1
|
Šamaj L, Trulsson M, Trizac E. Strong-coupling theory of counterions with hard cores between symmetrically charged walls. Phys Rev E 2020; 102:042604. [PMID: 33212638 DOI: 10.1103/physreve.102.042604] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
By a combination of Monte Carlo simulations and analytical calculations, we investigate the effective interactions between highly charged planar interfaces, neutralized by mobile counterions (salt-free system). While most previous analysis have focused on pointlike counterions, we treat them as charged hard spheres. We thus work out the fate of like-charge attraction when steric effects are at work. The analytical approach partitions counterions in two subpopulations, one for each plate, and integrates out one subpopulation to derive an effective Hamiltonian for the remaining one. The effective Hamiltonian features plaquette four-particle interactions, and it is worked out by computing a Gibbs-Bogoliubov inequality for the free energy. At the root of the treatment is the fact that under strong electrostatic coupling, the system of charges forms an ordered arrangement, that can be affected by steric interactions. Fluctuations around the reference positions are accounted for. To dominant order at high coupling, it is found that steric effects do not significantly affect the interplate effective pressure, apart at small distances where hard-sphere overlap are unavoidable, and thus rule out configurations.
Collapse
Affiliation(s)
- Ladislav Šamaj
- Institute of Physics, Slovak Academy of Sciences, 84511 Bratislava, Slovakia
| | | | | |
Collapse
|
2
|
Colla T, Nunes Lopes L, Dos Santos AP. Ionic size effects on the Poisson-Boltzmann theory. J Chem Phys 2018; 147:014104. [PMID: 28688437 DOI: 10.1063/1.4990737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we develop a simple theory to study the effects of ionic size on ionic distributions around a charged spherical particle. We include a correction to the regular Poisson-Boltzmann equation in order to take into account the size of ions in a mean-field regime. The results are compared with Monte Carlo simulations and a density functional theory based on the fundamental measure approach and a second-order bulk expansion which accounts for electrostatic correlations. The agreement is very good even for multivalent ions. Our results show that the theory can be applied with very good accuracy in the description of ions with highly effective ionic radii and low concentration, interacting with a colloid or a nanoparticle in an electrolyte solution.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, CEP 35400-000 Ouro Preto, MG, Brazil
| | - Lucas Nunes Lopes
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Alexandre P Dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Šamaj L, Trulsson M, Trizac E. Strong-coupling theory of counterions between symmetrically charged walls: from crystal to fluid phases. SOFT MATTER 2018; 14:4040-4052. [PMID: 29790889 DOI: 10.1039/c8sm00571k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study thermal equilibrium of classical pointlike counterions confined between symmetrically charged walls at distance d. At very large couplings when the counterion system is in its crystal phase, a harmonic expansion of particle deviations is made around the bilayer positions, with a free lattice parameter determined from a variational approach. For each of the two walls, the harmonic expansion implies an effective one-body potential at the root of all observables of interest in our Wigner strong-coupling expansion. Analytical results for the particle density profile and the pressure are in good agreement with numerical Monte Carlo data, for small as well as intermediate values of d comparable with the Wigner lattice spacing. While the strong-coupling theory is extended to the fluid regime by using the concept of a correlation hole, the Wigner calculations appear trustworthy for all electrostatic couplings investigated. Our results significantly extend the range of accuracy of analytical equations of state for strongly interacting charged planar interfaces.
Collapse
Affiliation(s)
- Ladislav Šamaj
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | |
Collapse
|
4
|
Šamaj L, Dos Santos AP, Levin Y, Trizac E. Mean-field beyond mean-field: the single particle view for moderately to strongly coupled charged fluids. SOFT MATTER 2016; 12:8768-8773. [PMID: 27714365 DOI: 10.1039/c6sm01360k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In a counter-ion only charged fluid, Coulomb coupling is quantified by a single dimensionless parameter. Yet, the theoretical treatment of moderately to strongly coupled charged fluids is a difficult task, central to the understanding of a wealth of soft matter problems, including biological systems. We show that the corresponding coupling regime can be remarkably well described by a single particle treatment, which, at variance with previous works, takes due account of inter-ionic interactions. To this end, the prototypical problem of a planar charged dielectric interface is worked out. Testing our predictions against Monte Carlo simulation data reveals an excellent agreement.
Collapse
Affiliation(s)
- Ladislav Šamaj
- Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexandre P Dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Emmanuel Trizac
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
5
|
Colla T, Girotto M, Dos Santos AP, Levin Y. Charge neutrality breakdown in confined aqueous electrolytes: Theory and simulation. J Chem Phys 2016; 145:094704. [PMID: 27609007 DOI: 10.1063/1.4962198] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We study, using Density Functional theory (DFT) and Monte Carlo simulations, aqueous electrolyte solutions between charged infinite planar surfaces, in contact with a bulk salt reservoir. In agreement with recent experimental observations [Z. Luo et al., Nat. Commun. 6, 6358 (2015)], we find that the confined electrolyte lacks local charge neutrality. We show that a DFT based on a bulk-HNC expansion properly accounts for strong electrostatic correlations and allows us to accurately calculate the ionic density profiles between the charged surfaces, even for electrolytes containing trivalent counterions. The DFT allows us to explore the degree of local charge neutrality violation, as a function of plate separation and bulk electrolyte concentration, and to accurately calculate the interaction force between the charged surfaces.
Collapse
Affiliation(s)
- Thiago Colla
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Matheus Girotto
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Alexandre P Dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Téllez G, Trizac E. Screening like charges in one-dimensional Coulomb systems: Exact results. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042134. [PMID: 26565195 DOI: 10.1103/physreve.92.042134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 06/05/2023]
Abstract
The possibility that like charges can attract each other under the mediation of mobile counterions is by now well documented experimentally, numerically, and analytically. Yet, obtaining exact results is in general impossible, or restricted to some limiting cases. We work out here in detail a one-dimensional model that retains the essence of the phenomena present in higher-dimensional systems. The partition function is obtained explicitly, from which a wealth of relevant quantities follow, such as the effective force between the charges or the counterion profile in their vicinity. Isobaric and canonical ensembles are distinguished. The case of two equal charges screened by an arbitrary number N of counterions is first studied, before the more general asymmetric situation is addressed. It is shown that the parity of N plays a key role in the long-range physics.
Collapse
Affiliation(s)
- Gabriel Téllez
- Departamento de Física, Universidad de los Andes, Bogotá, Colombia
| | - Emmanuel Trizac
- Laboratoire de Physique Théorique et Modèles Statistiques (UMR CNRS 8626), Université Paris-Sud, F-91405 Orsay, France
| |
Collapse
|
7
|
Marry V, Rotenberg B. Upscaling Strategies for Modeling Clay-Rock Properties. NATURAL AND ENGINEERED CLAY BARRIERS 2015. [DOI: 10.1016/b978-0-08-100027-4.00011-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Joubaud R, Bernard O, Delville A, Ern A, Rotenberg B, Turq P. Numerical study of density functional theory with mean spherical approximation for ionic condensation in highly charged confined electrolytes. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062302. [PMID: 25019771 DOI: 10.1103/physreve.89.062302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Indexed: 06/03/2023]
Abstract
We investigate numerically a density functional theory (DFT) for strongly confined ionic solutions in the canonical ensemble by comparing predictions of ionic concentration profiles and pressure for the double-layer configuration to those obtained with Monte Carlo (MC) simulations and the simpler Poisson-Boltzmann (PB) approach. The DFT consists of a bulk (ion-ion) and an ion-solid part. The bulk part includes nonideal terms accounting for long-range electrostatic and short-range steric correlations between ions and is evaluated with the mean spherical approximation and the local density approximation. The ion-solid part treats the ion-solid interactions at the mean-field level through the solution of a Poisson problem. The main findings are that ionic concentration profiles are generally better described by PB than by DFT, although DFT captures the nonmonotone co-ion profile missed by PB. Instead, DFT yields more accurate pressure predictions than PB, showing in particular that nonideal effects are important to describe highly confined ionic solutions. Finally, we present a numerical methodology capable of handling nonconvex minimization problems so as to explore DFT predictions when the reduced temperature falls below the critical temperature.
Collapse
Affiliation(s)
- R Joubaud
- ANDRA, DRD/EAP, Parc de la croix blanche, 1,7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France and University Paris-Est, CERMICS (ENPC), 77455 Marne la Vallée cedex 2, France and Department of Mathematics, Imperial College London, SW7 2AZ London, United Kingdom
| | - O Bernard
- Sorbonne Universités, UPMC University Paris 06, UMR 8234 PHENIX, 75005 Paris, France and CNRS, UMR 8234 PHENIX, 75005 Paris, France
| | - A Delville
- CRMD, CNRS-Université d'Orléans, 1B rue de la Férollerie, 45071 Orléans Cedex 02, France
| | - A Ern
- University Paris-Est, CERMICS (ENPC), 77455 Marne la Vallée cedex 2, France
| | - B Rotenberg
- Sorbonne Universités, UPMC University Paris 06, UMR 8234 PHENIX, 75005 Paris, France and CNRS, UMR 8234 PHENIX, 75005 Paris, France
| | - P Turq
- Sorbonne Universités, UPMC University Paris 06, UMR 8234 PHENIX, 75005 Paris, France and CNRS, UMR 8234 PHENIX, 75005 Paris, France
| |
Collapse
|
9
|
Analytical solutions of nonlinear Poisson–Boltzmann equation for colloidal particles immersed in a general electrolyte solution by homotopy perturbation technique. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Samaj L, Trizac E. Wigner-crystal formulation of strong-coupling theory for counterions near planar charged interfaces. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041401. [PMID: 22181140 DOI: 10.1103/physreve.84.041401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Indexed: 05/31/2023]
Abstract
We present a new analytical approach to the strong electrostatic coupling regime (SC) that can be achieved equivalently at low temperatures, high charges, low dielectric permittivity, etc. Two geometries are analyzed in detail: one charged wall first, and then two parallel walls at small distances that can be likely or oppositely charged. In all cases, only one type of mobile counterions is present, and ensures electroneutrality (salt-free case). The method is based on a systematic expansion around the ground state formed by the two-dimensional Wigner crystal(s) of counterions at the plate(s). The leading SC order stems from a single-particle theory, and coincides with the virial SC approach that has been much studied in the last 10 years. The first correction has the functional form of the virial SC prediction, but the prefactor is different. The present theory is free of divergences and the obtained results, both for symmetrically and asymmetrically charged plates, are in excellent agreement with available data of Monte Carlo simulations under strong and intermediate Coulombic couplings. All results obtained represent relevant improvements over the virial SC estimates. The present SC theory starting from the Wigner crystal and therefore coined Wigner SC, sheds light on anomalous phenomena like the counterion mediated like-charge attraction, and the opposite-charge repulsion.
Collapse
Affiliation(s)
- Ladislav Samaj
- Laboratoire de Physique Théorique et Modèles Statistiques, UMR CNRS 8626, Université Paris-Sud, F-91405 Orsay, France
| | | |
Collapse
|