1
|
Singh JP, Mondal PS, Semwal V, Mishra S. Current reversal in polar flock at order-disorder interface. Phys Rev E 2023; 108:034608. [PMID: 37849122 DOI: 10.1103/physreve.108.034608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023]
Abstract
We studied a system of polar self-propelled particles (SPPs) on a thin rectangular channel designed into three regions of order-disorder-order. The division of the three regions is made on the basis of the noise SPPs experience in the respective regions. The noise in the two wide regions is chosen lower than the critical noise of order-disorder transition and noise in the middle region or interface is higher than the critical noise. This makes the geometry of the system analogous to the Josephson junction (JJ) in solid-state physics. Keeping all other parameters fixed, we study the properties of the moving SPPs in the bulk as well as along the interface for different widths of the junction. On increasing interface width, the system shows an order-to-disorder transition from coherent moving SPPs in the whole system to the interrupted current for large interface width. Surprisingly, inside the interface, we observed the current reversal for intermediate widths of the interface. Such current reversal is due to the strong randomness present inside the interface, which makes the wall of the interface reflecting. Hence, our study gives new interesting collective properties of SPPs at the interface which can be useful to design switching devices using active agents.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Indian Institute of Technology (BHU), Varanasi 221005, India
- Israel Institute of Technology Technion, Haifa 3200003, Israel
| | | | - Vivek Semwal
- Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Shradha Mishra
- Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
2
|
Suma A, Gonnella G, Laghezza G, Lamura A, Mossa A, Cugliandolo LF. Dynamics of a homogeneous active dumbbell system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052130. [PMID: 25493762 DOI: 10.1103/physreve.90.052130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 05/15/2023]
Abstract
We analyze the dynamics of a two-dimensional system of interacting active dumbbells. We characterize the mean-square displacement, linear response function, and deviation from the equilibrium fluctuation-dissipation theorem as a function of activity strength, packing fraction, and temperature for parameters such that the system is in its homogeneous phase. While the diffusion constant in the last diffusive regime naturally increases with activity and decreases with packing fraction, we exhibit an intriguing nonmonotonic dependence on the activity of the ratio between the finite-density and the single-particle diffusion constants. At fixed packing fraction, the time-integrated linear response function depends nonmonotonically on activity strength. The effective temperature extracted from the ratio between the integrated linear response and the mean-square displacement in the last diffusive regime is always higher than the ambient temperature, increases with increasing activity, and, for small active force, monotonically increases with density while for sufficiently high activity it first increases and next decreases with the packing fraction. We ascribe this peculiar effect to the existence of finite-size clusters for sufficiently high activity and density at the fixed (low) temperatures at which we worked. The crossover occurs at lower activity or density the lower the external temperature. The finite-density effective temperature is higher (lower) than the single dumbbell one below (above) a crossover value of the Péclet number.
Collapse
Affiliation(s)
- Antonio Suma
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Gianluca Laghezza
- Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Antonio Lamura
- Istituto Applicazioni Calcolo, CNR, via Amendola 122/D, Bari I-70126, Italy
| | - Alessandro Mossa
- Dipartimento di Fisica, Università di Bari and INFN, Sezione di Bari, via Amendola 173, Bari I-70126, Italy
| | - Leticia F Cugliandolo
- Sorbonne Universités, Université Pierre et Marie Curie, Paris 6, Laboratoire de Physique Théorique et Hautes Energies, 4, Place Jussieu, Tour 13, 5ème étage, 75252 Paris Cedex 05, France
| |
Collapse
|