1
|
Allahverdyan AE. Energy dissipation and storage in adaptation and homeostasis: Comment on "Dynamic and thermodynamic models of adaptation" by A.N. Gorban et al. Phys Life Rev 2021; 38:137-139. [PMID: 34088611 DOI: 10.1016/j.plrev.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/18/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Armen E Allahverdyan
- Alikhanian National Laboratory (Yerevan Physics Institute), 2 Alikhanian Brothers street, Yerevan 0036, Armenia.
| |
Collapse
|
2
|
Liu J, Chen C, Liu Y, Sun X, Ding X, Qiu L, Han P, James Kang Y. Trientine selectively delivers copper to the heart and suppresses pressure overload-induced cardiac hypertrophy in rats. Exp Biol Med (Maywood) 2018; 243:1141-1152. [PMID: 30472883 DOI: 10.1177/1535370218813988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Dietary copper supplementation reverses pressure overload-induced cardiac hypertrophy by copper replenishment in the heart. A copper-selective chelator, trientine (triethylenetetramine [TETA]), reverses left ventricular hypertrophy associated with diabetes also by copper replenishment in the heart. The present study was undertaken to address the critical issue how TETA delivers copper to the heart. Adult male Sprague-Dawley rats were subjected to transverse aortic constriction (TAC) to induce cardiac hypertrophy. Eight weeks after the TAC surgery, cardiac hypertrophy was developed and copper content in the heart was reduced. TETA was then administrated by gavage in two different dosages (21.9 or 87.6 mg/kg day) for six weeks. The results showed that in the lower dosage, TETA replenished copper contents in the heart, along with a decrease in the copper concentration in the blood and kidney, and an increase in the urine. In the higher dosage, TETA did not replenish copper contents in the heart, but markedly increased copper concentrations in the urine and decreased those in the blood and kidney. Neither lower nor higher TETA dosage altered copper concentrations in other organs. Corresponding to myocardial copper replenishment, the lower dose TETA suppresses cardiac hypertrophy, as judged by a reduction in the left ventricle wall thickness and a decrease in the heart size, and diminished cardiac fibrosis, as reflected by a decrease in collagen I content. TETA in the higher dose not only did not suppress cardiac hypertrophy, but also caused cardiac hypertrophy in sham-operated rats. TETA-mediated myocardial copper restoration is independent of copper transporter-1 or -2 but related to an energy-dependent transportation. This study demonstrates that low-dose TETA functions as a copper chaperone, selectively delivering copper to the copper-deprived heart through an active transportation; in higher doses, TETA simply retains its chelator function, removing copper from the body by urinary excretion. Impact statement Our study reveals that TETA, traditionally regarded as a copper chelator, in lower doses delivers copper selectively to the heart through a mechanism independent of copper transporter-1 or -2. Copper supplementation by a lower dose of TETA suppresses pressure overload-induced cardiac hypertrophy. Since ischemic heart disease and hypertrophic cardiomyopathy are accompanied by myocardial copper loss, this approach of using a lower dose of TETA to supplement copper to the heart would help treat the disease condition of patients with such cardiac events.
Collapse
Affiliation(s)
- Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chen Chen
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yinjie Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaorong Sun
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xueqin Ding
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liying Qiu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pengfei Han
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
3
|
Abstract
BACKGROUND Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science. METHODOLOGY/PRINCIPAL FINDINGS We formulate a (non-Bayesian) model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect-when consecutively exposed to two opinions, the preference is given to the last opinion (recency) or the first opinion (primacy) -and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties. CONCLUSIONS The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development.
Collapse
Affiliation(s)
| | - Aram Galstyan
- USC Information Sciences Institute, Marina del Rey, California, United States of America
| |
Collapse
|