1
|
Mandal S, Schrack L, Löwen H, Sperl M, Franosch T. Persistent Anti-Correlations in Brownian Dynamics Simulations of Dense Colloidal Suspensions Revealed by Noise Suppression. PHYSICAL REVIEW LETTERS 2019; 123:168001. [PMID: 31702351 DOI: 10.1103/physrevlett.123.168001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Transport properties of a hard-sphere colloidal fluid are investigated by Brownian dynamics simulations. We implement a novel algorithm for the time-dependent velocity-autocorrelation function (VACF) essentially eliminating the noise of the bare random motion. The measured VACF reveals persistent anti-correlations manifested by a negative algebraic power-law tail t^{-5/2} at all densities. At small packing fractions the simulations fully agree with the analytic low-density prediction, yet the amplitude of the tail becomes dramatically suppressed as the packing fraction is increased. The mode-coupling theory of the glass transition provides a qualitative explanation for the strong variation in terms of the static compressibility as well as the slowing down of the structural relaxation.
Collapse
Affiliation(s)
- Suvendu Mandal
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Lukas Schrack
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Matthias Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Nandi SK, Gov NS. Nonequilibrium mode-coupling theory for dense active systems of self-propelled particles. SOFT MATTER 2017; 13:7609-7616. [PMID: 29028064 DOI: 10.1039/c7sm01648d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The physics of active systems of self-propelled particles, in the regime of a dense liquid state, is an open puzzle of great current interest, both for statistical physics and because such systems appear in many biological contexts. We develop a nonequilibrium mode-coupling theory (MCT) for such systems, where activity is included as a colored noise with the particles having a self-propulsion force f0 and a persistence time τp. Using the extended MCT and a generalized fluctuation-dissipation theorem, we calculate the effective temperature Teff of the active fluid. The nonequilibrium nature of the systems is manifested through a time-dependent Teff that approaches a constant in the long-time limit, which depends on the activity parameters f0 and τp. We find, phenomenologically, that this long-time limit is captured by the potential energy of a single, trapped active particle (STAP). Through a scaling analysis close to the MCT glass transition point, we show that τα, the α-relaxation time, behaves as τα ∼ f0-2γ, where γ = 1.74 is the MCT exponent for the passive system. τα may increase or decrease as a function of τp depending on the type of active force correlations, but the behavior is always governed by the same value of the exponent γ. Comparison with the numerical solution of the nonequilibrium MCT and simulation results give excellent agreement with scaling analysis.
Collapse
Affiliation(s)
- Saroj Kumar Nandi
- Department of Materials and Interfaces, The Weizmann Institute of Science, P.O. Box 26, 234 Herzl Street, Rehovot 7610001, Israel.
| | | |
Collapse
|
3
|
Kondratyuk ND, Norman GE, Stegailov VV. Self-consistent molecular dynamics calculation of diffusion in higher n-alkanes. J Chem Phys 2016; 145:204504. [PMID: 27908129 DOI: 10.1063/1.4967873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diffusion is one of the key subjects of molecular modeling and simulation studies. However, there is an unresolved lack of consistency between Einstein-Smoluchowski (E-S) and Green-Kubo (G-K) methods for diffusion coefficient calculations in systems of complex molecules. In this paper, we analyze this problem for the case of liquid n-triacontane. The non-conventional long-time tails of the velocity autocorrelation function (VACF) are found for this system. Temperature dependence of the VACF tail decay exponent is defined. The proper inclusion of the long-time tail contributions to the diffusion coefficient calculation results in the consistency between G-K and E-S methods. Having considered the major factors influencing the precision of the diffusion rate calculations in comparison with experimental data (system size effects and force field parameters), we point to hydrogen nuclear quantum effects as, presumably, the last obstacle to fully consistent n-alkane description.
Collapse
Affiliation(s)
- Nikolay D Kondratyuk
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| | - Genri E Norman
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| | - Vladimir V Stegailov
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russia
| |
Collapse
|
4
|
Avila KE, Castillo HE, Vollmayr-Lee K, Zippelius A. Slow and long-ranged dynamical heterogeneities in dissipative fluids. SOFT MATTER 2016; 12:5461-5474. [PMID: 27230572 DOI: 10.1039/c6sm00784h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution.
Collapse
Affiliation(s)
- Karina E Avila
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
5
|
Barocchi F, Guarini E, Bafile U. Exponential series expansion for correlation functions of many-body systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032106. [PMID: 25314394 DOI: 10.1103/physreve.90.032106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Indexed: 06/04/2023]
Abstract
We demonstrate that in Hamiltonian many-body systems at equilibrium, any kind of time dependent correlation function c(t) can always be expanded in a series of (complex) exponential functions of time when its Laplace transform C̃(z) has single poles. The characteristic frequencies can be identified as the eigenfrequencies of the correlation. This is done without introducing the concepts of fluctuating forces and memory functions, due to Mori and Zwanzig and extensively used in the literature in the last decades. Our method is based on a different projection technique in the Hilbert space S of the system and shows that appropriate approximations of the exponential series are related to the contraction of S to a finite, usually small, number of dimensions. The time dependence of correlation functions is always described in detail by a multiple-exponential functionality also at long times. This result is therefore also valid for correlation functions of many-body Hamiltonian systems for which a power-law dependence, observed in restricted time ranges and predicted to be the asymptotic one, can be considered at most as a useful approximate modeling of long-time behavior.
Collapse
Affiliation(s)
- Fabrizio Barocchi
- Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - Eleonora Guarini
- Dipartimento di Fisica e Astronomia, Università di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino, Italy
| | - Ubaldo Bafile
- Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Avila KE, Castillo HE, Fiege A, Vollmayr-Lee K, Zippelius A. Strong dynamical heterogeneity and universal scaling in driven granular fluids. PHYSICAL REVIEW LETTERS 2014; 113:025701. [PMID: 25062209 DOI: 10.1103/physrevlett.113.025701] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Large-scale simulations of two-dimensional bidisperse granular fluids allow us to determine spatial correlations of slow particles via the four-point structure factor S(4)(q,t). Both cases, elastic (ϵ=1) and inelastic (ϵ<1) collisions, are studied. As the fluid approaches structural arrest, i.e., for packing fractions in the range 0.6≤ϕ≤0.805, scaling is shown to hold: S(4)(q,t)/χ(4)(t)=s(qξ(t)). Both the dynamic susceptibility χ(4)(τ(α)) and the dynamic correlation length ξ(τ(α)) evaluated at the α relaxation time τ(α) can be fitted to a power law divergence at a critical packing fraction. The measured ξ(τ(α)) widely exceeds the largest one previously observed for three-dimensional (3d) hard sphere fluids. The number of particles in a slow cluster and the correlation length are related by a robust power law, χ(4)(τ(α))≈ξ(d-p)(τ(α)), with an exponent d-p≈1.6. This scaling is remarkably independent of ϵ, even though the strength of the dynamical heterogeneity at constant volume fraction depends strongly on ϵ.
Collapse
Affiliation(s)
- Karina E Avila
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA and Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 17, D-37077 Göttingen, Germany
| | - Horacio E Castillo
- Department of Physics and Astronomy and Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, Ohio 45701, USA
| | - Andrea Fiege
- Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Katharina Vollmayr-Lee
- Department of Physics and Astronomy, Bucknell University, Lewisburg, Pennsylvania 17837, USA
| | - Annette Zippelius
- Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 17, D-37077 Göttingen, Germany and Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|