionized hydrogen plasma are presented in which pair potentials are employed between ions and neutral particles. Within the models, electrons are either bound in the hydrogen ground state or distributed in a uniform charge-neutralizing background. Particular attention is given to the transition between atomic gas and ionized plasma, where the effect of neutral interactions is explored beyond commonly used models in the chemical picture. Furthermore, pressure ionization is observed when short-range repulsion effects are included between neutrals. The developed technique is general, and we discuss the applicability to a variety of molecular dynamics models for partially ionized warm dense matter.
Collapse
Affiliation(s)
- Daniel Plummer
- University of Oxford, Department of Physics, OX1 3PU, United Kingdom
| | - Pontus Svensson
- University of Oxford, Department of Physics, OX1 3PU, United Kingdom
| | - Dirk O Gericke
- University of Warwick, Centre for Fusion, Space and Astrophysics, Department of Physics, Coventry CV4 7AL, United Kingdom
| | | | - Sam M Vinko
- University of Oxford, Department of Physics, OX1 3PU, United Kingdom
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Gianluca Gregori
- University of Oxford, Department of Physics, OX1 3PU, United Kingdom
| |
Collapse
|
2
|
Svensson P, Aziz Y, Dornheim T, Azadi S, Hollebon P, Skelt A, Vinko SM, Gregori G. Modeling of warm dense hydrogen via explicit real-time electron dynamics: Dynamic structure factors. Phys Rev E 2024; 110:055205. [PMID: 39690610 DOI: 10.1103/physreve.110.055205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/08/2024] [Indexed: 12/19/2024]
Abstract
We present two methods for computing the dynamic structure factor for warm dense hydrogen without invoking either the Born-Oppenheimer approximation or the Chihara decomposition, by employing a wave-packet description that resolves the electron dynamics during ion evolution. First, a semiclassical method is discussed, which is corrected based on known quantum constraints, and second, a direct computation of the density response function within the molecular dynamics. The wave-packet models are compared to PIMC and DFT-MD for the static and low-frequency behavior. For the high-frequency behavior the models recover the expected behavior in the limits of small and large momentum transfers and show the characteristic flattening of the plasmon dispersion for intermediate momentum transfers due to interactions, in agreement with commonly used models for x-ray Thomson scattering. By modeling the electrons and ions on an equal footing, both the ion and free electron part of the spectrum can now be treated within a single framework where we simultaneously resolve the ion-acoustic and plasmon mode, with a self-consistent description of collisions and screening.
Collapse
Affiliation(s)
| | - Yusuf Aziz
- AWE, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | | | | | | | - Amy Skelt
- AWE, Aldermaston, Reading, Berkshire RG7 4PR, United Kingdom
| | | | | |
Collapse
|
3
|
Svensson P, Campbell T, Graziani F, Moldabekov Z, Lyu N, Batista VS, Richardson S, Vinko SM, Gregori G. Development of a new quantum trajectory molecular dynamics framework. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220325. [PMID: 37393934 PMCID: PMC10315217 DOI: 10.1098/rsta.2022.0325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 07/04/2023]
Abstract
An extension to the wave packet description of quantum plasmas is presented, where the wave packet can be elongated in arbitrary directions. A generalized Ewald summation is constructed for the wave packet models accounting for long-range Coulomb interactions and fermionic effects are approximated by purpose-built Pauli potentials, self-consistent with the wave packets used. We demonstrate its numerical implementation with good parallel support and close to linear scaling in particle number, used for comparisons with the more common wave packet employing isotropic states. Ground state and thermal properties are compared between the models with differences occurring primarily in the electronic subsystem. Especially, the electrical conductivity of dense hydrogen is investigated where a 15% increase in DC conductivity can be seen in our wave packet model compared with other models. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Pontus Svensson
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Thomas Campbell
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Frank Graziani
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Zhandos Moldabekov
- Center of Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Ningyi Lyu
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
- Yale Quantum Institute, Yale University, New Haven, CT 06511, USA
| | | | - Sam M Vinko
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Gianluca Gregori
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
4
|
Fairushin II, Mokshin AV. Collective ion dynamics in Coulomb one-component plasmas within the self-consistent relaxation theory. Phys Rev E 2023; 108:015206. [PMID: 37583226 DOI: 10.1103/physreve.108.015206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
In this paper, we present the theoretical formalism describing the collective ion dynamics of the nonideal Coulomb classical one-component plasmas on the basis of the self-consistent relaxation theory. The theory is adapted to account for correlations between the frequency relaxation parameters that characterize the three- and four-particle dynamics and the parameters associated with the two-particle dynamics. The dynamic structure factor spectra and dispersion characteristics calculated for a wide range of wave numbers are in agreement with the molecular dynamics simulation data and the results obtained with the theory of the frequency moments. The proposed formalism reproduces all the features inherent to the Coulomb one-component plasmas and requires only knowledge of the coupling parameter and the information about the structure.
Collapse
Affiliation(s)
- Ilnaz I Fairushin
- Department of Computational Physics, Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| | - Anatolii V Mokshin
- Department of Computational Physics, Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
5
|
Pan H, Kalman GJ, Hartmann P, Donkó Z. Strongly coupled Yukawa trilayer liquid: Structure and dynamics. Phys Rev E 2020; 102:043206. [PMID: 33212692 DOI: 10.1103/physreve.102.043206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/09/2020] [Indexed: 11/07/2022]
Abstract
The equilibrium structure and the dispersion relations of collective excitations in trilayer Yukawa systems in the strongly coupled liquid regime are examined. The equilibrium correlations reveal a variety of structures in the liquid phase, reminiscent of the corresponding structures in the solid phase. At small layer separation substitutional disorder becomes the governing feature. Theoretical dispersion relations are obtained by applying the quasilocalized charge approximation (QLCA) formalism, while numerical data are generated by microcanonical molecular dynamics simulations. The dispersions and polarizations of the collective excitations obtained through both of these methods are compared and discussed in detail. We find that the QLCA method is, in general, very satisfactory, but that there are phenomena not covered by the QLCA. In particular, by analyzing the dynamical longitudinal and transverse current fluctuation spectra we discover the existence of a structure not related to the collective mode spectra. This also provides insight into the long-standing problem of the gap frequency discrepancy, observed in strongly coupled layered systems in earlier studies.
Collapse
Affiliation(s)
- Hong Pan
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Gabor J Kalman
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Peter Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.,Center for Astrophysics, Space Physics and Engineering Research (CASPER), Baylor University, 100 Research Pkwy, Waco, Texas 76706, USA
| | - Zoltán Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
6
|
Silvestri LG, Kalman GJ, Donkó Z, Hartmann P, Rosenberg M, Golden KI, Kyrkos S. Sound speed in Yukawa one-component plasmas across coupling regimes. Phys Rev E 2019; 100:063206. [PMID: 31962397 DOI: 10.1103/physreve.100.063206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 06/10/2023]
Abstract
A many-body system of charged particles interacting via a pairwise Yukawa potential, the so-called Yukawa one-component plasma (YOCP), is a good approximation for a variety of physical systems. Such systems are completely characterized by two parameters: the screening parameter, κ, and the nominal coupling strength, Γ. It is well known that the collective spectrum of the YOCP is governed by a longitudinal acoustic mode, both in the weakly and strongly coupled regimes. In the long-wavelength limit, the linear term in the dispersion (i.e., ω=sk) defines the sound speed s. We study the evolution of this latter quantity from the weak- through the strong-coupling regimes by analyzing the dynamic structure function S(k,ω) in the low-frequency domain. Depending on the values of Γ and κ and w=s/v_{th} (i.e., the ratio between the phase velocity of the wave and the thermal speed of the particles), we identify five domains in the (κ,Γ) parameter space in which the physical behavior of the YOCP exhibits different features. The competing physical processes are the collective Coulomb-like versus binary-collision-dominated behavior and the individual particle motion versus quasilocalization. Our principal tool of investigation is molecular dynamics (MD) computer simulation from which we obtain S(k,ω). Recent improvements in the simulation technique have allowed us to obtain a large body of high-quality data in the range Γ={0.1-10000} and κ={0.5-5}. The theoretical results based on various models are compared in order to see which one provides the most cogent physical description and the best agreement with MD data in the different domains.
Collapse
Affiliation(s)
- Luciano G Silvestri
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Gabor J Kalman
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - Zoltán Donkó
- Institute of Solid State Physics and Optics, Wigner Research Centre for Physics, Budapest 1121, Hungary
| | - Peter Hartmann
- Institute of Solid State Physics and Optics, Wigner Research Centre for Physics, Budapest 1121, Hungary
| | - Marlene Rosenberg
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Kenneth I Golden
- College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, USA
| | - Stamatios Kyrkos
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| |
Collapse
|
7
|
Choi Y, Dharuman G, Murillo MS. High-frequency response of classical strongly coupled plasmas. Phys Rev E 2019; 100:013206. [PMID: 31499843 DOI: 10.1103/physreve.100.013206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 06/10/2023]
Abstract
The dynamic structure factor (DSF) of the Yukawa system is here obtained with highly converged molecular dynamics (MD) over the entire liquid phase. The data provide a rigorous test of theoretical models of ion-acoustic wave-dispersion relations, the intermediate scattering function, and the high-frequency response. We compare our MD results with seven diverse models, finding good agreement among those that enforce the three basic sum rules for dispersion properties, although one of the models has previously unreported spurious peaks. The MD simulations reveal that at intermediate frequencies ω, the high-frequency response of the DSF follows a power law, going approximately as ω^{-p}, where p>0, and p shows nontrivial dependencies on the wave vector q and the plasma parameters κ and Γ. In contrast, among the seven comparison models, the predicted high-frequency response is found to be independent of {q,κ,Γ}. This high-frequency power suggests a useful fitting form. In addition, these results expose limitations of several models and, moreover, suggest that some approaches are difficult or impossible to extend because of the lack of finite moments. We also find the double-plasmon resonance peak in our MD simulations that none of the theoretical models predicts.
Collapse
Affiliation(s)
- Yongjun Choi
- Institute for Cyber-Enabled Research, Michigan State University, East Lansing, Michigan 48824, USA
| | - Gautham Dharuman
- Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Michael S Murillo
- Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
8
|
Bott AFA, Gregori G. Thomson scattering cross section in a magnetized, high-density plasma. Phys Rev E 2019; 99:063204. [PMID: 31330748 DOI: 10.1103/physreve.99.063204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 06/10/2023]
Abstract
We calculate the Thomson scattering cross section in a nonrelativistic, magnetized, high-density plasma-in a regime where collective excitations can be described by magnetohydrodynamics. We show that, in addition to cyclotron resonances and an elastic peak, the cross section exhibits two pairs of peaks associated with slow and fast magnetosonic waves; by contrast, the cross section arising in pure hydrodynamics possesses just a single pair of Brillouin peaks. Both the position and the width of these magnetosonic-wave peaks depend on the ambient magnetic field and temperature, as well as transport and thermodynamic coefficients, and so can therefore serve as a diagnostic tool for plasma properties that are otherwise challenging to measure.
Collapse
Affiliation(s)
- A F A Bott
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - G Gregori
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
9
|
Moldabekov ZA, Kählert H, Dornheim T, Groth S, Bonitz M, Ramazanov TS. Dynamical structure factor of strongly coupled ions in a dense quantum plasma. Phys Rev E 2019; 99:053203. [PMID: 31212426 DOI: 10.1103/physreve.99.053203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 06/09/2023]
Abstract
The dynamical structure factor (DSF) of strongly coupled ions in dense plasmas with partially and strongly degenerate electrons is investigated. The main focus is on the impact of electronic correlations (nonideality) on the ionic DSF. The latter is computed by carrying out molecular dynamics (MD) simulations with a screened ion-ion interaction potential. The electronic screening is taken into account by invoking the Singwi-Tosi-Land-Sjölander approximation, and it is compared to the MD simulation data obtained considering the electronic screening in the random phase approximation and using the Yukawa potential. We find that electronic correlations lead to lower values of the ion-acoustic mode frequencies and to an extension of the applicability limit with respect to the wave-number of a hydrodynamic description. Moreover, we show that even in the limit of weak electronic coupling, electronic correlations have a nonnegligible impact on the ionic longitudinal sound speed. Additionally, the applicability of the Yukawa potential with an adjustable screening parameter is discussed, which will be of interest, e.g., for the interpretation of experimental results for the ionic DSF of dense plasmas.
Collapse
Affiliation(s)
- Zh A Moldabekov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Street, 050040 Almaty, Kazakhstan
| | - H Kählert
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - S Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - T S Ramazanov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Street, 050040 Almaty, Kazakhstan
| |
Collapse
|
10
|
Fu ZG, Wang Z, Li ML, Li DF, Kang W, Zhang P. Dynamic properties of the energy loss of multi-MeV charged particles traveling in two-component warm dense plasmas. Phys Rev E 2016; 94:063203. [PMID: 28085472 DOI: 10.1103/physreve.94.063203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Indexed: 06/06/2023]
Abstract
The energy loss of multi-MeV charged particles moving in two-component warm dense plasmas (WDPs) is studied theoretically beyond the random-phase approximation. The short-range correlations between particles are taken into account via dynamic local field corrections (DLFC) in a Mermin dielectric function for two-component plasmas. The mean ionization states are obtained by employing the detailed configuration accounting model. The Yukawa-type effective potential is used to derive the DLFC. Numerically, the DLFC are obtained via self-consistent iterative operations. We find that the DLFC are significant around the maximum of the stopping power. Furthermore, by using the two-component extended Mermin dielectric function model including the DLFC, the energy loss of a proton with an initial energy of ∼15 MeV passing through a WDP of beryllium with an electronic density around the solid value n_{e}≈3×10^{23}cm^{-3} and with temperature around ∼40 eV is estimated numerically. The numerical result is reasonably consistent with the experimental observations [A. B. Zylsta et al., Phys. Rev. Lett. 111, 215002 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.215002]. Our results show that the partial ionization and the dynamic properties should be of importance for the stopping of charged particles moving in the WDP.
Collapse
Affiliation(s)
- Zhen-Guo Fu
- Center for Fusion Energy Science and Technology, CAEP, P.O. Box 8009, Beijing 100088, China
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
| | - Zhigang Wang
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
| | - Meng-Lei Li
- Center for Fusion Energy Science and Technology, CAEP, P.O. Box 8009, Beijing 100088, China
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
| | - Da-Fang Li
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
| | - Wei Kang
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
| | - Ping Zhang
- Center for Fusion Energy Science and Technology, CAEP, P.O. Box 8009, Beijing 100088, China
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
- HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
- Center for Compression Science, CAEP, Mianyang 621900, China
| |
Collapse
|
11
|
Cross JE, Mabey P, Gericke DO, Gregori G. Theory of density fluctuations in strongly radiative plasmas. Phys Rev E 2016; 93:033201. [PMID: 27078469 DOI: 10.1103/physreve.93.033201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 11/07/2022]
Abstract
Derivation of the dynamic structure factor, an important parameter linking experimental and theoretical work in dense plasmas, is possible starting from hydrodynamic equations. Here we obtain, by modifying the governing hydrodynamic equations, a new form of the dynamic structure factor which includes radiative terms. The inclusion of such terms has an effect on the structure factor at high temperatures, which suggests that its effect must be taken into consideration in such regimes.
Collapse
Affiliation(s)
- J E Cross
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - P Mabey
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - D O Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - G Gregori
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
12
|
Gill NM, Heinonen RA, Starrett CE, Saumon D. Ion-ion dynamic structure factor of warm dense mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:063109. [PMID: 26172810 DOI: 10.1103/physreve.91.063109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture-equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.
Collapse
Affiliation(s)
- N M Gill
- 206 Allison Laboratory, Auburn University, Auburn, Alabama 36849, USA
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - R A Heinonen
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - C E Starrett
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - D Saumon
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
13
|
Khrapak SA, Thomas HM. Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033110. [PMID: 25871227 DOI: 10.1103/physreve.91.033110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Indexed: 06/04/2023]
Abstract
The conventional fluid description of multicomponent plasma, supplemented by an appropriate equation of state for the macroparticle component, is used to evaluate the longitudinal sound velocity of Yukawa fluids. The obtained results are in very good agreement with those obtained earlier employing the quasilocalized charge approximation and molecular dynamics simulations in a rather broad parameter regime. Thus, a simple yet accurate tool to estimate the sound velocity across coupling regimes is proposed, which can be particularly helpful in estimating the dust-acoustic velocity in strongly coupled dusty (complex) plasmas. It is shown that, within the present approach, the sound velocity is completely determined by particle-particle correlations and the neutralizing medium (plasma), apart from providing screening of the Coulomb interaction, has no other effect on the sound propagation. The ratio of the actual sound velocity to its "ideal gas" (weak coupling) scale only weakly depends on the coupling strength in the fluid regime but exhibits a pronounced decrease with the increase of the screening strength. The limitations of the present approach in applications to real complex plasmas are briefly discussed.
Collapse
Affiliation(s)
- Sergey A Khrapak
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany
| | - Hubertus M Thomas
- Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft und Raumfahrt, Oberpfaffenhofen, Germany
| |
Collapse
|
14
|
Mithen JP. Transverse current fluctuations in the Yukawa one-component plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:013101. [PMID: 24580340 DOI: 10.1103/physreve.89.013101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Indexed: 06/03/2023]
Abstract
Using numerical simulations, we investigate the wave number and frequency dependent transverse current correlation function CT(k,ω) of a single-component fluid with Yukawa interaction potential, also known as the Yukawa one-component plasma. The transverse current correlation function is an important quantity because it contains the microscopic details of the viscoelastic behavior of the fluid. We show that, in the region of densities and temperatures in which shear waves do not propagate, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. As either the density is increased or the temperature decreased, the transverse current correlation function shows additional structure that the simple models fail to capture.
Collapse
Affiliation(s)
- James P Mithen
- Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
15
|
Balakrishnan K, Garcia AL, Donev A, Bell JB. Fluctuating hydrodynamics of multispecies nonreactive mixtures. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:013017. [PMID: 24580330 DOI: 10.1103/physreve.89.013017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Indexed: 06/03/2023]
Abstract
In this paper we discuss the formulation of the fluctuating Navier-Stokes equations for multispecies, nonreactive fluids. In particular, we establish a form suitable for numerical solution of the resulting stochastic partial differential equations. An accurate and efficient numerical scheme, based on our previous methods for single species and binary mixtures, is presented and tested at equilibrium as well as for a variety of nonequilibrium problems. These include the study of giant nonequilibrium concentration fluctuations in a ternary mixture in the presence of a diffusion barrier, the triggering of a Rayleigh-Taylor instability by diffusion in a four-species mixture, as well as reverse diffusion in a ternary mixture. Good agreement with theory and experiment demonstrates that the formulation is robust and can serve as a useful tool in the study of thermal fluctuations for multispecies fluids.
Collapse
Affiliation(s)
- Kaushik Balakrishnan
- Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Alejandro L Garcia
- Department of Physics and Astronomy, San Jose State University, 1 Washington Square, San Jose, California 95192, USA
| | - Aleksandar Donev
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA
| | - John B Bell
- Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| |
Collapse
|
16
|
White TG, Richardson S, Crowley BJB, Pattison LK, Harris JWO, Gregori G. Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum. PHYSICAL REVIEW LETTERS 2013; 111:175002. [PMID: 24206498 DOI: 10.1103/physrevlett.111.175002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Indexed: 06/02/2023]
Abstract
Here, we report orbital-free density-functional theory (OF DFT) molecular dynamics simulations of the dynamic ion structure factor of warm solid density aluminum at T=0.5 eV and T=5 eV. We validate the OF DFT method in the warm dense matter regime through comparison of the static and thermodynamic properties with the more complete Kohn-Sham DFT. This extension of OF DFT to dynamic properties indicates that previously used models based on classical molecular dynamics may be inadequate to capture fully the low frequency dynamics of the response function.
Collapse
Affiliation(s)
- T G White
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Shukla PK, Akbari-Moghanjoughi M. Hydrodynamic theory for ion structure and stopping power in quantum plasmas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:043106. [PMID: 23679529 DOI: 10.1103/physreve.87.043106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/07/2013] [Indexed: 06/02/2023]
Abstract
We present a theory for the dynamical ion structure factor (DISF) and ion stopping power in an unmagnetized collisional quantum plasma with degenerate electron fluids and nondegenerate strongly correlated ion fluids. Our theory is based on the fluctuation dissipation theorem and the quantum plasma dielectric constant that is deduced from a linearized viscoelastic quantum hydrodynamical (LVQHD) model. The latter incorporates the essential physics of quantum forces, which are associated with the quantum statistical pressure, electron-exchange, and electron-correlation effects, the quantum electron recoil effect caused by the dispersion of overlapping electron wave functions that control the dynamics of degenerate electron fluids, and the viscoelastic properties of strongly correlated ion fluids. Both degenerate electrons and nondegenerate strongly correlated ions are coupled with each other via the space charge electric force. Thus, our LVQHD theory is valid for a collisional quantum plasma at atomic scales with a wide range of the ion coupling parameter, the plasma composition, and plasma number densities that are relevant for compressed plasmas in laboratories (inertial confinement fusion schemes) and in astrophysical environments (e.g., warm dense matter and the cores of white dwarf stars). It is found that quantum electron effects and viscoelastic properties of strongly correlated ions significantly affect the features of the DISF and the ion stopping power (ISP). Unlike previous theories, which have studied ion correlations in terms of the ion coupling parameter, by neglecting the essential physics of collective effects that are competing among each other, we have here developed a method to evaluate the dependence of the plasma static and dynamical features in terms of individual parameters, like the Wigner-Seitz radius, the ion atomic number, and the ion temperature. It is found that due to the complex nature of charge screening in quantum plasmas, the ion coupling parameter alone cannot be a good measure for determining ion correlation effects in a collisional quantum plasma, and such a characteristic of a dense quantum plasma should be evaluated against each of the plasma parameters involved. The present investigation thus provides testable predictions for the DISF and ISP and is henceforth applicable to a wide range of compressed plasma categories ranging from laboratory to astrophysical warm dense matter.
Collapse
Affiliation(s)
- P K Shukla
- International Centre for Advanced Studies in Physical Sciences & Institute for Theoretical Physics, Faculty of Physics & Astronomy, Ruhr University Bochum, D-44780 Bochum, Germany
| | | |
Collapse
|
18
|
Vorberger J, Donko Z, Tkachenko IM, Gericke DO. Dynamic ion structure factor of warm dense matter. PHYSICAL REVIEW LETTERS 2012; 109:225001. [PMID: 23368129 DOI: 10.1103/physrevlett.109.225001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Indexed: 06/01/2023]
Abstract
The dynamics of the ion structure in warm dense matter is determined by molecular dynamics simulations using an effective ion-ion potential. This potential is obtained from ab initio simulations and has a strong short-range repulsion added to a screened Coulomb potential. Models based on static or dynamic local field corrections are found to be insufficient to describe the data. An extended Mermin approach, a hydrodynamic model, and the method of moments with local constraints are capable of reproducing the numerical results but have rather limited predictive powers as they all need some numerical data as input. The method of moments is found to be the most promising.
Collapse
Affiliation(s)
- J Vorberger
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | |
Collapse
|
19
|
Daligault J. Diffusion in ionic mixtures across coupling regimes. PHYSICAL REVIEW LETTERS 2012; 108:225004. [PMID: 23003608 DOI: 10.1103/physrevlett.108.225004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Indexed: 06/01/2023]
Abstract
Molecular dynamics simulations are used to investigate the diffusion properties of one-component plasmas and binary ionic mixtures from the weakly to the strongly coupled regimes. A physically motivated model for the diffusivities is proposed that reproduces the simulation data and gives insight into the nature of ionic motions and interactions in plasmas across the coupling regimes. The model extends the widely used Chapman-Spitzer theory from the weakly to the moderately coupled regime. In the strongly coupled regime, diffusion is modeled in terms of thermally activated jumps between equilibrium positions separated by an energy barrier. The basic ideas discussed are applicable to the study of other transport coefficients.
Collapse
Affiliation(s)
- Jérôme Daligault
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| |
Collapse
|
20
|
Mithen JP, Daligault J, Gregori G. Comparative merits of the memory function and dynamic local-field correction of the classical one-component plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:056407. [PMID: 23004879 DOI: 10.1103/physreve.85.056407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Indexed: 06/01/2023]
Abstract
The complementarity of the liquid and plasma descriptions of the classical one-component plasma is explored by studying wave number and frequency dependent dynamical quantities: the dynamical structure factor (DSF) and the dynamic local field correction (LFC). Accurate molecular dynamics (MD) simulations are used to validate and test models of the DSF and LFC. Our simulations, which span the entire fluid regime (Γ=0.1-175), show that the DSF is very well represented by a simple and well known memory function model of generalized hydrodynamics. On the other hand, the LFC, which we have computed using MD for the first time, is not well described by existing models.
Collapse
Affiliation(s)
- James P Mithen
- Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom.
| | | | | |
Collapse
|
21
|
Schmidt R, Crowley BJB, Mithen J, Gregori G. Quantum hydrodynamics of strongly coupled electron fluids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:046408. [PMID: 22680587 DOI: 10.1103/physreve.85.046408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 03/12/2012] [Indexed: 06/01/2023]
Abstract
We have extended the classical hydrodynamics formalism to include nonlocal quantum behavior via the phenomenological Bohm potential. We have then solved the quantum hydrodynamics equations to derive an expression for the dynamical structure factor, which describes the density-density correlations in the system. This formalism can be applied to high density strongly coupled electron fluids in the long wavelength domain. We show that at densities above 7×10(25) cm(-3) there are significant differences in the dispersion relation. Future experiments at large laser facilities could provide an experimental test of the theory.
Collapse
Affiliation(s)
- R Schmidt
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | | | | | | |
Collapse
|
22
|
Mithen JP, Daligault J, Crowley BJB, Gregori G. Density fluctuations in the Yukawa one-component plasma: an accurate model for the dynamical structure factor. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:046401. [PMID: 22181277 DOI: 10.1103/physreve.84.046401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/05/2011] [Indexed: 05/31/2023]
Abstract
Using numerical simulations, we investigate the equilibrium dynamics of a single-component fluid with Yukawa interaction potential. We show that, for a wide range of densities and temperatures, the dynamics of the system are in striking agreement with a simple model of generalized hydrodynamics. Since the Yukawa potential can describe the ion-ion interactions in a plasma, our results have significant applicability for both analyzing and interpreting the results of x-ray scattering data from high-power lasers and fourth-generation light sources.
Collapse
Affiliation(s)
- James P Mithen
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | | | | | | |
Collapse
|