1
|
Goettems EI, Afonso RJS, Soares-Pinto DO, Valente D. Reconciling nonlinear dissipation with the bilinear model of two Brownian particles. Phys Rev E 2023; 107:014107. [PMID: 36797951 DOI: 10.1103/physreve.107.014107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
The Brownian motion of a single particle is a paradigmatic model of the nonequilibrium dynamics of dissipative systems. In the system-plus-reservoir approach, one can derive the particle's equations of motion from the reversible dynamics of the system coupled to a bath of oscillators representing its thermal environment. However, extending the system-plus-reservoir approach to multiple particles in a collective environment is not straightforward, and conflicting models have been proposed to that end. Here, we set out to reconcile some aspects of the nonlinear and the bilinear models of two Brownian particles. We show how the nonlinear dissipation originally derived from exponential system-reservoir couplings can alternatively be obtained from the bilinear Lagrangian, with a modified spectral function that explicitly depends on the distance between the particles. We discuss applications to the contexts of anomalous diffusion and of hydrodynamic interactions. Our results thus broaden the applicability of the bilinear model.
Collapse
Affiliation(s)
- Elisa I Goettems
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Ricardo J S Afonso
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Diogo O Soares-Pinto
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Daniel Valente
- Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá MT, Brazil
| |
Collapse
|
2
|
Lai Y, Geva E. On simulating the dynamics of electronic populations and coherences via quantum master equations based on treating off-diagonal electronic coupling terms as a small perturbation. J Chem Phys 2021; 155:204101. [PMID: 34852488 DOI: 10.1063/5.0069313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quantum master equations provide a general framework for describing the dynamics of electronic observables within a complex molecular system. One particular family of such equations is based on treating the off-diagonal coupling terms between electronic states as a small perturbation within the framework of second-order perturbation theory. In this paper, we show how different choices of projection operators, as well as whether one starts out with the time-convolution or the time-convolutionless forms of the generalized quantum master equation, give rise to four different types of such off-diagonal quantum master equations (OD-QMEs), namely, time-convolution and time-convolutionless versions of a Pauli-type OD-QME for only the electronic populations and an OD-QME for the full electronic density matrix (including both electronic populations and coherences). The fact that those OD-QMEs are given in terms of the interaction picture makes it non-trivial to obtain Schrödinger picture electronic coherences from them. To address this, we also extend a procedure for extracting Schrödinger picture electronic coherences from interaction picture populations recently introduced by Trushechkin in the context of time-convolutionless Pauli-type OD-QME to the other three types of OD-QMEs. The performance of the aforementioned four types of OD-QMEs is explored in the context of the Garg-Onuchic-Ambegaokar benchmark model for charge transfer in the condensed phase across a relatively wide parameter range. The results show that time-convolution OD-QMEs can be significantly more accurate than their time-convolutionless counterparts, particularly in the case of Pauli-type OD-QMEs, and that rather accurate Schrödinger picture coherences can be obtained from interaction picture electronic inputs.
Collapse
Affiliation(s)
- Yifan Lai
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Borrelli R, Dolgov S. Expanding the Range of Hierarchical Equations of Motion by Tensor-Train Implementation. J Phys Chem B 2021; 125:5397-5407. [DOI: 10.1021/acs.jpcb.1c02724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Raffaele Borrelli
- DISAFA, University of Torino, Largo Paolo Braccini 2, Grugliasco 10095, Italy
| | - Sergey Dolgov
- University of Bath, Claverton Down, BA2 7AY Bath, United Kingdom
| |
Collapse
|
4
|
Gelin MF, Borrelli R, Chen L. Hierarchical Equations-of-Motion Method for Momentum System-Bath Coupling. J Phys Chem B 2021; 125:4863-4873. [PMID: 33929205 PMCID: PMC8279550 DOI: 10.1021/acs.jpcb.1c02431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For a broad class of quantum models of practical interest, we demonstrate that the Hamiltonian of the system nonlinearly coupled to a harmonic bath through the system and bath coordinates can be equivalently mapped into the Hamiltonian of the system bilinearly coupled to the bath through the system and bath momenta. We show that the Hamiltonian with bilinear system-bath momentum coupling can be treated by the hierarchical equations-of-motion (HEOM) method and present the corresponding proof-of-principle simulations. The developed methodology creates the opportunity to scrutinize a new family of nonlinear quantum systems by the numerically accurate HEOM method.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
| |
Collapse
|
5
|
|
6
|
Borrelli R. Density matrix dynamics in twin-formulation: An efficient methodology based on tensor-train representation of reduced equations of motion. J Chem Phys 2019; 150:234102. [PMID: 31228887 DOI: 10.1063/1.5099416] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The twin-formulation of quantum statistical mechanics is employed to describe a new methodology for the solution of the equations of motion of the reduced density matrix in their hierarchical formulation. It is shown that the introduction of tilde operators and of their algebra in the dual space greatly simplifies the application of numerical techniques for the propagation of the density matrix. The application of tensor-train representation of a vector to solve complex quantum dynamical problems within the framework of the twin-formulation is discussed. Next, applications of the hierarchical equations of motion to a dissipative polaron model are presented showing the validity and accuracy of the new approach.
Collapse
|
7
|
Gelin MF, Borrelli R, Domcke W. Origin of Unexpectedly Simple Oscillatory Responses in the Excited-State Dynamics of Disordered Molecular Aggregates. J Phys Chem Lett 2019; 10:2806-2810. [PMID: 31070912 DOI: 10.1021/acs.jpclett.9b00840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Unraveling the many facets of coherent and incoherent exciton motion in an ensemble of chromophores is an inherently complex quantum mechanical problem that has triggered a vivid debate on the role of quantum effects in molecular materials and biophysical systems. Here the dynamics of a statistical ensemble of molecular aggregates consisting of identical chromophores is investigated within a new theoretical framework. Taking account of intrinsic properties of the system, the Hamiltonian of the aggregate is partitioned into two mutually commuting vibrational and vibronic operators. This representation paves the way for an analysis that reveals the role of static disorder in ensembles of aggregates. Using analytical methods, it is demonstrated that after a critical time τD ≃ 2π/σ (σ being the dispersion of the disorder) any dynamic variable of the aggregate exhibits purely vibrational dynamics. This result is confirmed by exact numerical calculations of the time-dependent site populations of the aggregate. These findings may be useful for the interpretation of recent femtosecond spectroscopic experiments on molecular aggregates.
Collapse
Affiliation(s)
- Maxim F Gelin
- Department of Chemistry , Technische Universität München , D-85747 Garching , Germany
| | | | - Wolfgang Domcke
- Department of Chemistry , Technische Universität München , D-85747 Garching , Germany
| |
Collapse
|
8
|
|
9
|
Borrelli R. Theoretical study of charge-transfer processes at finite temperature using a novel thermal Schrödinger equation. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Borrelli R, Gelin MF. Simulation of Quantum Dynamics of Excitonic Systems at Finite Temperature: an efficient method based on Thermo Field Dynamics. Sci Rep 2017; 7:9127. [PMID: 28831074 PMCID: PMC5567225 DOI: 10.1038/s41598-017-08901-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/18/2017] [Indexed: 11/09/2022] Open
Abstract
Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on Thermo Field Dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. The solution of Thermo Field Dynamics equations with a novel technique for the propagation of Tensor Trains (Matrix Product States) is implemented and discussed. The methodology is applied to the study of the exciton dynamics in the Fenna-Mathews-Olsen complex using a realistic structured spectral density to model the electron-phonon interaction. The results of the simulations highlight the effect of specific vibrational modes on the exciton dynamics and energy transfer process, as well as call for careful modeling of electron-phonon couplings.
Collapse
Affiliation(s)
| | - Maxim F Gelin
- Department of Theoretical Chemistry, Technische Universität München, Garching, D-85747, Germany
| |
Collapse
|
11
|
Sun X, Geva E. Nonequilibrium Fermi’s Golden Rule Charge Transfer Rates via the Linearized Semiclassical Method. J Chem Theory Comput 2016; 12:2926-41. [DOI: 10.1021/acs.jctc.6b00236] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiang Sun
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eitan Geva
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
12
|
Sun X, Geva E. Exact vs. asymptotic spectral densities in the Garg-Onuchic-Ambegaokar charge transfer model and its effect on Fermi's golden rule rate constants. J Chem Phys 2016; 144:044106. [PMID: 26827201 DOI: 10.1063/1.4940308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Garg-Onuchic-Ambegaokar model [J. Chem. Phys. 83, 4491 (1985)] has been used extensively for benchmarking methods aimed at calculating charge transfer rates. Within this model, the donor and acceptor diabats are described as shifted parabolas along a single primary mode, which is bilinearly coupled to a harmonic bath consisting of secondary modes, characterized by an Ohmic spectral density with exponential cutoff. Rate calculations for this model are often performed in the normal mode representation, with the corresponding effective spectral density given by an asymptotic expression derived at the limit where the Ohmic bath cutoff frequency is much larger than the primary mode frequency. We compare Fermi's golden rule rate constants obtained with the asymptotic and exact effective spectral densities. We find significant deviations between rate constants obtained from the asymptotic spectral density and those obtained from the exact one in the deep inverted region. Within the range of primary mode frequencies commonly employed, we find that the discrepancies increase with decreasing temperature and with decreasing primary mode frequency.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
13
|
Sun KW, Gelin MF, Chernyak VY, Zhao Y. Davydov Ansatz as an efficient tool for the simulation of nonlinear optical response of molecular aggregates. J Chem Phys 2015; 142:212448. [DOI: 10.1063/1.4921575] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ke-Wei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, Garching D-85747, Germany
| | - Vladimir Y. Chernyak
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
14
|
Chen L, Gelin MF, Domcke W, Zhao Y. Theory of femtosecond coherent double-pump single-molecule spectroscopy: Application to light harvesting complexes. J Chem Phys 2015; 142:164106. [DOI: 10.1063/1.4919240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lipeng Chen
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, Garching D-85747, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, Garching D-85747, Germany
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
15
|
Dijkstra AG, Wang C, Cao J, Fleming GR. Coherent Exciton Dynamics in the Presence of Underdamped Vibrations. J Phys Chem Lett 2015; 6:627-632. [PMID: 26262477 DOI: 10.1021/jz502701u] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Recent ultrafast optical experiments show that excitons in large biological light-harvesting complexes are coupled to molecular vibration modes. These high-frequency vibrations will not only affect the optical response, but also drive the exciton transport. Here, using a model dimer system, the frequency of the underdamped vibration is shown to have a strong effect on the exciton dynamics such that quantum coherent oscillations in the system can be present even in the case of strong noise. Two mechanisms are identified to be responsible for the enhanced transport efficiency: critical damping due to the tunable effective strength of the coupling to the bath, and resonance coupling where the vibrational frequency coincides with the energy gap in the system. The interplay of these two mechanisms determines parameters responsible for the most efficient transport, and these optimal control parameters are comparable to those in realistic light-harvesting complexes. Interestingly, oscillations in the excitonic coherence at resonance are suppressed in comparison to the case of an off-resonant vibration.
Collapse
Affiliation(s)
- Arend G Dijkstra
- †Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Chen Wang
- ‡Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Jianshu Cao
- †Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- ‡Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore
| | - Graham R Fleming
- §Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- ∥Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
16
|
Gelin MF. Markovian master equation for a classical particle coupled with arbitrary strength to a harmonic bath. J Chem Phys 2014; 141:214109. [DOI: 10.1063/1.4902438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Maxim F. Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
17
|
Huynh TD, Sun KW, Gelin M, Zhao Y. Polaron dynamics in two-dimensional photon-echo spectroscopy of molecular rings. J Chem Phys 2014; 139:104103. [PMID: 24050324 DOI: 10.1063/1.4820135] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have developed a new approach to the computation of third-order spectroscopic signals of molecular rings, by incorporating the Davydov soliton theory into the nonlinear response function formalism. The Davydov D1 and D Ansätze have been employed to treat the interactions between the excitons and the primary phonons, allowing for a full description of arbitrary exciton-phonon coupling strengths. As an illustration, we have simulated a series of optical 2D spectra for two models of molecular rings.
Collapse
Affiliation(s)
- Thanh Duc Huynh
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | | | | | | |
Collapse
|
18
|
Gelin MF, Bondarev IV, Meliksetyan AV. Optically promoted bipartite atomic entanglement in hybrid metallic carbon nanotube systems. J Chem Phys 2014; 140:064301. [PMID: 24527909 DOI: 10.1063/1.4863971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study theoretically a pair of spatially separated extrinsic atomic type species (extrinsic atoms, ions, molecules, or semiconductor quantum dots) near a metallic carbon nanotube, that are coupled both directly via the inter-atomic dipole-dipole interactions and indirectly by means of the virtual exchange by resonance plasmon excitations on the nanotube surface. We analyze how the optical preparation of the system by using strong laser pulses affects the formation and evolution of the bipartite atomic entanglement. Despite a large number of possible excitation regimes and evolution pathways, we find a few generic scenarios for the bipartite entanglement evolution and formulate practical recommendations on how to optimize and control the robust bipartite atomic entanglement in hybrid carbon nanotube systems.
Collapse
Affiliation(s)
- M F Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - I V Bondarev
- Department of Physics, North Carolina Central University, Durham, North Carolina 27707, USA
| | - A V Meliksetyan
- Department of Physics, North Carolina Central University, Durham, North Carolina 27707, USA
| |
Collapse
|
19
|
Gelin MF, Sharp LZ, Egorova D, Domcke W. Bath-induced correlations and relaxation of vibronic dimers. J Chem Phys 2012; 136:034507. [DOI: 10.1063/1.3676063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|