1
|
Pal S, Chakrabarti J, Chakrabarty S. Anisotropic remixing of a phase separated binary colloidal system with particles of different sizes in an external modulation. J Chem Phys 2024; 160:214902. [PMID: 38836457 DOI: 10.1063/5.0190299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
We explore the phase behavior of a binary colloidal system under external spatially periodic modulation. We perform Monte Carlo simulations on a binary mixture of big and small repulsive Lennard-Jones particles with a diameter ratio of 2:1. We characterize structure by isotropic and anisotropic pair correlation functions, cluster size distribution, bond angle distribution, order parameter, and specific heat. We observe the demixing of the species in the absence of external modulation. However, the mixing of the species gets enhanced with increasing potential strength along with the alignment of the particles transverse to the modulation. The de-mixing order parameter shows discontinuity with increasing modulation strength, characterizing a first order phase transition. The peak in specific heat increases linearly with the size of the system. We also look into the dynamical behavior of the system via computing Mean Square Displacement (MSD) along both parallel and perpendicular directions to the modulation. We observe a decrease in the diffusion coefficient for both types of particles as we increase the strength of the modulation.
Collapse
Affiliation(s)
- Suravi Pal
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake, Kolkata 700106, India
| | - Jaydeb Chakrabarti
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake, Kolkata 700106, India
| | - Srabani Chakrabarty
- Department of Physics, Lady Brabourne College, P-1/2, Suhrawardy Ave., Kolkata 700017, India
| |
Collapse
|
2
|
Maddi J, Coste C, Saint Jean M. Diffusion enhancement and autoparametric resonance. Phys Rev E 2024; 109:054107. [PMID: 38907501 DOI: 10.1103/physreve.109.054107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/10/2024] [Indexed: 06/24/2024]
Abstract
The possibility of an autoparametric resonance in an isolated many-particle system induces a specific behavior of the particles in the presence of thermal noise. In particular, the variance associated with a resonant mode, and consequently that of the associated particles, is strongly increased compared to what it would have in the absence of parametric resonance. In this paper we consider a dimer submitted to a periodic potential for which there are only two modes, the center of mass motion and the internal vibration mode. This is the simplest system which is dynamically rich enough to exhibit an autoparametric excitation of the internal vibrations by the center of mass motion. The consequences of this autoparametric excitation on the particles diffusion will be discussed according to the stiffness of the interaction and to the initial energy of the dimer, the relevant parameters which characterize this dynamics.
Collapse
Affiliation(s)
- Johann Maddi
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| | - Christophe Coste
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| |
Collapse
|
3
|
Schweers S, Antonov AP, Ryabov A, Maass P. Scaling laws for single-file diffusion of adhesive particles. Phys Rev E 2023; 107:L042102. [PMID: 37198860 DOI: 10.1103/physreve.107.l042102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023]
Abstract
Single-file diffusion refers to the Brownian motion in narrow channels where particles cannot pass each other. In such processes, the diffusion of a tagged particle is typically normal at short times and becomes subdiffusive at long times. For hard-sphere interparticle interaction, the time-dependent mean squared displacement of a tracer is well understood. Here we develop a scaling theory for adhesive particles. It provides a full description of the time-dependent diffusive behavior with a scaling function that depends on an effective strength of adhesive interaction. Particle clustering induced by the adhesive interaction slows down the diffusion at short times, while it enhances subdiffusion at long times. The enhancement effect can be quantified in measurements irrespective of how tagged particles are injected into the system. Combined effects of pore structure and particle adhesiveness should speed up translocation of molecules through narrow pores.
Collapse
Affiliation(s)
- Sören Schweers
- Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
| | - Alexander P Antonov
- Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
| | - Artem Ryabov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-18000 Praha 8, Czech Republic
| | - Philipp Maass
- Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
| |
Collapse
|
4
|
Hartich D, Godec A. Thermodynamic Uncertainty Relation Bounds the Extent of Anomalous Diffusion. PHYSICAL REVIEW LETTERS 2021; 127:080601. [PMID: 34477441 DOI: 10.1103/physrevlett.127.080601] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
In a finite system driven out of equilibrium by a constant external force the thermodynamic uncertainty relation (TUR) bounds the variance of the conjugate current variable by the thermodynamic cost of maintaining the nonequilibrium stationary state. Here we highlight a new facet of the TUR by showing that it also bounds the timescale on which a finite system can exhibit anomalous kinetics. In particular, we demonstrate that the TUR bounds subdiffusion in a single file confined to a ring as well as a dragged Gaussian polymer chain even when detailed balance is satisfied. Conversely, the TUR bounds the onset of superdiffusion in the active comb model. Remarkably, the fluctuations in a comb model evolving from a steady state behave anomalously as soon as detailed balance is broken. Our work establishes a link between stochastic thermodynamics and the field of anomalous dynamics that will fertilize further investigations of thermodynamic consistency of anomalous diffusion models.
Collapse
Affiliation(s)
- David Hartich
- Mathematical bioPhysics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Potentials and challenges of high-field PFG NMR diffusion studies with sorbates in nanoporous media. ADSORPTION 2020. [DOI: 10.1007/s10450-020-00255-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Pal S, Chakrabarti J. Heterogeneity of dynamics in a modulated colloidal liquid. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:124001. [PMID: 31766036 DOI: 10.1088/1361-648x/ab5b29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the dynamics of a system of two dimensional colloidal particles subjected to a spatially periodic external potential using Brownian dynamics simulations. We characterize the dynamics in the system by the mean square displacements and the self-van Hove function. The static density plots suggest that system gets into modulated liquid phase in presence of the external potential. We find that diffusion coefficients, obtained from long time mean sqaure displacements, decay exponentially with increasing potential strength. The self-van Hove functions computed from the distribution of particle displacemets in a given time interval show non-gaussian behaviour in directions both parallel and transverse to the external modulation. This suggests heterogeneous dynamics and is supported by particle mobilities and residence times.
Collapse
Affiliation(s)
- Suravi Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake, Kolkata 700106, India
| | | |
Collapse
|
7
|
Dessup T, Coste C, Saint Jean M. Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation. Phys Rev E 2018; 97:052134. [PMID: 29906851 DOI: 10.1103/physreve.97.052134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Indexed: 06/08/2023]
Abstract
A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable in a finite zigzag amplitude range [h_{C1},h_{C2}]. We exhibit strong qualitative effects of the subcriticality on the thermal motions of the particles. When the zigzag amplitude is close enough to the limits h_{C1} and h_{C2}, a transverse vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise determination of the bifurcation thresholds.
Collapse
Affiliation(s)
- Tommy Dessup
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| | - Christophe Coste
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| |
Collapse
|
8
|
Dessup T, Coste C, Saint Jean M. Enhancement of Brownian motion for a chain of particles in a periodic potential. Phys Rev E 2018; 97:022103. [PMID: 29548165 DOI: 10.1103/physreve.97.022103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Indexed: 11/07/2022]
Abstract
The transport of particles in very confined channels in which single file diffusion occurs has been largely studied in systems where the transverse confining potential is smooth. However, in actual physical systems, this potential may exhibit both static corrugations and time fluctuations. Some recent results suggest the important role played by this nonsmoothness of the confining potential. In particular, quite surprisingly, an enhancement of the Brownian motion of the particles has been evidenced in these kinds of systems. We show that this enhancement results from the commensurate effects induced by the underlying potential on the vibrational spectra of the chain of particles, and from the effective temperature associated with its time fluctuations. We will restrict our derivation to the case of low temperatures for which the mean squared displacement of the particles remains smaller than the potential period.
Collapse
Affiliation(s)
- Tommy Dessup
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| | - Christophe Coste
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris-Diderot (Paris 7), 75205 Paris Cedex 13, France
| |
Collapse
|
9
|
Dessup T, Coste C, Saint Jean M. Interaction, coalescence, and collapse of localized patterns in a quasi-one-dimensional system of interacting particles. Phys Rev E 2017; 95:012206. [PMID: 28208356 DOI: 10.1103/physreve.95.012206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 11/07/2022]
Abstract
We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves a collapse process regardless of the temperature.
Collapse
Affiliation(s)
- Tommy Dessup
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Christophe Coste
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
10
|
Dessup T, Coste C, Saint Jean M. Thermal motion of a nonlinear localized pattern in a quasi-one-dimensional system. Phys Rev E 2016; 94:012217. [PMID: 27575133 DOI: 10.1103/physreve.94.012217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
We study the dynamics of localized nonlinear patterns in a quasi-one-dimensional many-particle system near a subcritical pitchfork bifurcation. The normal form at the bifurcation is given and we show that these patterns can be described as solitary-wave envelopes. They are stable in a large temperature range and can diffuse along the chain of interacting particles. During their displacements the particles are continually redistributed on the envelope. This change of particle location induces a small modulation of the potential energy of the system, with an amplitude that depends on the transverse confinement. At high temperature, this modulation is irrelevant and the thermal motion of the localized patterns displays all the characteristics of a free quasiparticle diffusion with a diffusion coefficient that may be deduced from the normal form. At low temperature, significant physical effects are induced by the modulated potential. In particular, the localized pattern may be trapped at very low temperature. We also exhibit a series of confinement values for which the modulation amplitudes vanishes. For these peculiar confinements, the mean-square displacement of the localized patterns also evidences free-diffusion behavior at low temperature.
Collapse
Affiliation(s)
- Tommy Dessup
- Laboratoire Matière et Systèmes Complexes, UMR No. 7057, CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Christophe Coste
- Laboratoire Matière et Systèmes Complexes, UMR No. 7057, CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire Matière et Systèmes Complexes, UMR No. 7057, CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
11
|
Dessup T, Coste C, Saint Jean M. Hysteretic and intermittent regimes in the subcritical bifurcation of a quasi-one-dimensional system of interacting particles. Phys Rev E 2016; 93:012105. [PMID: 26871022 DOI: 10.1103/physreve.93.012105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 11/07/2022]
Abstract
In this article, we study the effects of white Gaussian additive thermal noise on a subcritical pitchfork bifurcation. We consider a quasi-one-dimensional system of particles that are transversally confined, with short-range (non-Coulombic) interactions and periodic boundary conditions in the longitudinal direction. In such systems, there is a structural transition from a linear order to a staggered row, called the zigzag transition. There is a finite range of transverse confinement stiffnesses for which the stable configuration at zero temperature is a localized zigzag pattern surrounded by aligned particles, which evidences the subcriticality of the bifurcation. We show that these configurations remain stable for a wide temperature range. At zero temperature, the transition between a straight line and such localized zigzag patterns is hysteretic. We have studied the influence of thermal noise on the hysteresis loop. Its description is more difficult than at T=0 K since thermally activated jumps between the two configurations always occur and the system cannot stay forever in a unique metastable state. Two different regimes have to be considered according to the temperature value with respect to a critical temperature T_{c}(τ_{obs}) that depends on the observation time τ_{obs}. An hysteresis loop is still observed at low temperature, with a width that decreases as the temperature increases toward T_{c}(τ_{obs}). In contrast, for T>T_{c}(τ_{obs}) the memory of the initial condition is lost by stochastic jumps between the configurations. The study of the mean residence times in each configuration gives a unique opportunity to precisely determine the barrier height that separates the two configurations, without knowing the complete energy landscape of this many-body system. We also show how to reconstruct the hysteresis loop that would exist at T=0 K from high-temperature simulations.
Collapse
Affiliation(s)
- Tommy Dessup
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Christophe Coste
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
12
|
Bowers CR, Dvoyashkin M, Salpage SR, Akel C, Bhase H, Geer MF, Shimizu LS. Crystalline Bis-urea Nanochannel Architectures Tailored for Single-File Diffusion Studies. ACS NANO 2015; 9:6343-6353. [PMID: 26035000 DOI: 10.1021/acsnano.5b01895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Urea is a versatile building block that can be modified to self-assemble into a multitude of structures. One-dimensional nanochannels with zigzag architecture and cross-sectional dimensions of only ∼3.7 Å × 4.8 Å are formed by the columnar assembly of phenyl ether bis-urea macrocycles. Nanochannels formed by phenylethynylene bis-urea macrocycles have a round cross-section with a diameter of ∼9.0 Å. This work compares the Xe atom packing and diffusion inside the crystalline channels of these two bis-ureas using hyperpolarized Xe-129 NMR. The elliptical channel structure of the phenyl ether bis-urea macrocycle produces a Xe-129 powder pattern line shape characteristic of an asymmetric chemical shift tensor with shifts extending to well over 300 ppm with respect to the bulk gas, reflecting extreme confinement of the Xe atom. The wider channels formed by phenylethynylene bis-urea, in contrast, present an isotropic dynamically average electronic environment. Completely different diffusion dynamics are revealed in the two bis-ureas using hyperpolarized spin-tracer exchange NMR. Thus, a simple replacement of phenyl ether with phenylethynylene as the rigid linker unit results in a transition from single-file to Fickian diffusion dynamics. Self-assembled bis-urea macrocycles are found to be highly suitable materials for fundamental molecular transport studies on micrometer length scales.
Collapse
Affiliation(s)
- Clifford R Bowers
- †Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Muslim Dvoyashkin
- †Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Sahan R Salpage
- ‡Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Christopher Akel
- †Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Hrishi Bhase
- †Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Michael F Geer
- ‡Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Linda S Shimizu
- ‡Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
13
|
Dessup T, Coste C, Saint Jean M. Subcriticality of the zigzag transition: A nonlinear bifurcation analysis. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:032917. [PMID: 25871182 DOI: 10.1103/physreve.91.032917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 06/04/2023]
Abstract
When repelling particles are confined by a transverse potential in quasi-one-dimensional geometry, the straight line equilibrium configuration becomes unstable at small confinement, in favor of a staggered row that may be inhomogeneous or homogeneous. This conformational phase transition is a pitchfork bifurcation called the zigzag transition. We study the zigzag transition in infinite and periodic finite systems with short-range interactions. We provide numerical evidence that in this case the bifurcation is subcritical since it exhibits phase coexistence and hysteretic behavior. The physical mechanism responsible for the change in the bifurcation character is the nonlinear coupling between the transverse soft mode at the transition and the longitudinal Goldstone mode linked to the translational or rotational invariance of the zigzag pattern. An asymptotic analysis, near the bifurcation threshold and assuming an infinite system, gives an explicit expression for the normal form of the bifurcation. We establish the subcriticality, and we describe with excellent precision the inhomogeneous zigzag patterns observed in the simulations. A direct test of the physical mechanism responsible for the bifurcation character evidences a quantitative agreement.
Collapse
Affiliation(s)
- Tommy Dessup
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Christophe Coste
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
14
|
Locatelli E, Baldovin F, Orlandini E, Pierno M. Active Brownian particles escaping a channel in single file. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022109. [PMID: 25768460 DOI: 10.1103/physreve.91.022109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Indexed: 06/04/2023]
Abstract
Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).
Collapse
Affiliation(s)
- Emanuele Locatelli
- Dipartimento di Fisica e Astronomia "G. Galilei" and Sezione CNISM, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Fulvio Baldovin
- Dipartimento di Fisica e Astronomia "G. Galilei," Sezione INFN, and Sezione CNISM, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia "G. Galilei," Sezione INFN, and Sezione CNISM, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Matteo Pierno
- Dipartimento di Fisica e Astronomia "G. Galilei" and Sezione CNISM, Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
| |
Collapse
|
15
|
Dessup T, Maimbourg T, Coste C, Saint Jean M. Linear instability of a zigzag pattern. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:022908. [PMID: 25768570 DOI: 10.1103/physreve.91.022908] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 06/04/2023]
Abstract
Interacting particles confined in a quasi-one-dimensional channel are physical systems which display various equilibrium patterns according to the interparticle interaction and the transverse confinement potential. Depending on the confinement, the particles may be distributed along a straight line, in a staggered row (zigzag), or in a configuration in which the linear and zigzag phases coexist (distorted zigzag). In order to clarify the conditions of existence of each configuration, we have studied the linear stability of the zigzag pattern. We find an acoustic transverse mode that destabilizes the zigzag configuration for short-range interaction potentials, and we calculate the interaction range above which this instability disappears. In particular, we recover the unconditional stability of zigzag patterns for Coulomb interactions. We show that the domain of existence for the distorted zigzag patterns is accurately described by our linear stability analysis. We also emphasize the complexity of finite size effects. Last, we provide a criterion for the onset of instability in the thermodynamic limit and propose a biphasic model that explains some characteristics of the distorted zigzag patterns.
Collapse
Affiliation(s)
- Tommy Dessup
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Thibaud Maimbourg
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Christophe Coste
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
16
|
Coste C, Delfau JB, Saint Jean M. Longitudinal and Transverse Single File Diffusion in Quasi-1D Systems. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793048014400025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We review our recent results on Single File Diffusion (SFD) of a chain of particles that cannot cross each other, in a thermal bath, with long ranged interactions, and arbitrary damping. We exhibit new behaviors specifically associated to small systems and to small damping. The fluctuation dynamics is explained by the decomposition of the particles' motion in the normal modes of the chain. For longitudinal fluctuations, we emphasize the relevance of the soft mode linked to the translational invariance of the system to the long time SFD behavior. We show that close to the zigzag threshold, the transverse fluctuations also exhibit the SFD behavior, characterized by a mean square displacement that increases as the square root of time. This cannot be explained by the single file ordering, and the SFD behavior results from the strong correlation of the transverse displacements of neighbouring particles near the bifurcation. Extending our analytical modelization, we demonstrate the existence of this subdiffusive regime near the zigzag transition, in the thermodynamic limit. The zigzag transition is a supercritical pitchfork bifurcation, and we show that the transverse SFD behavior is closely linked to the vanishing of the frequency of the zigzag transverse mode at the bifurcation threshold. [Formula: see text] Special Issue Comments: This article presents mathematical results on the dynamics in files with longitudinal movements. This article is connected to the Special Issue articles about advanced statistical properties in single file dynamics,28 expanding files,63 and files with force and advanced formulations.29
Collapse
Affiliation(s)
- Christophe Coste
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Jean-Baptiste Delfau
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | - Michel Saint Jean
- Laboratoire "Matière et Systèmes Complexes" (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| |
Collapse
|
17
|
Lucena D, Galván-Moya JE, Ferreira WP, Peeters FM. Single-file and normal diffusion of magnetic colloids in modulated channels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032306. [PMID: 24730841 DOI: 10.1103/physreve.89.032306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Indexed: 06/03/2023]
Abstract
Diffusive properties of interacting magnetic dipoles confined in a parabolic narrow channel and in the presence of a periodic modulated (corrugated) potential along the unconfined direction are studied using Brownian dynamics simulations. We compare our simulation results with the analytical result for the effective diffusion coefficient of a single particle by Festa and d'Agliano [Physica A 90, 229 (1978)] and show the importance of interparticle interaction on the diffusion process. We present results for the diffusion of magnetic dipoles as a function of linear density, strength of the periodic modulation and commensurability factor.
Collapse
Affiliation(s)
- D Lucena
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil and Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - J E Galván-Moya
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - W P Ferreira
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil
| | - F M Peeters
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60440-554 Fortaleza, Ceará, Brazil and Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
18
|
Dvoyashkin M, Bhase H, Mirnazari N, Vasenkov S, Bowers CR. Single-File Nanochannel Persistence Lengths from NMR. Anal Chem 2014; 86:2200-4. [DOI: 10.1021/ac403868t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Muslim Dvoyashkin
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Hrishi Bhase
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Navid Mirnazari
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Sergey Vasenkov
- Department
of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Clifford R. Bowers
- Department
of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
19
|
Takeshi O, Goto S, Matsumoto T, Nakahara A, Otsuki M. Analytical calculation of four-point correlations for a simple model of cages involving numerous particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062108. [PMID: 24483387 DOI: 10.1103/physreve.88.062108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Indexed: 06/03/2023]
Abstract
Dynamics of a one-dimensional system of Brownian particles with short-range repulsive interaction (diameter σ) is studied with a liquid-theoretical approach. The mean square displacement, the two-particle displacement correlation, and the overlap-density-based generalized susceptibility are calculated analytically by way of the Lagrangian correlation of the interparticulate space, instead of the Eulerian correlation of density that is commonly used in the standard mode-coupling theory. In regard to the mean square displacement, the linear analysis reproduces the established result on the asymptotic subdiffusive behavior of the system. A finite-time correction is given by incorporating the effect of entropic nonlinearity with a Lagrangian version of mode-coupling theory. The notorious difficulty in derivation of the mode-coupling theory concerning violation of the fluctuation-dissipation theorem is found to disappear by virtue of the Lagrangian description. The Lagrangian description also facilitates analytical calculation of four-point correlations in the space-time, such as the two-particle displacement correlation. The two-particle displacement correlation, which is asymptotically self-similar in the space-time, illustrates how the cage effect confines each particle within a short radius on one hand and creates collective motion of numerous particles on the other hand. As the time elapses, the correlation length grows unlimitedly, and the generalized susceptibility based on the overlap density converges to a finite value which is an increasing function of the density. The distribution function behind these dynamical four-point correlations and its extension to three-dimensional cases, respecting the tensorial character of the two-particle displacement correlation, are also discussed.
Collapse
Affiliation(s)
- Ooshida Takeshi
- Department of Mechanical and Aerospace Engineering, Tottori University, Tottori 680-8552, Japan
| | - Susumu Goto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takeshi Matsumoto
- Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Akio Nakahara
- Laboratory of Physics, College of Science and Technology, Nihon University, Funabashi, Chiba 274-8501, Japan
| | - Michio Otsuki
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558, Japan
| |
Collapse
|
20
|
Delfau JB, Coste C, Saint Jean M. Noisy zigzag transition, fluctuations, and thermal bifurcation threshold. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062135. [PMID: 23848655 DOI: 10.1103/physreve.87.062135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Indexed: 06/02/2023]
Abstract
We study the zigzag transition in a system of particles with screened electrostatic interaction, submitted to a thermal noise. At finite temperature, this configurational phase transition is an example of noisy supercritical pitchfork bifurcation. The measurements of transverse fluctuations allow a complete description of the bifurcation region, which takes place between the deterministic threshold and a thermal threshold beyond which thermal fluctuations do not allow the system to flip between the symmetric zigzag configurations. We show that a divergence of the saturation time for the transverse fluctuations allows a precise and unambiguous definition of this thermal threshold. Its evolution with the temperature is shown to be in good agreement with theoretical predictions from noisy bifurcation theory.
Collapse
Affiliation(s)
- Jean-Baptiste Delfau
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris 7 Diderot, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
21
|
Lucena D, Ferreira WP, Munarin FF, Farias GA, Peeters FM. Tunable diffusion of magnetic particles in a quasi-one-dimensional channel. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012307. [PMID: 23410331 DOI: 10.1103/physreve.87.012307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/04/2012] [Indexed: 06/01/2023]
Abstract
The diffusion of a system of ferromagnetic dipoles confined in a quasi-one-dimensional parabolic trap is studied using Brownian dynamics simulations. We show that the dynamics of the system is tunable by an in-plane external homogeneous magnetic field. For a strong applied magnetic field, we find that the mobility of the system, the exponent of diffusion, and the crossover time among different diffusion regimes can be tuned by the orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the subdiffusive regime is independent of the orientation of the external field.
Collapse
Affiliation(s)
- D Lucena
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil.
| | | | | | | | | |
Collapse
|
22
|
Manzi SJ, Torrez Herrera JJ, Pereyra VD. Single-file diffusion in a box: effect of the initial configuration. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:021129. [PMID: 23005744 DOI: 10.1103/physreve.86.021129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Indexed: 06/01/2023]
Abstract
This paper studies the single-file diffusion process on a linear chain of identical pointlike particles with multiple-site occupation confined in a one-dimensional box. The particles are noninteracting, except that double occupancy is forbidden. When particles are confined in a finite box, the final stage is saturation. By means of combinatorial analysis, an exact numerical evaluation of the saturation values for both the mean-square displacement (MSD) of a tracer particle and the center of mass of the system are obtained. Different initial distributions of particles are introduced. The time dependence of the MSD is obtained by means of Monte Carlo simulations. The values of the MSD for the tracer particles as well as the center of mass of the system depend on the size of the particle, the size of the box, and the initial distribution. Moreover, the transient regime depends on the initial distribution. In fact, the crossover from normal to subdiffusive regime is observed for random and alternate initial distributions, while superdiffusive diffusion appears for any stacked initial distributions. In all cases, it is shown that the collisions between particles do not determine the time exponent of the MSD. A simple expression for the transient regime is also obtained for the especial case of random initial distribution.
Collapse
Affiliation(s)
- S J Manzi
- Departamento de Física, Instituto de Física Aplicada-CONICET, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
| | | | | |
Collapse
|
23
|
Delfau JB, Coste C, Saint Jean M. Single-file diffusion of particles in a box: transient behaviors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061111. [PMID: 23005055 DOI: 10.1103/physreve.85.061111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 05/03/2012] [Indexed: 06/01/2023]
Abstract
We consider a finite number of particles with soft-core interactions, subjected to thermal fluctuations and confined in a box with excluded mutual passage. Using numerical simulations, we focus on the influence of the longitudinal confinement on the transient behavior of the longitudinal mean squared displacement. We exhibit several power laws for its time evolution according to the confinement range and to the rank of the particle in the file. We model the fluctuations of the particles as those of a chain of springs and point masses in a thermal bath. Our main conclusion is that actual system dynamics can be described in terms of the normal oscillation modes of this chain. Moreover, we obtain complete expressions for the physical observables, in excellent agreement with our simulations. The correct power laws for the time dependency of the mean squared displacement in the various regimes are recovered, and analytical expressions of the prefactors according to the relevant parameters are given.
Collapse
Affiliation(s)
- Jean-Baptiste Delfau
- Laboratoire Matière et Systèmes Complexes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7057, Université Paris Diderot, Paris, France
| | | | | |
Collapse
|
24
|
Delfau JB, Coste C, Saint Jean M. Enhanced fluctuations of interacting particles confined in a box. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041137. [PMID: 22680448 DOI: 10.1103/physreve.85.041137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Indexed: 06/01/2023]
Abstract
We study the position fluctuations of interacting particles aligned in a finite cell that avoid any crossing in equilibrium with a thermal bath. The focus is put on the influence of the confining force directed along the cell length. We show that the system may be modeled as a 1D chain of particles with identical masses, linked with linear springs of varying spring constants. The confining force may be accounted for by linear springs linked to the walls. When the confining force range is increased toward the inside of the chain, a paradoxical behavior is exhibited. The outermost particles fluctuations are enhanced, whereas those of the inner particles are reduced. A minimum of fluctuations is observed at a distance of the cell extremities that scales linearly with the confining force range. Those features are in very good agreement with the model. Moreover, the simulations exhibit an asymmetry in their fluctuations which is an anharmonic effect. It is characterized by the measurement of the skewness, which is found to be strictly positive for the outer particles when the confining force is short ranged.
Collapse
Affiliation(s)
- Jean-Baptiste Delfau
- Laboratoire MSC. UMR CNRS 7057, Université Paris Diderot, 75205 Paris Cedex 13, France
| | | | | |
Collapse
|
25
|
Lucena D, Tkachenko DV, Nelissen K, Misko VR, Ferreira WP, Farias GA, Peeters FM. Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031147. [PMID: 22587078 DOI: 10.1103/physreve.85.031147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 11/01/2011] [Indexed: 05/31/2023]
Abstract
Diffusive properties of a monodisperse system of interacting particles confined to a quasi-one-dimensional channel are studied using molecular dynamics simulations. We calculate numerically the mean-squared displacement (MSD) and investigate the influence of the width of the channel (or the strength of the confinement potential) on diffusion in finite-size channels of different shapes (i.e., straight and circular). The transition from single-file diffusion to the two-dimensional diffusion regime is investigated. This transition [regarding the calculation of the scaling exponent (α) of the MSD (Δx(2)(t) ∝ t(α)] as a function of the width of the channel is shown to change depending on the channel's confinement profile. In particular, the transition can be either smooth (i.e., for a parabolic confinement potential) or rather sharp (i.e., for a hard-wall potential), as distinct from infinite channels where this transition is abrupt. This result can be explained by qualitatively different distributions of the particle density for the different confinement potentials.
Collapse
Affiliation(s)
- D Lucena
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Carvalho JCN, Nelissen K, Ferreira WP, Farias GA, Peeters FM. Diffusion in a quasi-one-dimensional system on a periodic substrate. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:021136. [PMID: 22463181 DOI: 10.1103/physreve.85.021136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 12/21/2011] [Indexed: 05/31/2023]
Abstract
The diffusion of charged particles interacting through a repulsive Yukawa potential, exp(-r/λ)/r, confined by a parabolic potential in the y direction and subjected to a periodic substrate potential in the x direction is investigated. Langevin dynamic simulations are used to investigate the effect of the particle density, the amplitude of the periodic substrate, and the range of the interparticle interaction potential on the diffusive behavior of the particles. We found that in general the diffusion is suppressed with increasing the amplitude of the periodic potential, but for specific values of the strength of the substrate potential a remarkable increase of the diffusion is found with increasing the periodic potential amplitude. In addition, we found a strong dependence of the diffusion on the specific arrangement of the particles, e.g., single-chain versus multichain configuration. For certain particle configurations, a reentrant behavior of the diffusion is found as a function of the substrate strength due to structural transitions in the ordering of the particles.
Collapse
Affiliation(s)
- J C N Carvalho
- Departamento de Física, Universidade Federal do Ceará, Caixa Postal 6030, Campus do Pici, 60455-760 Fortaleza, Ceará, Brazil.
| | | | | | | | | |
Collapse
|