1
|
Puzyrev D, Trittel T, Harth K, Stannarius R. Cooling of a granular gas mixture in microgravity. NPJ Microgravity 2024; 10:36. [PMID: 38519479 PMCID: PMC10959983 DOI: 10.1038/s41526-024-00369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/15/2024] [Indexed: 03/25/2024] Open
Abstract
Granular gases are fascinating non-equilibrium systems with interesting features such as spontaneous clustering and non-Gaussian velocity distributions. Mixtures of different components represent a much more natural composition than monodisperse ensembles but attracted comparably little attention so far. We present the observation and characterization of a mixture of rod-like particles with different sizes and masses in a drop tower experiment. Kinetic energy decay rates during granular cooling and collision rates were determined and Haff's law for homogeneous granular cooling was confirmed. Thereby, energy equipartition between the mixture components and between individual degrees of freedom is violated. Heavier particles keep a slightly higher average kinetic energy than lighter ones. Experimental results are supported by numerical simulations.
Collapse
Affiliation(s)
- Dmitry Puzyrev
- Department of Nonlinear Phenomena, Institute of Physics, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Research Group 'Magdeburger Arbeitsgemeinschaft für Forschungunter Raumfahrt-und Schwerelosigkeitsbedingungen' (MARS), Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Torsten Trittel
- Department of Nonlinear Phenomena, Institute of Physics, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Research Group 'Magdeburger Arbeitsgemeinschaft für Forschungunter Raumfahrt-und Schwerelosigkeitsbedingungen' (MARS), Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany
| | - Kirsten Harth
- Research Group 'Magdeburger Arbeitsgemeinschaft für Forschungunter Raumfahrt-und Schwerelosigkeitsbedingungen' (MARS), Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany
| | - Ralf Stannarius
- Research Group 'Magdeburger Arbeitsgemeinschaft für Forschungunter Raumfahrt-und Schwerelosigkeitsbedingungen' (MARS), Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Microgravity and Translational Regenerative Medicine, Medical Faculty, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
- Department of Engineering, Brandenburg University of Applied Sciences, Magdeburger Str. 50, 14770, Brandenburg an der Havel, Germany
- Institute of Physics, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
2
|
Windows-Yule CRK, Parker DJ. Center of mass scaling in three-dimensional binary granular systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062206. [PMID: 25019769 DOI: 10.1103/physreve.89.062206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Indexed: 06/03/2023]
Abstract
Using a combination of experimental results acquired through positron emission particle tracking and simulational results obtained via the discrete particle method, we determine a scaling relationship for the center of mass height of a vibrofluidized three-dimensional, bidisperse granular system. We find the scaling to be dependent on the characteristic velocity with which the system is driven, the depth of the granular bed, and the elasticities of the particles involved, as well as the degree of segregation exhibited by the system and the ratio of masses between particle species. The scaling is observed to be robust over a significant range of system parameters.
Collapse
Affiliation(s)
- C R K Windows-Yule
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - D J Parker
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Brey JJ, Ruiz-Montero MJ. Shearing instability of a dilute granular mixture. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:022210. [PMID: 23496508 DOI: 10.1103/physreve.87.022210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Indexed: 06/01/2023]
Abstract
The shearing instability of a dilute granular mixture composed of smooth inelastic hard spheres or disks is investigated. By using the Navier-Stokes hydrodynamic equations, it is shown that the scaled transversal velocity mode exhibits a divergent behavior, similarly to what happens in one-component systems. The theoretical prediction for the critical size is compared with direct Monte Carlo simulations of the Boltzmann equations describing the system, and a good agreement is found. The total energy fluctuations in the vicinity of the transition are shown to scale with the second moment of the distribution. The scaling distribution function is the same as found in other equilibrium and nonequilibrium phase transitions, suggesting the existence of some kind of universality.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080, Sevilla, Spain
| | | |
Collapse
|
4
|
Brey JJ, Khalil N, Dufty JW. Thermal segregation of intruders in the Fourier state of a granular gas. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:021307. [PMID: 22463202 DOI: 10.1103/physreve.85.021307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/24/2012] [Indexed: 05/31/2023]
Abstract
A low density binary mixture of granular gases is considered within the Boltzmann kinetic theory. One component, the intruders, is taken to be dilute with respect to the other, and thermal segregation of the two species is described for a special solution to the Boltzmann equation. This solution has a macroscopic hydrodynamic representation with a constant temperature gradient and is referred to as the Fourier state. The thermal diffusion factor characterizing conditions for segregation is calculated without the usual restriction to Navier-Stokes hydrodynamics. Integral equations for the coefficients in this hydrodynamic description are calculated approximately within a Sonine polynomial expansion. Molecular dynamics simulations are reported, confirming the existence of this idealized Fourier state. Good agreement is found for the predicted and simulated thermal diffusion coefficient, while only qualitative agreement is found for the temperature ratio.
Collapse
Affiliation(s)
- J Javier Brey
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | | | | |
Collapse
|