1
|
Schmitt O. Relationships and representations of brain structures, connectivity, dynamics and functions. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111332. [PMID: 40147809 DOI: 10.1016/j.pnpbp.2025.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
The review explores the complex interplay between brain structures and their associated functions, presenting a diversity of hierarchical models that enhances our understanding of these relationships. Central to this approach are structure-function flow diagrams, which offer a visual representation of how specific neuroanatomical structures are linked to their functional roles. These diagrams are instrumental in mapping the intricate connections between different brain regions, providing a clearer understanding of how functions emerge from the underlying neural architecture. The study details innovative attempts to develop new functional hierarchies that integrate structural and functional data. These efforts leverage recent advancements in neuroimaging techniques such as fMRI, EEG, MEG, and PET, as well as computational models that simulate neural dynamics. By combining these approaches, the study seeks to create a more refined and dynamic hierarchy that can accommodate the brain's complexity, including its capacity for plasticity and adaptation. A significant focus is placed on the overlap of structures and functions within the brain. The manuscript acknowledges that many brain regions are multifunctional, contributing to different cognitive and behavioral processes depending on the context. This overlap highlights the need for a flexible, non-linear hierarchy that can capture the brain's intricate functional landscape. Moreover, the study examines the interdependence of these functions, emphasizing how the loss or impairment of one function can impact others. Another crucial aspect discussed is the brain's ability to compensate for functional deficits following neurological diseases or injuries. The investigation explores how the brain reorganizes itself, often through the recruitment of alternative neural pathways or the enhancement of existing ones, to maintain functionality despite structural damage. This compensatory mechanism underscores the brain's remarkable plasticity, demonstrating its ability to adapt and reconfigure itself in response to injury, thereby ensuring the continuation of essential functions. In conclusion, the study presents a system of brain functions that integrates structural, functional, and dynamic perspectives. It offers a robust framework for understanding how the brain's complex network of structures supports a wide range of cognitive and behavioral functions, with significant implications for both basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences and Medical University - Institute for Systems Medicine, Am Kaiserkai 1, Hamburg 20457, Germany; University of Rostock, Department of Anatomy, Gertrudenstr. 9, Rostock, 18055 Rostock, Germany.
| |
Collapse
|
2
|
Truong NCD, Wang X, Wanniarachchi H, Lang Y, Nerur S, Chen KY, Liu H. Mapping and understanding of correlated electroencephalogram (EEG) responses to the newsvendor problem. Sci Rep 2022; 12:13800. [PMID: 35963934 PMCID: PMC9376113 DOI: 10.1038/s41598-022-17970-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Decision-making is one of the most critical activities of human beings. To better understand the underlying neurocognitive mechanism while making decisions under an economic context, we designed a decision-making paradigm based on the newsvendor problem (NP) with two scenarios: low-profit margins as the more challenging scenario and high-profit margins as the less difficult one. The EEG signals were acquired from healthy humans while subjects were performing the task. We adopted the Correlated Component Analysis (CorrCA) method to identify linear combinations of EEG channels that maximize the correlation across subjects ([Formula: see text]) or trials ([Formula: see text]). The inter-subject or inter-trial correlation values (ISC or ITC) of the first three components were estimated to investigate the modulation of the task difficulty on subjects' EEG signals and respective correlations. We also calculated the alpha- and beta-band power of the projection components obtained by the CorrCA to assess the brain responses across multiple task periods. Finally, the CorrCA forward models, which represent the scalp projections of the brain activities by the maximally correlated components, were further translated into source distributions of underlying cortical activity using the exact Low Resolution Electromagnetic Tomography Algorithm (eLORETA). Our results revealed strong and significant correlations in EEG signals among multiple subjects and trials during the more difficult decision-making task than the easier one. We also observed that the NP decision-making and feedback tasks desynchronized the normalized alpha and beta powers of the CorrCA components, reflecting the engagement state of subjects. Source localization results furthermore suggested several sources of neural activities during the NP decision-making process, including the dorsolateral prefrontal cortex, anterior PFC, orbitofrontal cortex, posterior cingulate cortex, and somatosensory association cortex.
Collapse
Affiliation(s)
- Nghi Cong Dung Truong
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX, 76019, USA
| | - Xinlong Wang
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX, 76019, USA
| | - Hashini Wanniarachchi
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX, 76019, USA
| | - Yan Lang
- Information Systems and Operations Management, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, TX, 76019, USA
- Department of Business, State University of New York at Oneonta, 108 Ravine Parkway Oneonta, New York, NY, 13820, USA
| | - Sridhar Nerur
- Information Systems and Operations Management, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Kay-Yut Chen
- Information Systems and Operations Management, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, TX, 76019, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd, Arlington, TX, 76019, USA.
| |
Collapse
|
3
|
Wang W, Tang M, Zhang HF, Gao H, Do Y, Liu ZH. Epidemic spreading on complex networks with general degree and weight distributions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042803. [PMID: 25375545 DOI: 10.1103/physreve.90.042803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 05/25/2023]
Abstract
The spread of disease on complex networks has attracted wide attention in the physics community. Recent works have demonstrated that heterogeneous degree and weight distributions have a significant influence on the epidemic dynamics. In this study, a novel edge-weight-based compartmental approach is developed to estimate the epidemic threshold and epidemic size (final infected density) on networks with general degree and weight distributions, and a remarkable agreement with numerics is obtained. Even in complex networks with the strong heterogeneous degree and weight distributions, this approach is used. We then propose an edge-weight-based removal strategy with different biases and find that such a strategy can effectively control the spread of epidemic when the highly weighted edges are preferentially removed, especially when the weight distribution of a network is extremely heterogenous. The theoretical results from the suggested method can accurately predict the above removal effectiveness.
Collapse
Affiliation(s)
- Wei Wang
- Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ming Tang
- Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China and Center for Atmospheric Remote Sensing(CARE), Kyungpook National University, Daegu 702-701, South Korea
| | - Hai-Feng Zhang
- School of Mathematical Science, Anhui University, Hefei 230039, China
| | - Hui Gao
- Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Younghae Do
- Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
| | - Zong-Hua Liu
- Department of Physics, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Recurrence Network Analysis of the Synchronous EEG Time Series in Normal and Epileptic Brains. Cell Biochem Biophys 2012; 66:331-6. [DOI: 10.1007/s12013-012-9452-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|