1
|
Cavallaro M, Wang Y, Hebenstreit D, Dutta R. Bayesian inference of polymerase dynamics over the exclusion process. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221469. [PMID: 37538742 PMCID: PMC10394410 DOI: 10.1098/rsos.221469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 07/12/2023] [Indexed: 08/05/2023]
Abstract
Transcription is a complex phenomenon that permits the conversion of genetic information into phenotype by means of an enzyme called RNA polymerase, which erratically moves along and scans the DNA template. We perform Bayesian inference over a paradigmatic mechanistic model of non-equilibrium statistical physics, i.e. the asymmetric exclusion processes in the hydrodynamic limit, assuming a Gaussian process prior for the polymerase progression rate as a latent variable. Our framework allows us to infer the speed of polymerases during transcription given their spatial distribution, while avoiding the explicit inversion of the system's dynamics. The results, which show processing rates strongly varying with genomic position and minor role of traffic-like congestion, may have strong implications for the understanding of gene expression.
Collapse
Affiliation(s)
- Massimo Cavallaro
- Mathematics Institute, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
| | - Yuexuan Wang
- Institute of Applied Statistics, Johannes Kepler Universität, Linz, Austria
| | | | - Ritabrata Dutta
- Department of Statistics, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Sakai I, Akimoto T. Sample-to-sample fluctuations of transport coefficients in the totally asymmetric simple exclusion process with quenched disorder. Phys Rev E 2023; 107:054131. [PMID: 37328985 DOI: 10.1103/physreve.107.054131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
We consider the totally asymmetric simple exclusion processes on quenched random energy landscapes. We show that the current and the diffusion coefficient differ from those for homogeneous environments. Using the mean-field approximation, we analytically obtain the site density when the particle density is low or high. As a result, the current and the diffusion coefficient are described by the dilute limit of particles or holes, respectively. However, in the intermediate regime, due to the many-body effect, the current and the diffusion coefficient differ from those for single-particle dynamics. The current is almost constant and becomes the maximal value in the intermediate regime. Moreover, the diffusion coefficient decreases with the particle density in the intermediate regime. We obtain analytical expressions for the maximal current and the diffusion coefficient based on the renewal theory. The deepest energy depth plays a central role in determining the maximal current and the diffusion coefficient. As a result, the maximal current and the diffusion coefficient depend crucially on the disorder, i.e., non-self-averaging. Based on the extreme value theory, we find that sample-to-sample fluctuations of the maximal current and diffusion coefficient are characterized by the Weibull distribution. We show that the disorder averages of the maximal current and the diffusion coefficient converge to zero as the system size is increased and quantify the degree of the non-self-averaging effect for the maximal current and the diffusion coefficient.
Collapse
Affiliation(s)
- Issei Sakai
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
3
|
Sakai I, Akimoto T. Non-self-averaging of current in a totally asymmetric simple exclusion process with quenched disorder. Phys Rev E 2023; 107:L052103. [PMID: 37329050 DOI: 10.1103/physreve.107.l052103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/01/2023] [Indexed: 06/18/2023]
Abstract
We investigate the current properties in the totally asymmetric simple exclusion process (TASEP) on a quenched random energy landscape. In low- and high-density regimes, the properties are characterized by single-particle dynamics. In the intermediate one, the current becomes constant and is maximized. Based on the renewal theory, we derive accurate results for the maximum current. The maximum current significantly depends on a disorder realization, i.e., non-self-averaging (SA). We demonstrate that the disorder average of the maximum current decreases with the system size, and the sample-to-sample fluctuations of the maximum current exceed those of current in the low- and high-density regimes. We find a significant difference between single-particle dynamics and the TASEP. In particular, the non-SA behavior of the maximum current is always observed, whereas the transition from non-SA to SA for current in single-particle dynamics exists.
Collapse
Affiliation(s)
- Issei Sakai
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
4
|
Mukhamadiarov RI, Priyanka, Täuber UC. Transverse temperature interfaces in the Katz-Lebowitz-Spohn driven lattice gas. Phys Rev E 2020; 100:062122. [PMID: 31962532 DOI: 10.1103/physreve.100.062122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 11/07/2022]
Abstract
We explore the intriguing spatial patterns that emerge in a two-dimensional spatially inhomogeneous Katz-Lebowitz-Spohn (KLS) driven lattice gas with attractive nearest-neighbor interactions. The domain is split into two regions with hopping rates governed by different temperatures T>T_{c} and T_{c}, respectively, where T_{c} indicates the critical temperature for phase ordering, and with the temperature boundaries oriented perpendicular to the drive. In the hotter region, the system behaves like the (totally) asymmetric exclusion processes (TASEP), and experiences particle blockage in front of the interface to the critical region. To explain this particle density accumulation near the interface, we have measured the steady-state current in the KLS model at T>T_{c} and found it to decay as 1/T. In analogy with TASEP systems containing "slow" bonds, we argue that transport in the high-temperature subsystem is impeded by the lower current in the cooler region, which tends to set the global stationary particle current value. This blockage is induced by the extended particle clusters, growing logarithmically with system size, in the critical region. We observe the density profiles in both high- and low-temperature subsystems to be similar to the well-characterized coexistence and maximal-current phases in (T)ASEP models with open boundary conditions, which are respectively governed by hyperbolic and trigonometric tangent functions. Yet if the lower temperature is set to T_{c}, we detect marked fluctuation corrections to the mean-field density profiles, e.g., the corresponding critical KLS power-law density decay near the interfaces into the cooler region.
Collapse
Affiliation(s)
- Ruslan I Mukhamadiarov
- Department of Physics (MC 0435) and Center for Soft Matter and Biological Physics, Virginia Tech, Robeson Hall, 850 West Campus Drive, Blacksburg, Virginia 24061, USA
| | - Priyanka
- Department of Physics (MC 0435) and Center for Soft Matter and Biological Physics, Virginia Tech, Robeson Hall, 850 West Campus Drive, Blacksburg, Virginia 24061, USA
| | - Uwe C Täuber
- Department of Physics (MC 0435) and Center for Soft Matter and Biological Physics, Virginia Tech, Robeson Hall, 850 West Campus Drive, Blacksburg, Virginia 24061, USA
| |
Collapse
|
5
|
Erdmann-Pham DD, Dao Duc K, Song YS. The Key Parameters that Govern Translation Efficiency. Cell Syst 2020; 10:183-192.e6. [PMID: 31954660 DOI: 10.1016/j.cels.2019.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 08/29/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
Translation of mRNA into protein is a fundamental yet complex biological process with multiple factors that can potentially affect its efficiency. Here, we study a stochastic model describing the traffic flow of ribosomes along the mRNA and identify the key parameters that govern the overall rate of protein synthesis, sensitivity to initiation rate changes, and efficiency of ribosome usage. By analyzing a continuum limit of the model, we obtain closed-form expressions for stationary currents and ribosomal densities, which agree well with Monte Carlo simulations. Furthermore, we completely characterize the phase transitions in the system, and by applying our theoretical results, we formulate design principles that detail how to tune the key parameters we identified to optimize translation efficiency. Using ribosome profiling data from S. cerevisiae, we show that its translation system is generally consistent with these principles. Our theoretical results have implications for evolutionary biology, as well as for synthetic biology.
Collapse
Affiliation(s)
- Dan D Erdmann-Pham
- Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Khanh Dao Duc
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yun S Song
- Computer Science Division, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Statistics, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Mukherji S. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis. Phys Rev E 2018; 97:032130. [PMID: 29776090 DOI: 10.1103/physreve.97.032130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 11/07/2022]
Abstract
In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.
Collapse
Affiliation(s)
- Sutapa Mukherji
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysore-570 020, India
| |
Collapse
|