1
|
Kawasaki T, Miyazaki K. Unified Understanding of Nonlinear Rheology near the Jamming Transition Point. PHYSICAL REVIEW LETTERS 2024; 132:268201. [PMID: 38996305 DOI: 10.1103/physrevlett.132.268201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
When slowly sheared, jammed packings respond elastically before yielding. This linear elastic regime becomes progressively narrower as the jamming transition point is approached, and rich nonlinear rheologies such as shear softening and hardening or melting emerge. However, the physical mechanism of these nonlinear rheologies remains elusive. To clarify this, we numerically study jammed packings of athermal frictionless soft particles under quasistatic shear γ. We find the universal scaling behavior for the ratio of the shear stress σ and the pressure P, independent of the preparation protocol of the initial configurations. In particular, we reveal shear softening σ/P∼γ^{1/2} over an unprecedentedly wide range of strain up to the yielding point, which a simple scaling argument can rationalize.
Collapse
|
2
|
Villarroel C, Düring G. Avalanche properties at the yielding transition: from externally deformed glasses to active systems. SOFT MATTER 2024; 20:3520-3528. [PMID: 38600803 DOI: 10.1039/d3sm01354e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
We investigated the yielding phenomenon in the quasistatic limit using numerical simulations of soft particles. Two different deformation scenarios, simple shear (passive) and self-random force (active), and two interaction potentials were used. Our approach reveals that the exponents describing the avalanche distribution are universal within the margin of error, showing consistency between the passive and active systems. This indicates that any differences observed in the flow curves may have resulted from a dynamic effect on the avalanche propagation mechanism. The evolution time required to reach a steady state differs significantly between active and passive scenarios under similar conditions. However, we demonstrated that plastic avalanches under athermal quasistatic simulation dynamics display a similar scaling relationship between avalanche size and relaxation time, which cannot explain the different flow curves.
Collapse
Affiliation(s)
- Carlos Villarroel
- Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
| | - Gustavo Düring
- Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
| |
Collapse
|
3
|
Xie Z, Atherton TJ. Jamming on convex deformable surfaces. SOFT MATTER 2024; 20:1070-1078. [PMID: 38206105 DOI: 10.1039/d2sm01608g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Jamming is a fundamental transition that governs the behavior of particulate media, including sand, foams and dense suspensions. Upon compression, such media change from freely flowing to a disordered, marginally stable solid that exhibits non-Hookean elasticity. While the jamming process is well established for fixed geometries, the nature and dynamics of jamming for a diverse class of soft materials and deformable substrates, including emulsions and biological matter, remains unknown. Here we propose a new scenario, metric jamming, where rigidification occurs on a surface that has been deformed from its ground state. Unlike classical jamming processes that exhibit discrete mechanical transitions, surprisingly we find that metric jammed states possess mechanical properties continuously tunable between those of classically jammed and conventional elastic media. The compact and curved geometry significantly alters the vibrational spectra of the structures relative to jamming in flat Euclidean space, and metric jammed systems also possess new types of vibrational mode that couple particle and shape degrees of freedom. Our work provides a theoretical framework that unifies our understanding of solidification processes that take place on deformable media and lays the groundwork to exploit jamming for the control and stabilization of shape in self-assembly processes.
Collapse
Affiliation(s)
- Zhaoyu Xie
- Department of Physics & Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155, USA.
| | - Timothy J Atherton
- Department of Physics & Astronomy, Tufts University, 574 Boston Ave, Medford, MA 02155, USA.
| |
Collapse
|
4
|
Peshkov A, Teitel S. Comparison of compression versus shearing near jamming, for a simple model of athermal frictionless disks in suspension. Phys Rev E 2023; 107:014901. [PMID: 36797880 DOI: 10.1103/physreve.107.014901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Using a simplified model for a non-Brownian suspension, we numerically study the response of athermal, overdamped, frictionless disks in two dimensions to isotropic and uniaxial compression, as well as to pure and simple shearing, all at finite constant strain rates ε[over ̇]. We show that isotropic and uniaxial compression result in the same jamming packing fraction ϕ_{J}, while pure-shear- and simple-shear-induced jamming occurs at a slightly higher ϕ_{J}^{*}, consistent with that found previously for simple shearing. A critical scaling analysis of pure shearing gives critical exponents consistent with those previously found for both isotropic compression and simple shearing. Using orientational order parameters for contact bond directions, we compare the anisotropy of the force and contact networks at both lowest nematic order, as well as higher 2n-fold order.
Collapse
Affiliation(s)
- Anton Peshkov
- Department of Physics, California State University Fullerton, Fullerton, California 92831, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
5
|
Peshkov A, Teitel S. Universality of stress-anisotropic and stress-isotropic jamming of frictionless spheres in three dimensions: Uniaxial versus isotropic compression. Phys Rev E 2022; 105:024902. [PMID: 35291159 DOI: 10.1103/physreve.105.024902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
We numerically study a three-dimensional system of athermal, overdamped, frictionless spheres, using a simplified model for a non-Brownian suspension. We compute the bulk viscosity under both uniaxial and isotropic compression as a means to address the question of whether stress-anisotropic and stress-isotropic jamming are in the same critical universality class. Carrying out a critical scaling analysis of the system pressure p, shear stress σ, and macroscopic friction μ=σ/p, as functions of particle packing fraction ϕ and compression rate ε[over ̇], we find good agreement for all critical parameters comparing the isotropic and anisotropic cases. In particular, we determine that the bulk viscosity diverges as p/ε[over ̇]∼(ϕ_{J}-ϕ)^{-β}, with β=3.36±0.09, as jamming is approached from below. We further demonstrate that the average contact number per particle Z can also be written in a scaling form as a function of ϕ and ε[over ̇]. Once again, we find good agreement between the uniaxial and isotropic cases. We compare our results to prior simulations and theoretical predictions.
Collapse
Affiliation(s)
- Anton Peshkov
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
6
|
Villarroel C, Düring G. Critical yielding rheology: from externally deformed glasses to active systems. SOFT MATTER 2021; 17:9944-9949. [PMID: 34693958 DOI: 10.1039/d1sm00948f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We use extensive computer simulations to study the yielding transition under two different loading schemes: standard simple shear dynamics and self-propelled dense active systems. In the active systems, a yielding transition toward an out-of-equilibrium flowing state known as the liquid phase is observed when self-propulsion is increased. The range of self-propulsions in which this pure liquid regime exists appears to vanish upon approaching the so-called 'jamming point' at which the solidity of soft-sphere packings is lost. Such an 'active yielding' transition shares similarities with the generic yielding transition for shear flows. A Herschel-Bulkley law is observed along the liquid regime in both loading scenarios, with a clear difference in the critical scaling exponents between the two, suggesting the existence of different universality classes for the yielding transition under different driving conditions. In addition, we present the direct measurements of growing length and time scales for both driving scenarios. A comparison with theoretical predictions from the recent literature reveals poor agreement with our numerical results.
Collapse
Affiliation(s)
- Carlos Villarroel
- Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
| | - Gustavo Düring
- Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
- ANID - Millenium Nucleus of Soft Smart Mechanical Metamaterials, Santiago, Chile
| |
Collapse
|
7
|
Ikeda H, Hukushima K. Nonaffine displacements below jamming under athermal quasistatic compression. Phys Rev E 2021; 103:032902. [PMID: 33862705 DOI: 10.1103/physreve.103.032902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/23/2021] [Indexed: 11/07/2022]
Abstract
Critical properties of frictionless spherical particles below jamming are studied using extensive numerical simulations, paying particular attention to the nonaffine part of the displacements during the athermal quasistatic compression. It is shown that the squared norm of the nonaffine displacement exhibits a power-law divergence toward the jamming transition point. A possible connection between this critical exponent and that of the shear viscosity is discussed. The participation ratio of the displacements vanishes in the thermodynamic limit at the transition point, meaning that the nonaffine displacements are localized marginally with a fractal dimension. Furthermore, the distribution of the displacement is shown to have a power-law tail, the exponent of which is related to the fractal dimension.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan
| | - Koji Hukushima
- Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan.,Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
8
|
Peshkov A, Teitel S. Critical scaling of compression-driven jamming of athermal frictionless spheres in suspension. Phys Rev E 2021; 103:L040901. [PMID: 34006006 DOI: 10.1103/physreve.103.l040901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/08/2021] [Indexed: 11/07/2022]
Abstract
We study numerically a system of athermal, overdamped, frictionless spheres, as in a non-Brownian suspension, in two and three dimensions. Compressing the system isotropically at a fixed rate ε[over ̇], we investigate the critical behavior at the jamming transition. The finite compression rate introduces a control timescale, which allows one to probe the critical timescale associated with jamming. As was found previously for steady-state shear-driven jamming, we find for compression-driven jamming that pressure obeys a critical scaling relation as a function of packing fraction ϕ and compression rate ε[over ̇], and that the bulk viscosity p/ε[over ̇] diverges upon jamming. A scaling analysis determines the critical exponents associated with the compression-driven jamming transition. Our results suggest that stress-isotropic, compression-driven jamming may be in the same universality class as stress-anisotropic, shear-driven jamming.
Collapse
Affiliation(s)
- Anton Peshkov
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
9
|
Jiang X, Matsushima T, Blumenfeld R. Structural characteristics of ordered clusters in packs of ellipses. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202124906004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Structural characteristics of two-dimensional elliptic granular packs with various aspect ratios and intergranular friction coefficients were studied using the Discrete Element Method (DEM). Isotropic compaction from random unjammed state leads to a jammed state with polycrystals of orientationally ordered clusters (OOC). The OOCs were identified using a cluster labelling algorithm, based on the relative angle Δθ between the major axes of two contacting particles. The threshold value of Δθ was optimised to give the strongest correlation between OOCs and the force chain network. We found that the resulting OOC size distribution decays algebraically with an exponent of −2, independently of grain aspect ratio and material properties.
Collapse
|
10
|
Olsson P, Teitel S. Dynamic length scales in athermal, shear-driven jamming of frictionless disks in two dimensions. Phys Rev E 2020; 102:042906. [PMID: 33212573 DOI: 10.1103/physreve.102.042906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/10/2020] [Indexed: 11/07/2022]
Abstract
We carry out numerical simulations of athermally sheared, bidisperse, frictionless disks in two dimensions. From an appropriately defined velocity correlation function, we determine that there are two diverging length scales, ξ and ℓ, as the jamming transition is approached. We analyze our results using a critical scaling ansatz for the correlation function and argue that the more divergent length ℓ is a consequence of a dangerous irrelevant scaling variable and that it is ξ, which is the correlation length that determines the divergence of the system viscosity as jamming is approached from below in the liquid phase. We find that ξ∼(ϕ_{J}-ϕ)^{-ν} diverges with the critical exponent ν=1. We provide evidence that ξ measures the length scale of fluctuations in the rotation of the particle velocity field, while ℓ measures the length scale of fluctuations in the divergence of the velocity field.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
11
|
Keta YE, Olsson P. Translational and rotational velocities in shear-driven jamming of ellipsoidal particles. Phys Rev E 2020; 102:052905. [PMID: 33327139 DOI: 10.1103/physreve.102.052905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
We study shear-driven jamming of ellipsoidal particles at zero temperature with a focus on the microscopic dynamics. We find that a change from spherical particles to ellipsoids with aspect ratio α=1.02 gives dramatic changes of the microscopic dynamics with much lower translational velocities and a new role for the rotations. Whereas the velocity difference at contacts-and thereby the dissipation-in collections of spheres is dominated by the translational velocities and reduced by the rotations, the same quantity is in collections of ellipsoids instead totally dominated by the rotational velocities. By also examining the effect of different aspect ratios we find that the examined quantities show either a peak or a change in slope at α≈1.2, which thus gives evidence for a crossover between different regions of low and high aspect ratio.
Collapse
Affiliation(s)
- Yann-Edwin Keta
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
- Département de Physique, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
- Département de Physique, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex, France
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
12
|
Marschall TA, Teitel S. Depletion forces in athermally sheared mixtures of frictionless disks and rods in two dimensions. Phys Rev E 2020; 102:042908. [PMID: 33212568 DOI: 10.1103/physreve.102.042908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 10/01/2020] [Indexed: 11/07/2022]
Abstract
We carry out numerical simulations to study the behavior of an athermal mixture of frictionless circular disks and elongated rods in two dimensions, under three different types of global linear deformation at a finite strain rate: (i) simple shearing, (ii) pure shearing, and (iii) isotropic compression. We find that the fluctuations induced by such deformations lead to depletion forces that cause rods to group in parallel oriented clusters for the cases of simple and pure shear, but not for isotropic compression. For simple shearing, we find that as the fraction of rods increases, this clustering increases, leading to an increase in the average rate of rotation of the rods, and a decrease in the magnitude of their nematic ordering.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
13
|
Otsuki M, Hayakawa H. Shear jamming, discontinuous shear thickening, and fragile states in dry granular materials under oscillatory shear. Phys Rev E 2020; 101:032905. [PMID: 32289976 DOI: 10.1103/physreve.101.032905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/26/2020] [Indexed: 11/07/2022]
Abstract
We numerically study the linear response of two-dimensional frictional granular materials under oscillatory shear. The storage modulus G^{'} and the loss modulus G^{''} in the zero strain rate limit depend on the initial strain amplitude of the oscillatory shear before measurement. The shear jammed state (satisfying G^{'}>0) can be observed at an amplitude greater than a critical initial strain amplitude. The fragile state is defined by the emergence of liquid-like and solid-like states depending on the form of the initial shear. In this state, the observed G^{'} after the reduction of the strain amplitude depends on the phase of the external shear strain. The loss modulus G^{''} exhibits a discontinuous jump corresponding to discontinuous shear thickening in the fragile state.
Collapse
Affiliation(s)
- Michio Otsuki
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
14
|
Marschall TA, Teitel S. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Spatial structure and correlations. Phys Rev E 2020; 101:032907. [PMID: 32289919 DOI: 10.1103/physreve.101.032907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
We use numerical simulations to study the flow of athermal, frictionless, soft-core two-dimensional spherocylinders driven by a uniform steady-state simple shear applied at a fixed volume and a fixed finite strain rate γ[over ̇]. Energy dissipation is via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model for flow in a non-Brownian suspension with Newtonian rheology. We study the resulting spatial structure of the sheared system, and compute correlation functions of the velocity, the particle density, the nematic order parameter, and the particle angular velocity. Correlations of density, nematic order, and angular velocity are shown to be short ranged both below and above jamming. We compare a system of size-bidisperse particles with a system of size-monodisperse particles, and argue how differences in spatial order as the packing increases lead to differences in the global nematic order parameter. We consider the effect of shearing on initially well ordered configurations, and show that in many cases the shearing acts to destroy the order, leading to the same steady-state ensemble as found when starting from random initial configurations.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
15
|
Marschall TA, Van Hoesen D, Teitel S. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Particle rotations and orientational ordering. Phys Rev E 2020; 101:032901. [PMID: 32290000 DOI: 10.1103/physreve.101.032901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/15/2020] [Indexed: 06/11/2023]
Abstract
We use numerical simulations to study the flow of a bidisperse mixture of athermal, frictionless, soft-core two-dimensional spherocylinders driven by a uniform steady-state simple shear applied at a fixed volume and a fixed finite strain rate γ[over ̇]. Energy dissipation is via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model for flow in a non-Brownian suspension with Newtonian rheology. Considering a range of packing fractions ϕ and particle asphericities α at small γ[over ̇], we study the angular rotation θ[over ̇]_{i} and the nematic orientational ordering S_{2} of the particles induced by the shear flow, finding a nonmonotonic behavior as the packing ϕ is varied. We interpret this nonmonotonic behavior as a crossover from dilute systems at small ϕ, where single-particle-like behavior occurs, to dense systems at large ϕ, where the geometry of the dense packing dominates and a random Poisson-like process for particle rotations results. We also argue that the finite nematic ordering S_{2} is a consequence of the shearing serving as an ordering field, rather than a result of long-range cooperative behavior among the particles. We arrive at these conclusions by consideration of (i) the distribution of waiting times for a particle to rotate by π, (ii) the behavior of the system under pure, as compared to simple, shearing, (iii) the relaxation of the nematic order parameter S_{2} when perturbed away from the steady state, and (iv) by construction, a numerical mean-field model for the rotational motion of a particle. Our results also help to explain the singular behavior observed when taking the α→0 limit approaching circular disks.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Daniel Van Hoesen
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
16
|
Marschall TA, Teitel S. Shear-driven flow of athermal, frictionless, spherocylinder suspensions in two dimensions: Stress, jamming, and contacts. Phys Rev E 2019; 100:032906. [PMID: 31639991 DOI: 10.1103/physreve.100.032906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 06/10/2023]
Abstract
We use numerical simulations to study the flow of a bidisperse mixture of athermal, frictionless, soft-core two-dimensional spherocylinders driven by a uniform steady-state shear strain applied at a fixed finite rate. Energy dissipation occurs via a viscous drag with respect to a uniformly sheared host fluid, giving a simple model for flow in a non-Brownian suspension and resulting in a Newtonian rheology. We study the resulting pressure p and deviatoric shear stress σ of the interacting spherocylinders as a function of packing fraction ϕ, strain rate γ[over ̇], and a parameter α that measures the asphericity of the particles; α is varied to consider the range from nearly circular disks to elongated rods. We consider the direction of anisotropy of the stress tensor, the macroscopic friction μ=σ/p, and the divergence of the transport coefficient η_{p}=p/γ[over ̇] as ϕ is increased to the jamming transition ϕ_{J}. From a phenomenological analysis of Herschel-Bulkley rheology above jamming, we estimate ϕ_{J} as a function of asphericity α and show that the variation of ϕ_{J} with α is the main cause for differences in rheology as α is varied; when plotted as ϕ/ϕ_{J}, rheological curves for different α qualitatively agree. However, a detailed scaling analysis of the divergence of η_{p} for our most elongated particles suggests that the jamming transition of spherocylinders may be in a different universality class than that of circular disks. We also compute the number of contacts per particle Z in the system and show that the value at jamming Z_{J} is a nonmonotonic function of α that is always smaller than the isostatic value. We measure the probability distribution of contacts per unit surface length P(ϑ) at polar angle ϑ with respect to the spherocylinder spine and find that as α→0 this distribution seems to diverge at ϑ=π/2, giving a finite limiting probability for contacts on the vanishingly small flat sides of the spherocylinder. Finally, we consider the variation of the average contact force as a function of location on the particle surface.
Collapse
Affiliation(s)
- Theodore A Marschall
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
17
|
Olsson P. Dimensionality and Viscosity Exponent in Shear-driven Jamming. PHYSICAL REVIEW LETTERS 2019; 122:108003. [PMID: 30932641 DOI: 10.1103/physrevlett.122.108003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 06/09/2023]
Abstract
Collections of bidisperse frictionless particles at zero temperature in three dimensions are simulated with a shear-driven dynamics with the aim to compare with the behavior in two dimensions. Contrary to the prevailing picture, and in contrast to results from isotropic jamming from compression or quench, we find that the critical exponents in three dimensions are different from those in two dimensions and conclude that shear-driven jamming in two and three dimensions belong to different universality classes.
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
18
|
Behringer RP, Chakraborty B. The physics of jamming for granular materials: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:012601. [PMID: 30132446 DOI: 10.1088/1361-6633/aadc3c] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Granular materials consist of macroscopic grains, interacting via contact forces, and unaffected by thermal fluctuations. They are one of a class systems that undergo jamming, i.e. a transition between fluid-like and disordered solid-like states. Roughly twenty years ago, proposals by Cates et al for the shear response of colloidal systems and by Liu and Nagel, for a universal jamming diagram in a parameter space of packing fraction, ϕ, shear stress, τ, and temperature, T raised key questions. Contemporaneously, experiments by Howell et al and numerical simulations by Radjai et al and by Luding et al helped provide a starting point to explore key insights into jamming for dry, cohesionless, granular materials. A recent experimental observation by Bi et al is that frictional granular materials have a a re-entrant region in their jamming diagram. In a range of ϕ, applying shear strain, γ, from an initially force/stress free state leads to fragile (in the sense of Cates et al), then anisotropic shear jammed states. Shear jamming at fixed ϕ is presumably conjugate to Reynolds dilatancy, involving dilation under shear against deformable boundaries. Numerical studies by Radjai and Roux showed that Reynolds dilatancy does not occur for frictionless systems. Recent numerical studies by several groups show that shear jamming occurs for finite, but not infinite, systems of frictionless grains. Shear jamming does not lead to known ordering in position space, but Sarkar et al showed that ordering occurs in a space of force tiles. Experimental studies seeking to understand random loose and random close packings (rlp and rcp) and dating back to Bernal have probed granular packings and their response to shear and intruder motion. These studies suggest that rlp's are anisotropic and shear-jammed-like, whereas rcp's are likely isotropically jammed states. Jammed states are inherently static, but the jamming diagram may provide a context for understanding rheology, i.e. dynamic shear in a variety of systems that include granular materials and suspensions.
Collapse
Affiliation(s)
- Robert P Behringer
- Department of Physics & Center for Non-linear and Complex Systems, Duke University, Durham, NC, United States of America. Dr Robert Behringer passed away in July 2018
| | | |
Collapse
|
19
|
Philippe AM, Truzzolillo D, Galvan-Myoshi J, Dieudonné-George P, Trappe V, Berthier L, Cipelletti L. Glass transition of soft colloids. Phys Rev E 2018; 97:040601. [PMID: 29758608 DOI: 10.1103/physreve.97.040601] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 11/07/2022]
Abstract
We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τ_{α} of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τ_{α} on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τ_{α} depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.
Collapse
Affiliation(s)
- Adrian-Marie Philippe
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | | | | | - Véronique Trappe
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
20
|
Vågberg D, Tighe BP. On the apparent yield stress in non-Brownian magnetorheological fluids. SOFT MATTER 2017; 13:7207-7221. [PMID: 28932856 DOI: 10.1039/c7sm01204g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We use simulations to probe the flow properties of dense two-dimensional magnetorheological fluids. Prior results from both experiments and simulations report that the shear stress σ scales with strain rate [small gamma, Greek, dot above] as σ ∼ [small gamma, Greek, dot above]1-Δ, with values of the exponent ranging between 2/3 < Δ ≤ 1. However it remains unclear what properties of the system select the value of Δ, and in particular under what conditions the system displays a yield stress (Δ = 1). To address these questions, we perform simulations of a minimalistic model system in which particles interact via long ranged magnetic dipole forces, finite ranged elastic repulsion, and viscous damping. We find a surprising dependence of the apparent exponent Δ on the form of the viscous force law. For experimentally relevant values of the volume fraction ϕ and the dimensionless Mason number Mn (which quantifies the competition between viscous and magnetic stresses), models using a Stokes-like drag force show Δ ≈ 0.75 and no apparent yield stress. When dissipation occurs at the contact, however, a clear yield stress plateau is evident in the steady state flow curves. In either case, increasing ϕ towards the jamming transition suffices to induce a yield stress. We relate these qualitatively distinct flow curves to clustering mechanisms at the particle scale. For Stokes-like drag, the system builds up anisotropic, chain-like clusters as Mn tends to zero (vanishing strain rate and/or high field strength). For contact damping, by contrast, there is a second clustering mechanism due to inelastic collisions.
Collapse
Affiliation(s)
- Daniel Vågberg
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| | | |
Collapse
|
21
|
Wu Y, Karimi K, Maloney CE, Teitel S. Anomalous stress fluctuations in athermal two-dimensional amorphous solids. Phys Rev E 2017; 96:032902. [PMID: 29346892 DOI: 10.1103/physreve.96.032902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Indexed: 06/07/2023]
Abstract
We numerically study the local stress distribution within athermal, isotropically stressed, mechanically stable, packings of bidisperse frictionless disks above the jamming transition in two dimensions. Considering the Fourier transform of the local stress, we find evidence for algebraically increasing fluctuations in both isotropic and anisotropic components of the stress tensor at small wave numbers, contrary to recent theoretical predictions. Such increasing fluctuations imply a lack of self-averaging of the stress on large length scales. The crossover to these increasing fluctuations defines a length scale ℓ_{0}, however, it appears that ℓ_{0} does not vary much with packing fraction ϕ, nor does ℓ_{0} seem to be diverging as ϕ approaches the jamming ϕ_{J}. We also find similar large length scale fluctuations of stress in the inherent states of a quenched Lennard-Jones liquid, leading us to speculate that such fluctuations may be a general property of amorphous solids in two dimensions.
Collapse
Affiliation(s)
- Yegang Wu
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Kamran Karimi
- Université Grenoble Alpes, LiPhy, F-38000 Grenoble, France
| | - Craig E Maloney
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
22
|
Otsuki M, Hayakawa H. Discontinuous change of shear modulus for frictional jammed granular materials. Phys Rev E 2017; 95:062902. [PMID: 28709191 DOI: 10.1103/physreve.95.062902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Indexed: 06/07/2023]
Abstract
The shear modulus of jammed frictional granular materials with harmonic repulsive interaction under an oscillatory shear is numerically investigated. It is confirmed that the storage modulus, the real part of the shear modulus, for frictional grains with sufficiently small strain amplitude γ_{0} discontinuously emerges at the jamming transition point. The storage modulus for small γ_{0} differs from that of frictionless grains even in the zero friction limit, whereas they are almost identical with each other for sufficiently large γ_{0}, where the transition becomes continuous. The stress-strain curve exhibits a hysteresis loop even for a small strain, which connects a linear region for sufficiently small strain to another linear region for larger strain. We propose a scaling law to interpolate between the states of small and large γ_{0}.
Collapse
Affiliation(s)
- Michio Otsuki
- Department of Physics and Materials Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
23
|
Baumgarten K, Vågberg D, Tighe BP. Nonlocal Elasticity near Jamming in Frictionless Soft Spheres. PHYSICAL REVIEW LETTERS 2017; 118:098001. [PMID: 28306292 DOI: 10.1103/physrevlett.118.098001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Indexed: 06/06/2023]
Abstract
We use simulations of frictionless soft sphere packings to identify novel constitutive relations for linear elasticity near the jamming transition. By forcing packings at varying wavelengths, we directly access their transverse and longitudinal compliances. These are found to be wavelength dependent, in violation of conventional (local) linear elasticity. Crossovers in the compliances select characteristic length scales, which signify the appearance of nonlocal effects. Two of these length scales diverge as the pressure vanishes, indicating that critical effects near jamming control the breakdown of local elasticity. We expect these nonlocal constitutive relations to be applicable to a wide range of weakly jammed solids, including emulsions, foams, and granulates.
Collapse
Affiliation(s)
- Karsten Baumgarten
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Daniel Vågberg
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Brian P Tighe
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| |
Collapse
|
24
|
Boschan J, Vågberg D, Somfai E, Tighe BP. Beyond linear elasticity: jammed solids at finite shear strain and rate. SOFT MATTER 2016; 12:5450-5460. [PMID: 27212139 DOI: 10.1039/c6sm00536e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The shear response of soft solids can be modeled with linear elasticity, provided the forcing is slow and weak. Both of these approximations must break down when the material loses rigidity, such as in foams and emulsions at their (un)jamming point - suggesting that the window of linear elastic response near jamming is exceedingly narrow. Yet precisely when and how this breakdown occurs remains unclear. To answer these questions, we perform computer simulations of stress relaxation and shear start-up tests in athermal soft sphere packings, the canonical model for jamming. By systematically varying the strain amplitude, strain rate, distance to jamming, and system size, we identify characteristic strain and time scales that quantify how and when the window of linear elasticity closes, and relate these scales to changes in the microscopic contact network.
Collapse
Affiliation(s)
- Julia Boschan
- Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
| | | | | | | |
Collapse
|
25
|
Rieser JM, Goodrich CP, Liu AJ, Durian DJ. Divergence of Voronoi Cell Anisotropy Vector: A Threshold-Free Characterization of Local Structure in Amorphous Materials. PHYSICAL REVIEW LETTERS 2016; 116:088001. [PMID: 26967443 DOI: 10.1103/physrevlett.116.088001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Characterizing structural inhomogeneity is an essential step in understanding the mechanical response of amorphous materials. We introduce a threshold-free measure based on the field of vectors pointing from the center of each particle to the centroid of the Voronoi cell in which the particle resides. These vectors tend to point in toward regions of high free volume and away from regions of low free volume, reminiscent of sinks and sources in a vector field. We compute the local divergence of these vectors, where positive values correspond to overpacked regions and negative values identify underpacked regions within the material. Distributions of this divergence are nearly Gaussian with zero mean, allowing for structural characterization using only the moments of the distribution. We explore how the standard deviation and skewness vary with the packing fraction for simulations of bidisperse systems and find a kink in these moments that coincides with the jamming transition.
Collapse
Affiliation(s)
- Jennifer M Rieser
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| | - Carl P Goodrich
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| | - Andrea J Liu
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| | - Douglas J Durian
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA
| |
Collapse
|
26
|
Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter. Curr Opin Colloid Interface Sci 2016. [DOI: 10.1016/j.cocis.2016.01.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Wu Y, Olsson P, Teitel S. Search for hyperuniformity in mechanically stable packings of frictionless disks above jamming. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052206. [PMID: 26651688 DOI: 10.1103/physreve.92.052206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 06/05/2023]
Abstract
We numerically simulate mechanically stable packings of soft-core, frictionless, bidisperse disks in two dimensions, above the jamming packing fraction ϕ(J). For configurations with a fixed isotropic global stress tensor, we investigate the fluctuations of the local packing fraction ϕ(r) to test whether such configurations display the hyperuniformity that has been claimed to exist exactly at ϕ(J). For our configurations, generated by a rapid quench protocol, we find that hyperuniformity persists only out to a finite length scale and that this length scale appears to remain finite as the system stress decreases towards zero, i.e., towards the jamming transition. Our result suggests that the presence of hyperuniformity at jamming may be sensitive to the specific protocol used to construct the jammed configurations.
Collapse
Affiliation(s)
- Yegang Wu
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
28
|
Vågberg D, Olsson P, Teitel S. Universality of jamming criticality in overdamped shear-driven frictionless disks. PHYSICAL REVIEW LETTERS 2014; 113:148002. [PMID: 25325662 DOI: 10.1103/physrevlett.113.148002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 06/04/2023]
Abstract
We investigate the criticality of the jamming transition for overdamped shear-driven frictionless disks in two dimensions for two different models of energy dissipation: (i) Durian's bubble model with dissipation proportional to the velocity difference of particles in contact, and (ii) Durian's "mean-field" approximation to (i), with dissipation due to the velocity difference between the particle and the average uniform shear flow velocity. By considering the finite-size behavior of pressure, the pressure analog of viscosity, and the macroscopic friction σ/p, we argue that these two models share the same critical behavior.
Collapse
Affiliation(s)
- Daniel Vågberg
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
29
|
Otsuki M, Hayakawa H. Avalanche contribution to shear modulus of granular materials. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042202. [PMID: 25375484 DOI: 10.1103/physreve.90.042202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 06/04/2023]
Abstract
Shear modulus of frictionless granular materials near the jamming transition under oscillatory shear is numerically investigated. It is found that the shear modulus G satisfies a scaling law to interpolate between G∼(ϕ-ϕJ)(1/2) and G∼γ0(-1/2)(ϕ-ϕJ) for a linear spring model of the elastic interaction between contacting grains, where ϕ, ϕJ, and γ0 are, respectively, the volume fraction of grains, the fraction at the jamming point, and the amplitude of the oscillatory shear. The linear relation between the shear modulus and ϕ-ϕJ can be understood by slip avalanches.
Collapse
Affiliation(s)
- Michio Otsuki
- Department of Materials Science, Shimane University, Matsue 690-8504, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
30
|
Arévalo R, Ciamarra MP. Size and density avalanche scaling near jamming. SOFT MATTER 2014; 10:2728-2732. [PMID: 24633068 DOI: 10.1039/c3sm53134a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The current microscopic picture of plasticity in amorphous materials assumes local failure events to produce displacement fields complying with linear elasticity. Indeed, the flow properties of nonaffine systems, such as foams, emulsions and granular materials close to jamming, that produce a fluctuating displacement field when failing, are still controversial. Here we show, via a thorough numerical investigation of jammed materials, that nonaffinity induces a critical scaling of the flow properties dictated by the distance to the jamming point. We rationalize this critical behavior by introducing a new universal jamming exponent and hyperscaling relationships, and we use these results to describe the volume fraction dependence of the friction coefficient.
Collapse
Affiliation(s)
- Roberto Arévalo
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Napoli, Italy.
| | | |
Collapse
|
31
|
Vågberg D, Wu Y, Olsson P, Teitel S. Pressure distribution and critical exponent in statically jammed and shear-driven frictionless disks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022201. [PMID: 25353461 DOI: 10.1103/physreve.89.022201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 06/04/2023]
Abstract
We numerically study the distributions of global pressure that are found in ensembles of statically jammed and quasistatically sheared systems of bidisperse, frictionless disks at fixed packing fraction ϕ in two dimensions. We use these distributions to address the question of how pressure increases as ϕ increases above the jamming point ϕ(J), p ∼ |ϕ-ϕ(J)(y). For statically jammed ensembles, our results are consistent with the exponent y being simply related to the power law of the interparticle soft-core interaction. For sheared systems, however, the value of y is consistent with a nontrivial value, as found previously in rheological simulations.
Collapse
Affiliation(s)
- Daniel Vågberg
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - Yegang Wu
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | - S Teitel
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
32
|
Olsson P, Teitel S. Athermal jamming versus thermalized glassiness in sheared frictionless particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:010301. [PMID: 23944391 DOI: 10.1103/physreve.88.010301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 06/17/2013] [Indexed: 06/02/2023]
Abstract
Numerical simulations of soft-core frictionless disks in two dimensions are carried out to study the behavior of a simple liquid as a function of temperature T, packing fraction φ, and uniform applied shear strain rate γ[over ·]. Inferring the hard-core limit from our soft-core results, we find that it depends on the two parameters φ and T/γ[over ·]. Here T/γ[over ·]→0 defines the athermal limit in which a shear-driven jamming transition occurs at a well defined φ(J) and T/γ[over ·]→∞ defines the thermalized limit where an equilibrium glass transition may take place at φ(G). This conclusion argues that athermal jamming and equilibrium glassy behavior are not controlled by the same critical point. Preliminary results suggest φ(G)<φ(J).
Collapse
Affiliation(s)
- Peter Olsson
- Department of Physics, Umeå University, 901 87 Umeå, Sweden
| | | |
Collapse
|
33
|
Ozawa M, Kuroiwa T, Ikeda A, Miyazaki K. Jamming transition and inherent structures of hard spheres and disks. PHYSICAL REVIEW LETTERS 2012; 109:205701. [PMID: 23215507 DOI: 10.1103/physrevlett.109.205701] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 06/01/2023]
Abstract
Recent studies show that volume fractions φ(J) at the jamming transition of frictionless hard spheres and disks are not uniquely determined but exist over a continuous range. Motivated by this observation, we numerically investigate the dependence of φ(J) on the initial configurations of the parent fluid equilibrated at a volume fraction φ(eq), before compressing to generate a jammed packing. We find that φ(J) remains constant when φ(eq) is small but sharply increases as φ(eq) exceeds the dynamic transition point which the mode-coupling theory predicts. We carefully analyze configurational properties of both jammed packings and parent fluids and find that, while all jammed packings remain isostatic, the increase of φ(J) is accompanied with subtle but distinct changes of local orders, a static length scale, and an exponent of the finite-size scaling. These results are consistent with the scenario of the random first-order transition theory of the glass transition.
Collapse
Affiliation(s)
- Misaki Ozawa
- Institute of Physics, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan
| | | | | | | |
Collapse
|
34
|
Shen T, Schreck C, Chakraborty B, Freed DE, O'Hern CS. Structural relaxation in dense liquids composed of anisotropic particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041303. [PMID: 23214576 DOI: 10.1103/physreve.86.041303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Indexed: 06/01/2023]
Abstract
We perform extensive molecular dynamics simulations of dense liquids composed of bidisperse dimer- and ellipse-shaped particles in two dimensions that interact via purely repulsive contact forces. We measure the structural relaxation times obtained from the long-time α decay of the self part of the intermediate scattering function for the translational and rotational degrees of freedom (DOF) as a function of packing fraction φ, temperature T, and aspect ratio α. We are able to collapse the packing-fraction and temperature-dependent structural relaxation times for disks, and dimers and ellipses over a wide range of α, onto a universal scaling function F(±)(|φ-φ(0)|,T,α), which is similar to that employed in previous studies of dense liquids composed of purely repulsive spherical particles in three dimensions. F(±) for both the translational and rotational DOF are characterized by the α-dependent scaling exponents μ and δ and packing fraction φ(0)(α) that signals the crossover in the scaling form F(±) from hard-particle dynamics to super-Arrhenius behavior for each aspect ratio. We find that the fragility of structural relaxation at φ(0), m(φ(0)), decreases monotonically with increasing aspect ratio for both ellipses and dimers. For α>α(p), where α(p) is the location of the peak in the packing fraction φ(J) at jamming onset, the rotational DOF are strongly coupled to the translational DOF, and the dynamic scaling exponents and φ(0) are similar for the rotational and translational DOF. For 1<α<α(p), the translational DOF become frozen at higher temperatures than the rotational DOF, and φ(0) for the rotational degrees of freedom increases above φ(J). Moreover, the results for the slow dynamics of dense liquids composed of dimer- and ellipse-shaped particles are qualitatively the same, despite the fact that zero-temperature static packings of dimers are isostatic, while static packings of ellipses are hypostatic. Thus, zero-temperature contact counting arguments do not apply to structural relaxation of dense liquids of anisotropic particles near the glass transition.
Collapse
Affiliation(s)
- Tianqi Shen
- Department of Physics, Yale University, New Haven, Connecticut 06520-8120, USA
| | | | | | | | | |
Collapse
|
35
|
Otsuki M, Hayakawa H. Critical scaling of a jammed system after a quench of temperature. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031505. [PMID: 23030921 DOI: 10.1103/physreve.86.031505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 07/21/2012] [Indexed: 06/01/2023]
Abstract
Critical behavior of soft repulsive particles after quench of temperature near the jamming transition is numerically investigated. It is found that the plateau of the mean-square displacement of tracer particles and the pressure satisfy critical scaling laws. The critical density for the jamming transition depends on the protocol to prepare the system, while the values of the critical exponents which are consistent with the prediction of a phenomenology are independent of the protocol.
Collapse
Affiliation(s)
- Michio Otsuki
- Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 229-8558, Japan
| | | |
Collapse
|
36
|
Karimi K, Maloney CE. Local anisotropy in globally isotropic granular packings. PHYSICAL REVIEW LETTERS 2011; 107:268001. [PMID: 22243184 DOI: 10.1103/physrevlett.107.268001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/05/2011] [Indexed: 05/31/2023]
Abstract
We report on two-dimensional computer simulations of frictionless granular packings at various area fractions φ above the jamming point φ(c). We measure the anisotropy in coarse-grained stress ε(s) and shear modulus ε(m) as functions of coarse-graining scale, R. ε(s) can be collapsed onto a master curve after rescaling R by a characteristic length scale ξ and ε(s) by an anisotropy magnitude A. Both A and ξ accelerate as φ→φ(c) from above, consistent with a divergence at φ(c). ε(m) shows no characteristic length scale and has a nontrivial power-law form, ε(m)~R(-0.62), over almost the entire range of R at all φ. These results suggest that the force chains present in the spatial structure of the quenched stress may be governed by different physics than the anomalous elastic response near jamming.
Collapse
Affiliation(s)
- K Karimi
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
37
|
Bi D, Zhang J, Chakraborty B, Behringer RP. Jamming by shear. Nature 2011; 480:355-8. [PMID: 22170683 DOI: 10.1038/nature10667] [Citation(s) in RCA: 298] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 10/25/2011] [Indexed: 11/09/2022]
Abstract
A broad class of disordered materials including foams, glassy molecular systems, colloids and granular materials can form jammed states. A jammed system can resist small stresses without deforming irreversibly, whereas unjammed systems flow under any applied stresses. The broad applicability of the Liu-Nagel jamming concept has attracted intensive theoretical and modelling interest but has prompted less experimental effort. In the Liu-Nagel framework, jammed states of athermal systems exist only above a certain critical density. Although numerical simulations for particles that do not experience friction broadly support this idea, the nature of the jamming transition for frictional grains is less clear. Here we show that jamming of frictional, disk-shaped grains can be induced by the application of shear stress at densities lower than the critical value, at which isotropic (shear-free) jamming occurs. These jammed states have a much richer phenomenology than the isotropic jammed states: for small applied shear stresses, the states are fragile, with a strong force network that percolates only in one direction. A minimum shear stress is needed to create robust, shear-jammed states with a strong force network percolating in all directions. The transitions from unjammed to fragile states and from fragile to shear-jammed states are controlled by the fraction of force-bearing grains. The fractions at which these transitions occur are statistically independent of the density. Jammed states with densities lower than the critical value have an anisotropic fabric (contact network). The minimum anisotropy of shear-jammed states vanishes as the density approaches the critical value from below, in a manner reminiscent of an order-disorder transition.
Collapse
Affiliation(s)
- Dapeng Bi
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
38
|
Ciamarra MP, Pastore R, Nicodemi M, Coniglio A. Jamming phase diagram for frictional particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041308. [PMID: 22181136 DOI: 10.1103/physreve.84.041308] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 09/23/2011] [Indexed: 05/31/2023]
Abstract
We investigate the jamming transition of frictional particulate systems via discrete element simulations, reporting the existence of new regimes, which are conveniently described in a jamming phase diagram with axes density, shear stress, and friction coefficient. The resulting jammed states are characterized by different mechanical and structural properties and appear not to be "fragile" as speculated. In particular, we find a regime, characterized by extremely long processes, with a diverging time scale, whereby a suspension first flows but then suddenly jams. We link this sudden jamming transition to the presence of impeded dilatancy.
Collapse
Affiliation(s)
- Massimo Pica Ciamarra
- CNR-SPIN, Dipartimento di Scienze Fisiche, Universitá di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy.
| | | | | | | |
Collapse
|
39
|
Schreck CF, O'Hern CS, Silbert LE. Tuning jammed frictionless disk packings from isostatic to hyperstatic. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:011305. [PMID: 21867162 DOI: 10.1103/physreve.84.011305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 05/27/2011] [Indexed: 05/31/2023]
Abstract
We perform extensive computational studies of two-dimensional static bidisperse disk packings using two distinct packing-generation protocols. The first involves thermally quenching equilibrated liquid configurations to zero temperature over a range of thermal quench rates r and initial packing fractions followed by compression and decompression in small steps to reach packing fractions φ(J) at jamming onset. For the second, we seed the system with initial configurations that promote micro- and macrophase-separated packings followed by compression and decompression to φ(J). Using these protocols, we generate more than 10(4) static packings over a wide range of packing fraction, contact number, and compositional and positional order. We find that disordered, isostatic packings exist over a finite range of packing fractions in the large-system limit. In agreement with previous calculations, the most dilute mechanically stable packings with φ min ≈ 0.84 are obtained for r > r*, where r* is the rate above which φ(J) is insensitive to rate. We further compare the structural and mechanical properties of isostatic versus hyperstatic packings. The structural characterizations include the contact number, several order parameters, and mixing ratios of the large and small particles. We find that the isostatic packings are positionally and compositionally disordered (with only small changes in a number of order parameters), whereas bond-orientational and compositional order increase strongly with contact number for hyperstatic packings. In addition, we calculate the static shear modulus and normal mode frequencies (in the harmonic approximation) of the static packings to understand the extent to which the mechanical properties of disordered, isostatic packings differ from partially ordered packings. We find that the mechanical properties of the packings change continuously as the contact number increases from isostatic to hyperstatic.
Collapse
Affiliation(s)
- Carl F Schreck
- Department of Physics, Yale University, New Haven, Connecticut 06520-8120, USA
| | | | | |
Collapse
|
40
|
Otsuki M, Hayakawa H. Critical scaling near jamming transition for frictional granular particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:051301. [PMID: 21728519 DOI: 10.1103/physreve.83.051301] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 03/30/2011] [Indexed: 05/31/2023]
Abstract
The critical rheology of sheared frictional granular materials near jamming transition is numerically investigated. It is confirmed that there exists a true critical density which characterizes the onset of the yield stress and two fictitious critical densities which characterize the scaling laws of rheological properties. We find the existence of a hysteresis loop between two of the critical densities for each friction coefficient. It is noteworthy that the critical scaling law for frictionless jamming transition seems to be still valid even for frictional jamming despite using fictitious critical density values.
Collapse
Affiliation(s)
- Michio Otsuki
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa, Japan
| | | |
Collapse
|