1
|
Yang X, Chang C, Zheng M, Wang X, Chen Y, Xie W, Hu H, Cheng Q. Characterizing Dynamic Contact Angle during Gas-Liquid Imbibition in Microchannels by Lattice Boltzmann Method Modeling. ACS OMEGA 2025; 10:3116-3127. [PMID: 39895755 PMCID: PMC11780469 DOI: 10.1021/acsomega.4c10365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Spontaneous imbibition in microchannels is a critical phenomenon in various industrial applications, such as enhanced oil recovery and microfluidic systems. One of the key factors influencing the imbibition process is the dynamic wetting effect, which governs the interaction between the liquid and solid surfaces. This paper improves the original pseudopotential model for interfluid forces by coupling it with the Peng-Robinson equation of state. The model's accuracy is verified through thermodynamic consistency checks, simulations of gas-liquid interfacial tensions, and testing of static equilibrium contact angles. Following model validation, we use it to simulate spontaneous gas-liquid imbibition in microchannels and investigate dynamic contact angle evolution during the process. The results demonstrate that (1) as the microchannel width increases, inertia forces become more significant during the initial imbibition stages, leading to a greater difference between the dynamic and static contact angles. (2) A decrease in fluid-solid interaction strength results in a larger gap between dynamic and static contact angles. (3) Higher interfacial tension strengthens the capillary forces, accelerating the imbibition rate and enlarging the difference between the dynamic and static contact angles. Furthermore, the dynamic contact angle data obtained from our simulations can be used to correct the traditional Lucas-Washburn equation. The corrected equation predicts imbibition distances that closely match the simulation results.
Collapse
Affiliation(s)
- Xuefeng Yang
- PetroChina Southwest Oil
& Gas Field Company, Chengdu, Sichuan Province 610051, China
| | - Cheng Chang
- PetroChina Southwest Oil
& Gas Field Company, Chengdu, Sichuan Province 610051, China
| | - Majia Zheng
- PetroChina Southwest Oil
& Gas Field Company, Chengdu, Sichuan Province 610051, China
| | - Xingchen Wang
- PetroChina Southwest Oil
& Gas Field Company, Chengdu, Sichuan Province 610051, China
| | - Yizhao Chen
- PetroChina Southwest Oil
& Gas Field Company, Chengdu, Sichuan Province 610051, China
| | - Weiyang Xie
- PetroChina Southwest Oil
& Gas Field Company, Chengdu, Sichuan Province 610051, China
| | - Haoran Hu
- PetroChina Southwest Oil
& Gas Field Company, Chengdu, Sichuan Province 610051, China
| | - Qiuyang Cheng
- PetroChina Southwest Oil
& Gas Field Company, Chengdu, Sichuan Province 610051, China
| |
Collapse
|
2
|
Bazarin RLM, Naaktgeboren C, Junqueira SLM, Philippi PC, Hegele LA. Improved lattice Boltzmann model for immiscible multicomponent systems with high viscosity gradients at the interface. Phys Rev E 2024; 110:015303. [PMID: 39160946 DOI: 10.1103/physreve.110.015303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/18/2024] [Indexed: 08/21/2024]
Abstract
We propose alternative discretization schemes for improving the lattice Boltzmann pseudopotential model for incompressible multicomponent systems, with the purpose of modeling the flow of immiscible fluids with a large viscosity ratio. Compared to the original model of Shan-Chen [Phys. Rev. E 47, 1815 (1993)1063-651X10.1103/PhysRevE.47.1815], the present discretization schemes consider: (i) an explicit force term, (ii) a second-order discretization of the stream term, (iii) a moments-based model for the kinetic nonequilibrium distributions, and (iv) a high-order discretization of the spatial derivative terms. To verify the accuracy of the proposed model, the effects of varying the viscosity ratio as well as both fluid's viscosities on spurious currents and capillary number are investigated for the problems dealing with a static bubble, two-component Poiseuille flow, and immiscible fluid-fluid displacement. The resulting algorithm maintains the simplicity of the pseudopotential model while allowing an easy implementation for multicomponent systems. The results of the model herein proposed show improved control of the interface region and interfacial tension, relatively smaller magnitudes of spurious current values with increasing viscosity ratio, and also a significantly wider stability range with respect to the previously best results in the literature.
Collapse
|
3
|
Li X, Li Z, Duan W, Shan X. Self-consistent force scheme in the spectral multiple-relaxation-time lattice Boltzmann model. Phys Rev E 2024; 109:015301. [PMID: 38366523 DOI: 10.1103/physreve.109.015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/19/2023] [Indexed: 02/18/2024]
Abstract
In the present work, the force term is first derived in the spectral multiple-relaxation-time high-order lattice Boltzmann model. The force term in the Boltzmann equation is expanded in the Hermite temperature rescaled central moment space (RCM), instead of the Hermite raw moment space (RM). The contribution of nonequilibrium RCM moments beyond second order are neglected. For the collision operator in the RCM space, each order of the force term can be incorporated directly. Through the transformation between the RCM space and the RM space, the force term for practical numerical implementation in the RM space can be derived. It can be demonstrated that the present force scheme is self-consistent for the isothermal flow and compressible thermal flow with adjustable Prandtl number via the numerical experiments.
Collapse
Affiliation(s)
- Xuhui Li
- College of ShipBuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Zuoxu Li
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenyang Duan
- College of ShipBuilding Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Xiaowen Shan
- BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| |
Collapse
|
4
|
Xu X, Wang F, Qin Z, Wen B. Electrowetting lattice Boltzmann method for micro- and nano-droplet manipulations. Phys Rev E 2023; 107:045305. [PMID: 37198769 DOI: 10.1103/physreve.107.045305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/23/2023] [Indexed: 05/19/2023]
Abstract
Electrowetting has become a widely used tool for manipulating tiny amounts of liquids on surfaces. This paper proposes an electrowetting lattice Boltzmann method for manipulating micro-nano droplets. The hydrodynamics with the nonideal effect is modeled by the chemical-potential multiphase model, in which the phase transition and equilibrium are directly driven by chemical potential. For electrostatics, droplets in the micro-nano scale cannot be considered as equipotential as macroscopic droplets due to the Debye screening effect. Therefore, we linearly discretize the continuous Poisson-Boltzmann equation in a Cartesian coordinate system, and the electric potential distribution is stabilized by iterative computations. The electric potential distribution of droplets at different scales suggests that the electric field can still penetrate micro-nano droplets even with the screening effect. The accuracy of the numerical method is verified by simulating the static equilibrium of the droplet under the applied voltage, and the results show the apparent contact angles agree very well with the Lippmann-Young equation. The microscopic contact angles present some obvious deviations due to the sharp decrease of electric field strength near the three-phase contact point. These are consistent with previously reported experimental and theoretical analyses. Then, the droplet migrations on different electrode structures are simulated, and the results show that droplet speed can be stabilized more quickly due to the more uniform force on the droplet in the closed symmetric electrode structure. Finally, the electrowetting multiphase model is applied to study the lateral rebound of droplets impacting on the electrically heterogeneous surface. The electrostatic force prevents the droplets from contracting on the side which is applied voltage, resulting in the lateral rebound and transport toward the side.
Collapse
Affiliation(s)
- Xin Xu
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China and Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China
| | - Fei Wang
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China and Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China
| | - Zhangrong Qin
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China and Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China
| | - Binghai Wen
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China and Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
5
|
Liu Y, Yao Y, Li Q, Zhong X, He B, Wen B. Contact Angle Measurement on Curved Wetting Surfaces in Multiphase Lattice Boltzmann Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2974-2984. [PMID: 36787627 DOI: 10.1021/acs.langmuir.2c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Contact angle is an essential physical quantity that characterizes the wettability of a substrate. Although it is widely used in the studies of surface wetting, capillary phenomena, and moving contact lines, the contact angle measurements in simulations and experiments are still complicated and time-consuming. In this paper, we present an efficient scheme for the measurement of contact angle on curved wetting surfaces in lattice Boltzmann simulations. The measuring results are in excellent agreement with the theoretical predictions without considering the gravity effect. A series of simulations with various drop sizes and surface curvatures confirm that the present scheme is grid-independent. Then, the scheme is verified in gravitational environments by simulating the deformations of sessile and pendent droplets on the curved wetting surface. The numerical results are highly consistent with experimental observations and support the theoretical analysis that the microscopic contact angle is independent of gravity. Furthermore, the method utilizes only the microscopic geometry of the contact angle and does not depend on the droplet profile; therefore, it can be applied to nonaxisymmetric shapes or moving contact lines. The scheme is applied to capture the dynamic contact angle hysteresis on homogeneous or chemically heterogeneous curved surfaces. Importantly, the accurate contact angle measurement enables the dynamic mechanical analysis of moving contact lines. The present measurement is simple and efficient and can be extended to implementations in various multiphase lattice Boltzmann models.
Collapse
Affiliation(s)
- Yangsha Liu
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Yichen Yao
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Quanying Li
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Xingguo Zhong
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Bing He
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Binghai Wen
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
6
|
Sodagar-Abardeh J, Asadollahi A, Loimer T. Mesoscale simulation of the equilibrium state of the confined nanoscale two-phase flow in the presence of corner interface and adsorbed liquid layer. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Wang F, Zhuang Z, Qin Z, Wen B. Movable and Focus-Tunable Lens Based on Electrically Controllable Liquid: A Lattice Boltzmann Study. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1714. [PMID: 36554119 PMCID: PMC9777668 DOI: 10.3390/e24121714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Adjusting the focal length by changing the liquid interface of the liquid lens has become a potential method. In this paper, the lattice-Boltzmann-electrodynamic (LB-ED) method is used to numerically investigate the zooming process of a movable and focus-tunable electrowetting-on-dielectrics (EWOD) liquid lens by combining the LBM chemical potential model and the electrodynamic model. The LB method is used to solve the Navier-Stokes equation, and the Poisson-Boltzmann (PB) equation is introduced to solve the electric field distribution. The experimental results are consistent with the theoretical results of the Lippmann-Young equation. Through the simulation of a liquid lens zoom driven by EWOD, it is found that the lens changes from a convex lens to a concave lens with the voltage increases. The focal length change rate in the convex lens stage gradually increases with voltage. In the concave lens stage, the focal length change rate is opposite to that in the convex lens stage. During the zooming process, the low-viscosity liquid exhibits oscillation, and the high-viscosity liquid appears as overdamping. Additionally, methods were proposed to accelerate lens stabilization at low and high viscosities, achieving speed improvements of about 30% and 50%, respectively. Simulations of lens motion at different viscosities demonstrate that higher-viscosity liquids require higher voltages to achieve the same movement speed.
Collapse
Affiliation(s)
- Fei Wang
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Zijian Zhuang
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Zhangrong Qin
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Binghai Wen
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
- School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
8
|
Lourenço RGC, Constantino PH, Tavares FW. A Unified Interaction Model for Multiphase Flows with the Lattice Boltzmann Method. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramon G. C. Lourenço
- Program of Chemical Engineering /COPPE ‐ Federal University of Rio de Janeiro, CEP: 21949‐972 Rio de Janeiro RJ Brazil
| | - Pedro H. Constantino
- Program of Chemical Engineering /COPPE ‐ Federal University of Rio de Janeiro, CEP: 21949‐972 Rio de Janeiro RJ Brazil
| | - Frederico W. Tavares
- Program of Chemical Engineering /COPPE ‐ Federal University of Rio de Janeiro, CEP: 21949‐972 Rio de Janeiro RJ Brazil
- Program in Engineering of Chemical and Biochemical Processes ‐ Chemical School Federal University of Rio de Janeiro, CEP Rio de Janeiro RJ Brazil
| |
Collapse
|
9
|
Yao Y, Liu Y, Zhong X, Wen B. Multiphase curved boundary condition in lattice Boltzmann method. Phys Rev E 2022; 106:015307. [PMID: 35974580 DOI: 10.1103/physreve.106.015307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The boundary treatment is fundamental for modeling fluid flows especially in the lattice Boltzmann method; the curved boundary conditions effectively improve the accuracy of single-phase simulations with complex-geometry boundaries. However, the conventional curved boundary conditions usually cause dramatic mass leakage or increase when they are directly used for multiphase flow simulations. We find that the principal reason for this is the absence of a nonideal effect in the curved boundary conditions, followed by a calculation error. In this paper, incorporating the nonideal effect into the linear interpolation scheme and compensating for the interpolating error, we propose a multiphase curved boundary condition to treat the wetting boundaries with complex geometries. A series of static and dynamic multiphase simulations with large density ratio verify that the present scheme is accurate and ensures mass conservation.
Collapse
Affiliation(s)
- Yichen Yao
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, China and School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Yangsha Liu
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, China and School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Xingguo Zhong
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, China and School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| | - Binghai Wen
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin 541004, China and School of Computer Science and Engineering, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
10
|
Sun W, Wei X, Li W, Zhang X, Wei H, Liu S, Ma L. Numerical Studies on Cellulose Hydrolysis in Organic-Liquid-Solid Phase Systems with a Liquid Membrane Catalysis Model. ACS OMEGA 2022; 7:2286-2303. [PMID: 35071917 PMCID: PMC8772323 DOI: 10.1021/acsomega.1c05983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
The catalytic hydrolysis of cellulose to produce 5-hydroxymethylfurfural (HMF) is a powerful means of biomass resources. The current efficient hydrolysis of cellulose to obtain HMF is dominated by multiphase reaction systems. However, there is still a lack of studies on the synergistic mechanisms and component transport between the various processes of cellulose hydrolysis in a complex multiphase system. In this paper, a liquid membrane catalytic model was developed to simulate the hydrolysis of cellulose and its further reactions, including the adsorption of the liquid membrane on cellulose particles, the consumption of cellulose solid particles, the complex chemical reactions in the liquid membrane, and the transfer of HMF at the phase interface. The simulations show the synergistic effect between cellulose hydrolysis and multiphase mass transfer. We defined an indicator () to characterize the sensitivity of HMF yield to the initial liquid membrane thickness at different reaction stages. decreased gradually when the glucose conversion increased from 0 to 80%, and increased with the thickening of the initial liquid membrane thickness. It was shown that the thickening of the initial liquid membrane thickness promoted the HMF yield under the same glucose conversion. In summary, our results reveal the mechanism of the interaction between multiple physicochemical processes of the cellulose liquid membrane reaction system.
Collapse
Affiliation(s)
- Weitao Sun
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
- CAS
Key Laboratory of Renewable Energy, Guangzhou Institute of Energy
Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiangqian Wei
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
- CAS
Key Laboratory of Renewable Energy, Guangzhou Institute of Energy
Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Wenzhi Li
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xinghua Zhang
- CAS
Key Laboratory of Renewable Energy, Guangzhou Institute of Energy
Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Haoyang Wei
- Laboratory
of Basic Research in Biomass Conversion and Utilization, Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
- CAS
Key Laboratory of Renewable Energy, Guangzhou Institute of Energy
Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Siwei Liu
- CAS
Key Laboratory of Renewable Energy, Guangzhou Institute of Energy
Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Longlong Ma
- CAS
Key Laboratory of Renewable Energy, Guangzhou Institute of Energy
Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
- Department
of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
11
|
Luo KH, Fei L, Wang G. A unified lattice Boltzmann model and application to multiphase flows. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200397. [PMID: 34455840 DOI: 10.1098/rsta.2020.0397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 06/13/2023]
Abstract
In this work, we develop a unified lattice Boltzmann model (ULBM) framework that can seamlessly integrate the widely used lattice Boltzmann collision operators, including the Bhatnagar-Gross-Krook or single-relation-time, multiple-relaxation-time, central-moment or cascaded lattice Boltzmann method and multiple entropic operators (KBC). Such a framework clarifies the relations among the existing collision operators and greatly facilitates model comparison and development as well as coding. Importantly, any LB model or treatment constructed for a specific collision operator could be easily adopted by other operators. We demonstrate the flexibility and power of the ULBM framework through three multiphase flow problems: the rheology of an emulsion, splashing of a droplet on a liquid film and dynamics of pool boiling. Further exploration of ULBM for a wide variety of phenomena would be both realistic and beneficial, making the LBM more accessible to non-specialists. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
Collapse
Affiliation(s)
- Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Linlin Fei
- Chair of Building Physics, Department of Mechanical and Process Engineering, ETH Zürich (Swiss Federal Institute of Technology in Zürich), 8092 Zürich, Switzerland
| | - Geng Wang
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
12
|
Lulli M, Biferale L, Falcucci G, Sbragaglia M, Shan X. Structure and isotropy of lattice pressure tensors for multirange potentials. Phys Rev E 2021; 103:063309. [PMID: 34271640 DOI: 10.1103/physreve.103.063309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 05/21/2021] [Indexed: 11/07/2022]
Abstract
We systematically analyze the tensorial structure of the lattice pressure tensors for a class of multiphase lattice Boltzmann models (LBM) with multirange interactions. Due to lattice discrete effects, we show that the built-in isotropy properties of the lattice interaction forces are not necessarily mirrored in the corresponding lattice pressure tensor. This finding opens a different perspective for constructing forcing schemes, achieving the desired isotropy in the lattice pressure tensors via a suitable choice of multirange potentials. As an immediate application, the obtained LBM forcing schemes are tested via numerical simulations of nonideal equilibrium interfaces and are shown to yield weaker and less spatially extended spurious currents with respect to forcing schemes obtained by forcing isotropy requirements only. From a general perspective, the proposed analysis yields an approach for implementing forcing symmetries, never explored so far in the framework of the Shan-Chen method for LBM. We argue this will be beneficial for future studies of nonideal interfaces.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Luca Biferale
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Giacomo Falcucci
- Department of Enterprise Engineering "Mario Lucertini", University of Rome "Tor Vergata", Via del Politecnico 1, 00133 Rome, Italy.,John A. Paulson School of Engineering and Applied Physics, Harvard University, 33 Oxford Street, Cambridge 02138, Massachusetts, USA
| | - Mauro Sbragaglia
- Department of Physics & INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Xiaowen Shan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
13
|
Modeling Immiscible Fluid Displacement in a Porous Medium Using Lattice Boltzmann Method. FLUIDS 2021. [DOI: 10.3390/fluids6020089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The numerical investigation of the interpenetrating flow dynamics of a gas injected into a homogeneous porous media saturated with liquid is presented. The analysis is undertaken as a function of the inlet velocity, liquid–gas viscosity ratio (D) and physical properties of the porous medium, such as porous geometry and surface wettability. The study aims to improve understanding of the interaction between the physical parameters involved in complex multiphase flow in porous media (e.g., CO2 sequestration in aquifers). The numerical simulation of a gaseous phase being introduced through a 2D porous medium constructed using seven staggered columns of either circular- or square-shaped micro-obstacles mimicking the solid walls of the pores is performed using the multiphase Lattice Boltzmann Method (LBM). The gas–liquid fingering phenomenon is triggered by a small geometrical asymmetry deliberately introduced in the first column of obstacles. Our study shows that the amount of gas penetration into the porous medium depends on surface wettability and on a set of parameters such as capillary number (Ca), liquid–gas viscosity ratio (D), pore geometry and surface wettability. The results demonstrate that increasing the capillary number and the surface wettability leads to an increase in the effective gas penetration rate, disregarding porous medium configuration, while increasing the viscosity ratio decreases the penetration rate, again disregarding porous medium configuration.
Collapse
|
14
|
Kinetic Simulations of Compressible Non-Ideal Fluids: From Supercritical Flows to Phase-Change and Exotic Behavior. COMPUTATION 2021. [DOI: 10.3390/computation9020013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We investigate a kinetic model for compressible non-ideal fluids. The model imposes the local thermodynamic pressure through a rescaling of the particle’s velocities, which accounts for both long- and short-range effects and hence full thermodynamic consistency. The model is fully Galilean invariant and treats mass, momentum, and energy as local conservation laws. The analysis and derivation of the hydrodynamic limit is followed by the assessment of accuracy and robustness through benchmark simulations ranging from the Joule–Thompson effect to a phase-change and high-speed flows. In particular, we show the direct simulation of the inversion line of a van der Waals gas followed by simulations of phase-change such as the one-dimensional evaporation of a saturated liquid, nucleate, and film boiling and eventually, we investigate the stability of a perturbed strong shock front in two different fluid mediums. In all of the cases, we find excellent agreement with the corresponding theoretical analysis and experimental correlations. We show that our model can operate in the entire phase diagram, including super- as well as sub-critical regimes and inherently captures phase-change phenomena.
Collapse
|
15
|
Revisiting the Homogenized Lattice Boltzmann Method with Applications on Particulate Flows. COMPUTATION 2021. [DOI: 10.3390/computation9020011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The simulation of surface resolved particles is a valuable tool to gain more insights in the behaviour of particulate flows in engineering processes. In this work the homogenized lattice Boltzmann method as one approach for such direct numerical simulations is revisited and validated for different scenarios. Those include a 3D case of a settling sphere for various Reynolds numbers. On the basis of this dynamic case, different algorithms for the calculation of the momentum exchange between fluid and particle are evaluated along with different forcing schemes. The result is an updated version of the method, which is in good agreement with the benchmark values based on simulations and experiments. The method is then applied for the investigation of the tubular pinch effect discovered by Segré and Silberberg and the simulation of hindered settling. For the latter, the computational domain is equipped with periodic boundaries for both fluid and particles. The results are compared to the model by Richardson and Zaki and are found to be in good agreement. As no explicit contact treatment is applied, this leads to the assumption of sufficient momentum transfer between particles via the surrounding fluid. The implementations are based on the open-source C++ lattice Boltzmann library OpenLB.
Collapse
|
16
|
Postma B, Silva G. Force methods for the two-relaxation-times lattice Boltzmann. Phys Rev E 2021; 102:063307. [PMID: 33466109 DOI: 10.1103/physreve.102.063307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/19/2020] [Indexed: 11/07/2022]
Abstract
The two-relaxation-times collision benefits the steady lattice Boltzmann method by yielding viscosity-independent numerical errors. We present in an intuitive way how to incorporate popular force methods into the two-relaxation-times collision. We subsequently rewrite force methods into a generic equation to reveal commonalities and differences. We prove that force methods with a second-order velocity moment of the force break the viscosity independence. A force method with only a first-order velocity moment of the force averts this breakage. We validate our proof numerically.
Collapse
Affiliation(s)
- Bart Postma
- University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
| | - Goncalo Silva
- Department of Mechanical Engineering, LAETA, IDMEC, IST, University of Lisbon, Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal
| |
Collapse
|
17
|
Czelusniak LE, Mapelli VP, Guzella MS, Cabezas-Gómez L, Wagner AJ. Force approach for the pseudopotential lattice Boltzmann method. Phys Rev E 2020; 102:033307. [PMID: 33076024 DOI: 10.1103/physreve.102.033307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/17/2020] [Indexed: 11/07/2022]
Abstract
One attractive feature of the original pseudopotential method consists on its simplicity of adding a force dependent on a nearest-neighbor potential function. In order to improve the method, regarding thermodynamic consistency and control of surface tension, different approaches were developed in the literature, such as multirange interactions potential and modified forcing schemes. In this work, a strategy to combine these enhancements with an appropriate interaction force field using only nearest-neighbor interactions is devised, starting from the desired pressure tensor. The final step of our procedure is implementing this external force by using the classical Guo forcing scheme. Numerical tests regarding static and dynamic flow conditions were performed. Static tests showed that current procedure is suitable to control the surface tension and phase densities. Based on thermodynamic principles, it is devised a solution for phase densities in a droplet, which states explicitly dependence on the surface tension and interface curvature. A comparison with numerical results suggest a physical inconsistency in the pseudopotential method. This fact is not commonly discussed in the literature, since most of studies are limited to the Maxwell equal area rule. However, this inconsistency is shown to be dependent on the equation of state (EOS), and its effects can be mitigated by an appropriate choice of Carnahan-Starling EOS parameters. Also, a droplet oscillation test was performed, and the most divergent solution under certain flow conditions deviated 7.5% from the expected analytical result. At the end, a droplet impact test against a solid wall was performed to verify the method stability, and it was possible to reach stable simulation results with density ratio of almost 2400 and Reynolds number of Re=373. The observed results corroborate that the proposed method is able to replicate the desired macroscopic multiphase behavior.
Collapse
Affiliation(s)
- L E Czelusniak
- Heat Transfer Research Group, Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - V P Mapelli
- Heat Transfer Research Group, Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - M S Guzella
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucurí Valleys, UFVJM, Diamantina, MG, Brazil
| | - L Cabezas-Gómez
- Heat Transfer Research Group, Department of Mechanical Engineering, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Alexander J Wagner
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, USA
| |
Collapse
|
18
|
Montellà EP, Chareyre B, Salager S, Gens A. Benchmark cases for a multi-component Lattice-Boltzmann method in hydrostatic conditions. MethodsX 2020; 7:101090. [PMID: 33194560 PMCID: PMC7645066 DOI: 10.1016/j.mex.2020.101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 11/29/2022] Open
Abstract
Hydrostatic properties of partially saturated granular materials at the pore scale are evaluated by the lattice Boltzmann method (LBM) using Palabos implementation of the multi-component multiphase Shan-Chen model. Benchmark cases are presented to quantify the discretization errors and the sensitivity to geometrical and physical properties. This work offers practical guidelines to design LBM simulations of multiphase problems in porous media. Namely, a solid walls retraction procedure is proposed to reduce discretization errors significantly, leading to quadratic convergence. On this basis the equilibrium shapes of pendular bridges simulated numerically are in good agreement with the Young-Laplace equation. Likewise, entry capillary pressure and meniscus profiles in tubes of various cross-sectional shapes are in agreement with analytical predictions. The main points of this article are summarized as:•Benchmark cases for a multi-component Lattice-Boltzmann method are illustrated to be a guideline to calibrate the method in hydrostatic conditions.•A wall retraction procedure is introduced to minimize discretization errors.
Collapse
Affiliation(s)
- E P Montellà
- University Grenoble Alpes (UGA), CNRS, Grenoble INP, 3SR, Grenoble F-38000, France.,Department of Civil and Environmental Engineering. Universitat Politècnica de Catalunya - CIMNE, Barcelona, Spain
| | - B Chareyre
- University Grenoble Alpes (UGA), CNRS, Grenoble INP, 3SR, Grenoble F-38000, France
| | - S Salager
- University Grenoble Alpes (UGA), CNRS, Grenoble INP, 3SR, Grenoble F-38000, France
| | - A Gens
- Department of Civil and Environmental Engineering. Universitat Politècnica de Catalunya - CIMNE, Barcelona, Spain
| |
Collapse
|
19
|
Simulation of Boiling Heat Transfer at Different Reduced Temperatures with an Improved Pseudopotential Lattice Boltzmann Method. Symmetry (Basel) 2020. [DOI: 10.3390/sym12081358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pseudopotential Lattice Boltzmann Method has attracted much attention in the recent years for the simulation of boiling heat transfer. Many studies have been published recently for the simulation of the bubble cycle (nucleation, growth and departure from a heated surface). This paper puts forward two-dimensional simulations of bubble nucleation, growth and departure using an improved pseudopotential Lattice Boltzmann Model from the literature at different reduced temperatures, Tr=0.76 and Tr=0.86. Two different models using the Bhatnagar–Gross–Krook (BGK) and the Multiple-Relaxation-Time (MRT) collision operators with appropriate forcing schemes are used. The results for pool boiling show that the bubbles exhibit axial symmetry during growth and departure. Numerical results of departure diameter and release period for pool boiling are compared against empirical correlations from the literature by varying the gravitational acceleration. Reasonable agreement is observed. Nucleate boiling trends with heat flux are also captured by the simulations. Numerical results of flow boiling simulations are compared by varying the Reynolds number for both reduced temperatures with the MRT model. It was found that the departure diamenter and release period decreases with the increase of the Reynolds number. These results are a direct effect of the drag force. Proper conclusions are commented at the end of the paper.
Collapse
|
20
|
Wen B, Zhao L, Qiu W, Ye Y, Shan X. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios. Phys Rev E 2020; 102:013303. [PMID: 32794892 DOI: 10.1103/physreve.102.013303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/17/2020] [Indexed: 11/07/2022]
Abstract
The liquid-gas density ratio is a key property of multiphase flow methods to model real fluid systems. Here, a chemical-potential multiphase lattice Boltzmann method is constructed to realize extremely large density ratios. The simulations show that the method reaches very low temperatures, at which the liquid-gas density ratio is more than 10^{14}, while the thermodynamic consistency is still preserved. Decoupling the mesh space from the momentum space through a proportional coefficient, a smaller mesh step provides denser lattice nodes to exactly describe the transition region and the resulting dimensional transformation has no loss of accuracy. A compact finite-difference method is applied to calculate the discrete derivatives in the mesh space with high-order accuracy. These enhance the computational accuracy of the nonideal force and suppress the spurious currents to a very low level, even if the density ratio is up to tens of thousands. The simulation of drop splashing verifies that the present model is Galilean invariant for the dynamic flow field. An upper limit of the chemical potential is used to reduce the influence of nonphysical factors and improve the stability.
Collapse
Affiliation(s)
- Binghai Wen
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
| | - Liang Zhao
- College of Physical Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Wen Qiu
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
| | - Yong Ye
- Guangxi Key Lab of Multi-Source Information Mining & Security, Guangxi Normal University, Guilin 541004, China
| | - Xiaowen Shan
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
21
|
Suzuki K, Inamuro T, Yoshino M. Asymptotic equivalence of forcing terms in the lattice Boltzmann method within second-order accuracy. Phys Rev E 2020; 102:013308. [PMID: 32794911 DOI: 10.1103/physreve.102.013308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/22/2020] [Indexed: 11/07/2022]
Abstract
We show the asymptotic equivalence of two forcing schemes in the lattice Boltzmann method (LBM) within second-order accuracy through the asymptotic analysis instead of the Chapman-Enskog analysis. We consider the single relaxation time LBM with the following two forcing schemes: the simplest scheme by He et al. [J. Stat. Phys. 87, 115 (1997)10.1007/BF02181482] (referred to as He forcing); the most popular scheme by Guo et al. [Phys. Rev. E 65, 046308 (2002)10.1103/PhysRevE.65.046308] (referred to as Guo forcing). It has been shown by using the Chapman-Enskog analysis that the He forcing leads the unphysical terms in the macroscopic equations due to the spatial and time derivatives of the body force, whereas the Guo forcing does not lead such terms. However, we find by using the asymptotic analysis that the order of the unphysical terms is comparable to or less than (Δx)^{3} for the continuity equation and (Δx)^{4} for the Navier-Stokes equations (where Δx is the lattice spacing). Therefore, not only the Guo forcing but also the He forcing give the macroscopic flow velocity and pressure for incompressible viscous fluid with relative errors of O[(Δx)^{2}]. To verify the result of the asymptotic analysis, we simulate two benchmark problems in which the body force is changed in space and time: a generalized Taylor-Green problem and a natural convection problem. As a result, we find that the calculated results of macroscopic variables by the He forcing converge to those by the Guo forcing at the second-order convergence rate. Therefore, we can conclude that the He forcing and the Guo forcing are equivalent within the second-order accuracy even for the space- and time-dependent body force.
Collapse
Affiliation(s)
- Kosuke Suzuki
- Institute of Engineering, Academic Assembly, Shinshu University, Nagano 380-8553, Japan
| | - Takaji Inamuro
- Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Masato Yoshino
- Institute of Engineering, Academic Assembly, Shinshu University, Nagano 380-8553, Japan
| |
Collapse
|
22
|
Asadi MB, De Rosis A, Zendehboudi S. Central-Moments-Based Lattice Boltzmann for Associating Fluids: A New Integrated Approach. J Phys Chem B 2020; 124:2900-2913. [PMID: 32017560 DOI: 10.1021/acs.jpcb.9b10989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic and thermodynamic behaviors of associating fluids play a crucial role in various science and engineering disciplines. Cubic plus association equation of state (CPA EOS) is implemented in a central-moments-based lattice Boltzmann method (LBM) in order to mimic the thermodynamic behavior of associating fluids. The pseudopotential approach is selected to model the multiphase thermodynamic characteristics such as reduced density of associating fluids. The priority of central-moments-based approach over multiple-relaxation-time collision operator is highlighted by performing double shear layers. The integration of central-moments-based LBM and CPA EOS is useful to simulate the dynamic and thermodynamic characteristics of associating fluids at high flow rate conditions, which is extended to high-density ratio scenarios by increasing the anisotropy order of gradient operator. In order to increase the stability of the model, a higher anisotropy order of the gradient operator is implemented; about 34 present reduction in spurious velocities is noticed in some cases. The type of gradient operator considerably affects the model thermodynamic consistency. Finally, the model is validated by observing a straight line in the Laplace law test. Prediction of thermodynamic behaviors of associating fluids is of significance in various applications including biological processes as well as fluid flow in porous media.
Collapse
Affiliation(s)
- Mohammad Bagher Asadi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Alessandro De Rosis
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
23
|
Zhang C, Suekane T, Minokawa K, Hu Y, Patmonoaji A. Solute transport in porous media studied by lattice Boltzmann simulations at pore scale and x-ray tomography experiments. Phys Rev E 2020; 100:063110. [PMID: 31962407 DOI: 10.1103/physreve.100.063110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 11/07/2022]
Abstract
With the aid of nondestructive microfocus x-ray computed tomography (CT), we performed three-dimensional (3D) tracer dispersion experiments on randomly unconsolidated packed beds. Plumes of nonreactive sodium iodide solution were point injected into a sodium chloride solvent as a tracer for the evaluation of the dispersion process. The asymptotic dispersion coefficient was obtainable within the experimental scale and was summarized over Péclet numbers from 11.7 to ∼860. Then, the lattice Boltzmann method and moment propagation method were used to elucidate the mechanisms embedded in the dispersion phenomenon. The methods were rigorously verified against the classical Taylor dispersion problem and extended to simulate fluid flow and tracer dispersion in high-resolution 3D digital porous structures from CT. The method of moments, Lagrangian velocity correction function, and dilution index were thoroughly analyzed to evaluate the dispersion behaviors. Numerical simulations revealed ballistic and superdiffusive regimes at the transient times, whereas asymptotic dispersion behaviors appear at longer characteristic times. Besides, the observed transient times unanimously persist over convective length scales of around 12 particles transversely and 16 particles longitudinally. The estimated dispersion coefficients from simulation are in consistence with the experimental result. Furthermore, the simulation also enabled the identification of regimes, including diffusive, power law, and mechanical dispersion. Thus, the proposed experimental and computational schemes are of practical means to study dispersion behaviors by direct pore scale imaging and modeling.
Collapse
Affiliation(s)
- Chunwei Zhang
- Department of Mechanical Engineering, Tokyo Institute of Technology, 2-12-1-I6-33 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tetsuya Suekane
- Department of Mechanical Engineering, Tokyo Institute of Technology, 2-12-1-I6-33 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kosuke Minokawa
- Department of Mechanical Engineering, Tokyo Institute of Technology, 2-12-1-I6-33 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yingxue Hu
- Department of Mechanical Engineering, Tokyo Institute of Technology, 2-12-1-I6-33 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Anindityo Patmonoaji
- Department of Mechanical Engineering, Tokyo Institute of Technology, 2-12-1-I6-33 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
24
|
Rashidian H, Broom M, Willmott GR, Sellier M. Effects of a microscale ridge on dynamic wetting during drop impact. J R Soc N Z 2020. [DOI: 10.1080/03036758.2019.1706587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hossein Rashidian
- Mechanical Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Matheu Broom
- Department of Physics, The University of Auckland, Auckland, New Zealand
| | - Geoff R. Willmott
- Department of Physics, The University of Auckland, Auckland, New Zealand
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Mathieu Sellier
- Mechanical Engineering Department, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
25
|
Huang J, Yin X, Killough J. Thermodynamic consistency of a pseudopotential lattice Boltzmann fluid with interface curvature. Phys Rev E 2019; 100:053304. [PMID: 31869878 DOI: 10.1103/physreve.100.053304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 11/07/2022]
Abstract
Thermodynamic consistency of pseudopotential lattice Boltzmann models is a major topic that needs comprehensive evaluations. When interface is flat, pseudopotential models can give density-pressure isotherms in excellent agreement with those from equation of state. When interface is curved, thermodynamic equilibriums are affected by interface curvature, and consistency of pseudopotential models has not been systematically evaluated. In this study, we show that the effect of Laplace pressure on phase equilibrium is quantitatively consistent with Kelvin equation at high reduced temperatures (≥0.7). At low temperatures, inconsistency that can be attributed to the effect of orientation of the interface was noted, and it can be improved by tuning of the pseudopotential. By relating interfacial tension of a simulated fluid to that of a real fluid, the lattice spacing of pseudopotential model is found to be on the order of several molecular diameters, the typical range of intermolecular interactions. Interfacial thickness at different temperatures in pseudopotential model compared well with experiments and molecular dynamics simulations, which confirms that the calculated length scale is reasonable. Evaluation of a free energy lattice Boltzmann model indicate that it is consistent with Kelvin equation at high temperatures. The free energy model, however, is not as accurate as the tested pseudopotential model, and discrepancies may come from the relative inaccuracies in the predictions of vapor densities and the thinner interfaces.
Collapse
Affiliation(s)
- Jingwei Huang
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Xiaolong Yin
- Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
| | - John Killough
- Department of Petroleum Engineering, Texas A&M University, College Station, Texas 77840, USA
| |
Collapse
|
26
|
Asadi MB, Zendehboudi S. Hybridized method of pseudopotential lattice Boltzmann and cubic-plus-association equation of state assesses thermodynamic characteristics of associating fluids. Phys Rev E 2019; 100:043302. [PMID: 31770942 DOI: 10.1103/physreve.100.043302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 11/07/2022]
Abstract
It is crucial to properly describe the associating fluids in terms of phase equilibrium behaviors, which are needed for design, operation, and optimization of various chemical and energy processes. Pseudopotential lattice Boltzmann method (LBM) appears to be a reliable and efficient approach to study thermodynamic behaviors and phase transition of complex fluid systems. However, when cubic equations of state (EOSs) are incorporated into single-component multiphase LBM, simulation results are not well matched with experimental data. This study presents the utilization of cubic-plus-association (CPA) EOS in the LBM structure to obtain more accurate modeling results for associating fluids. An approach based on the global search optimization algorithm is introduced to find the optimal association parameters of CPA EOS for water and primary alcohols in the lattice units. The thermodynamic consistency is verified by the Maxwell construction and is also improved by the forcing scheme of [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 86, 016709 (2012)10.1103/PhysRevE.86.016709]. The spurious velocity is reduced with increasing isotropy in the gradient operator. Furthermore, an extended version of CPA EOS is introduced, which increases the system stability at low reduced temperatures. There is a very good match between the LBM results and experimental data, confirming the reliability of the model developed in the present study. The introduced approach has potential to be employed for simulating transport phenomena and interfacial characteristics of associating fluids in porous systems.
Collapse
Affiliation(s)
- Mohammad Bagher Asadi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| | - Sohrab Zendehboudi
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada A1B 3X5
| |
Collapse
|
27
|
Huang R, Wu H, Adams NA. Density gradient calculation in a class of multiphase lattice Boltzmann models. Phys Rev E 2019; 100:043306. [PMID: 31771029 DOI: 10.1103/physreve.100.043306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 11/07/2022]
Abstract
The multiphase lattice Boltzmann (LB) models based on pairwise interactions show great potential for simulating multiphase flows due to the conceptual and computational simplicity. Although the dynamics of multiphase flows are reproduced by the pairwise interaction force, the gradient of density (or effective density, i.e., pseudopotential) is implicitly involved in these models via the specialized forcing scheme or the consistent scheme for ɛ^{3}-order term. This work focuses on the calculation of density gradient in this class of multiphase LB models. Theoretical analyses are first carried out to reveal the involvement and calculation of density gradient. On the basis of a low Mach number approximation, an improved scheme is then proposed to calculate the density gradient for the recent LB model with self-tuning equation of state. Analytical and numerical calculations show that the improved scheme is more accurate and can help to reduce the numerical error when the reduced temperature is relatively low.
Collapse
Affiliation(s)
- Rongzong Huang
- School of Energy Science and Engineering, Central South University, 410083 Changsha, China.,School of Mechanical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.,Institute of Aerodynamics and Fluid Mechanics, Technical University of Munich, 85748 Garching, Germany
| | - Huiying Wu
- School of Mechanical Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Nikolaus A Adams
- Institute of Aerodynamics and Fluid Mechanics, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
28
|
Li Q, Yu Y, Luo KH. Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries. Phys Rev E 2019; 100:053313. [PMID: 31869872 DOI: 10.1103/physreve.100.053313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Indexed: 06/10/2023]
Abstract
The pseudopotential multiphase lattice Boltzmann (LB) model is a very popular model in the LB community for simulating multiphase flows. When the multiphase modeling involves a solid boundary, a numerical scheme is required to simulate the contact angle at the solid boundary. In this work, we aim at investigating the implementation of contact angles in the pseudopotential LB simulations with curved boundaries. In the pseudopotential LB model, the contact angle is usually realized by employing a solid-fluid interaction or specifying a constant virtual wall density. However, it is shown that the solid-fluid interaction scheme yields very large spurious currents in the simulations involving curved boundaries, while the virtual-density scheme produces an unphysical thick mass-transfer layer near the solid boundary although it gives much smaller spurious currents. We also extend the geometric-formulation scheme in the phase-field method to the pseudopotential LB model. Nevertheless, in comparison with the solid-fluid interaction scheme and the virtual-density scheme, the geometric-formulation scheme is relatively difficult to implement for curved boundaries and cannot be directly applied to three-dimensional space. By analyzing the features of these three schemes, we propose an improved virtual-density scheme to implement contact angles in the pseudopotential LB simulations with curved boundaries, which does not suffer from a thick mass-transfer layer near the solid boundary and retains the advantages of the original virtual-density scheme, i.e., simplicity, easiness for implementation, and low spurious currents.
Collapse
Affiliation(s)
- Q Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Y Yu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
29
|
From CS, Sauret E, Galindo-Torres SA, Gu YT. Interaction pressure tensor on high-order lattice Boltzmann models for nonideal fluids. Phys Rev E 2019; 99:063318. [PMID: 31330592 DOI: 10.1103/physreve.99.063318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Indexed: 06/10/2023]
Abstract
In this work we address the application of pseudopotentials directly on high-order lattice Boltzmann models. We derive a general expression for the pressure tensor on high-order lattices considering all nonideal interactions, including intra- and intermolecular interactions, following the discrete lattice theory introduced by X. Shan [Phys. Rev. E 77, 066702 (2008)PLEEE81539-375510.1103/PhysRevE.77.066702]. From the derived expression, a generalized continuum approximation, truncated at fourth-order isotropy, is obtained that is readily applicable to high-order lattices. With this, we demonstrate that high-order lattice models with pseudopotentials can satisfy thermodynamic consistency. The derived generalized expression and continuum approximation are validated for the case of a flat interface and compared against the standard definition available from the literature. The generalized expression is also shown to accurately reproduce the Laplace experiment for a variety of high-order lattice structures. This work sets the preliminary steps towards the application of high-order lattice models for simulating nonideal fluid mixtures.
Collapse
Affiliation(s)
- C S From
- Laboratory for Advanced Modelling and Simulation in Engineering and Science, School of Chemistry, Physics, and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - E Sauret
- Laboratory for Advanced Modelling and Simulation in Engineering and Science, School of Chemistry, Physics, and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - S A Galindo-Torres
- Department of Civil Engineering and Industrial Design, University of Liverpool, Liverpool L69 3BX, United Kingdom
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province 310024, China
| | - Y T Gu
- Laboratory for Advanced Modelling and Simulation in Engineering and Science, School of Chemistry, Physics, and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| |
Collapse
|
30
|
Chiappini D, Sbragaglia M, Xue X, Falcucci G. Hydrodynamic behavior of the pseudopotential lattice Boltzmann method for interfacial flows. Phys Rev E 2019; 99:053305. [PMID: 31212544 DOI: 10.1103/physreve.99.053305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The lattice Boltzmann method (LBM) is routinely employed in the simulation of complex multiphase flows comprising bulk phases separated by nonideal interfaces. The LBM is intrinsically mesoscale with a hydrodynamic equivalence popularly set by the Chapman-Enskog analysis, requiring that fields slowly vary in space and time. The latter assumptions become questionable close to interfaces where the method is also known to be affected by spurious nonhydrodynamical contributions. This calls for quantitative hydrodynamical checks. In this paper, we analyze the hydrodynamic behavior of the LBM pseudopotential models for the problem of the breakup of a liquid ligament triggered by the Plateau-Rayleigh instability. Simulations are performed at fixed interface thickness, while increasing the ligament radius, i.e., in the "sharp interface" limit. The influence of different LBM collision operators is also assessed. We find that different distributions of spurious currents along the interface may change the outcome of the pseudopotential model simulations quite sensibly, which suggests that a proper fine-tuning of pseudopotential models in time-dependent problems is needed before the utilization in concrete applications. Taken all together, we argue that the results of the proposed paper provide a valuable insight for engineering pseudopotential model applications involving the hydrodynamics of liquid jets.
Collapse
Affiliation(s)
- Daniele Chiappini
- Department of Industrial Engineering, University of Rome "Niccolò Cusano," Via don Carlo Gnocchi 3, 00166 Rome, Italy
| | - Mauro Sbragaglia
- Department of Physics, INFN, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Xiao Xue
- Department of Physics, INFN, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133 Rome, Italy and Department of Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Giacomo Falcucci
- Department of Enterprise Engineering "Mario Lucertini," University of Rome "Tor Vergata," Via del Politecnico 1, 00133 Rome, Italy and John A. Paulson School of Engineering and Applied Physics, Harvard University, 33 Oxford Street, 02138 Cambridge, Massachusetts, USA
| |
Collapse
|
31
|
Kuron M, Stärk P, Burkard C, de Graaf J, Holm C. A lattice Boltzmann model for squirmers. J Chem Phys 2019; 150:144110. [PMID: 30981238 DOI: 10.1063/1.5085765] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) method, which is well-suited for time-dependent problems involving complex boundary conditions. Incorporating the squirmer into LB is relatively straightforward, but requires an unexpectedly fine grid resolution to capture the physical flow fields and behaviors accurately. We demonstrate this using four basic hydrodynamic tests: two for the far-field flow-accuracy of the hydrodynamic moments and squirmer-squirmer interactions-and two that require the near field to be accurately resolved-a squirmer confined to a tube and one scattering off a spherical obstacle-which LB is capable of doing down to the grid resolution. We find good agreement with (numerical) results obtained using other hydrodynamic solvers in the same geometries and identify a minimum required resolution to achieve this reproduction. We discuss our algorithm in the context of other hydrodynamic solvers and present an outlook on its application to multi-squirmer problems.
Collapse
Affiliation(s)
- Michael Kuron
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Philipp Stärk
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Christian Burkard
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Joost de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| |
Collapse
|
32
|
Lattice Boltzmann Simulation of Fluid Flow Characteristics in a Rock Micro-Fracture Based on the Pseudo-Potential Model. ENERGIES 2018. [DOI: 10.3390/en11102576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Slip boundary has an important influence on fluid flow, which is non-negligible in rock micro-fractures. In this paper, an improved pseudo-potential multi-relaxation-time (MRT) lattice Boltzmann method (LBM), which can achieve a large density ratio, is introduced to simulate the fluid flow in a micro-fracture. The model is tested to satisfy thermodynamic consistency and simulate Poiseuille flow in the case of large liquid-gas density ratio. The slip length is used as an index for evaluating the flow characteristics, and the effects of wall wettability, micro-fracture width, driving pressure and liquid-gas density ratio on the slip length are discussed. The results demonstrate that the slip length increases significantly with the increase of the wall contact angle in rock micro-fracture. And the liquid-gas density ratio has an important impact on the slip length, especially for the hydrophobic wall. Moreover, under the laminar flow regime the driving pressure and the micro-fracture width has little effect on the slip length.
Collapse
|
33
|
Peng C, Tian S, Li G, Sukop MC. Single-component multiphase lattice Boltzmann simulation of free bubble and crevice heterogeneous cavitation nucleation. Phys Rev E 2018; 98:023305. [PMID: 30253555 DOI: 10.1103/physreve.98.023305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Indexed: 06/08/2023]
Abstract
This work serves as an important extension of previous work on cavitation simulation [Sukop and Or, Phys. Rev. E 71, 046703 (2005)10.1103/PhysRevE.71.046703]. A modified Shan-Chen single-component multiphase lattice Boltzmann method is used to simulate two different heterogeneous cavitation nucleation mechanisms, the free gas bubble model and the crevice nucleation model. Improvements include the use of a real-gas equation of state, a redefined effective mass function, and the exact difference method forcing scheme. As a result, much larger density ratios, better thermodynamic consistency, and improved numerical accuracy are achieved. In addition, the crevice nucleation model is numerically investigated using the lattice Boltzmann method. The simulations show excellent qualitative and quantitative agreement with the heterogeneous nucleation theories.
Collapse
Affiliation(s)
- Chi Peng
- State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum-Beijing, 18 Fuxue Road, Changping, Beijing, 102249, China
- Department of Earth and Environment, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA
| | - Shouceng Tian
- State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum-Beijing, 18 Fuxue Road, Changping, Beijing, 102249, China
| | - Gensheng Li
- State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum-Beijing, 18 Fuxue Road, Changping, Beijing, 102249, China
| | - Michael C Sukop
- Department of Earth and Environment, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA
| |
Collapse
|
34
|
Yuan WZ, Zhang LZ. Pinning-Depinning Mechanisms of the Contact Line during Evaporation of Microdroplets on Rough Surfaces: A Lattice Boltzmann Simulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7906-7915. [PMID: 29889540 DOI: 10.1021/acs.langmuir.8b00857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, pinning and depinning of the contact line during droplet evaporation on the rough surfaces with randomly distributed structures is theoretically analyzed and numerically investigated. A fast Fourier transformation (FFT) method is used to generate the rough surfaces, whose skewness ( Sk), kurtosis ( K), and root-mean-square ( Rq) are obtained from real surfaces. A thermal multiphase LB model is proposed to simulate the isothermal pinning and depinning processes. The evaporation processes are recorded with the variations in contact angle, contact radius, and drop shape. It is found that the drops sitting on rough surfaces show different behavior from those on smoother surfaces. The former shows a pinned contact line during almost the whole lifetime. By contrast, the latter experiences a stick-slip-jump behavior until the drop disappears. At mesoscopic scale, the pinning of the contact line is actually a slow motion rather than a complete immobilization at the sharp edges. The dynamic equilibrium is achieved by the self-adjustment of the contact line according to each edge.
Collapse
|
35
|
Wang M, Xiong Y, Liu L, Peng G. LBM Investigation of Immiscible Displacement in a Channel with Regular Surface Roughness. Transp Porous Media 2018. [DOI: 10.1007/s11242-018-1032-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Küllmer K, Krämer A, Joppich W, Reith D, Foysi H. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies. Phys Rev E 2018; 97:023313. [PMID: 29548255 DOI: 10.1103/physreve.97.023313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 06/08/2023]
Abstract
Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995)JSTPBS0022-471510.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012)PLEEE81539-375510.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.
Collapse
Affiliation(s)
- Knut Küllmer
- Institute of Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Andreas Krämer
- Institute of Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Wolfgang Joppich
- Institute of Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Dirk Reith
- Institute of Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany
| | - Holger Foysi
- Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany
| |
Collapse
|
37
|
Fei L, Luo KH. Consistent forcing scheme in the cascaded lattice Boltzmann method. Phys Rev E 2017; 96:053307. [PMID: 29347753 DOI: 10.1103/physreve.96.053307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 06/07/2023]
Abstract
In this paper, we give an alternative derivation for the cascaded lattice Boltzmann method (CLBM) within a general multiple-relaxation-time (MRT) framework by introducing a shift matrix. When the shift matrix is a unit matrix, the CLBM degrades into an MRT LBM. Based on this, a consistent forcing scheme is developed for the CLBM. The consistency of the nonslip rule, the second-order convergence rate in space, and the property of isotropy for the consistent forcing scheme is demonstrated through numerical simulations of several canonical problems. Several existing forcing schemes previously used in the CLBM are also examined. The study clarifies the relation between MRT LBM and CLBM under a general framework.
Collapse
Affiliation(s)
- Linlin Fei
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
| | - Kai Hong Luo
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
38
|
Zarghami A, Van den Akker HEA. Thermohydrodynamics of an evaporating droplet studied using a multiphase lattice Boltzmann method. Phys Rev E 2017; 95:043310. [PMID: 28505732 DOI: 10.1103/physreve.95.043310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 11/07/2022]
Abstract
In this paper, the thermohydrodynamics of an evaporating droplet is investigated by using a single-component pseudopotential lattice Boltzmann model. The phase change is applied to the model by adding source terms to the thermal lattice Boltzmann equation in such a way that the macroscopic energy equation of multiphase flows is recovered. In order to gain an exhaustive understanding of the complex hydrodynamics during evaporation, a single droplet is selected as a case study. At first, some tests for a stationary (non-)evaporating droplet are carried out to validate the method. Then the model is used to study the thermohydrodynamics of a falling evaporating droplet. The results show that the model is capable of reproducing the flow dynamics and transport phenomena of a stationary evaporating droplet quite well. Of course, a moving droplet evaporates faster than a stationary one due to the convective transport. Our study shows that our single-component model for simulating a moving evaporating droplet is limited to low Reynolds numbers.
Collapse
Affiliation(s)
- Ahad Zarghami
- Department of Process and Energy, TU Delft, Netherlands
| | - Harry E A Van den Akker
- Transport Phenomena Group, Department of Chemical Engineering, TU Delft, Netherlands.,Bernal Institute, School of Engineering, University of Limerick, Ireland
| |
Collapse
|
39
|
Zheng L, Zhai Q, Zheng S. Analysis of force treatment in the pseudopotential lattice Boltzmann equation method. Phys Rev E 2017; 95:043301. [PMID: 28505832 DOI: 10.1103/physreve.95.043301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Indexed: 06/07/2023]
Abstract
In this paper, different force treatments are analyzed in detail for a pseudopotential lattice Boltzmann equation (LBE), and the contribution of third-order error terms to pressure tensor with a force scheme is analyzed by a higher-order Chapman-Enskog expansion technique. From the theoretical analysis, the performance of the original force treatment of Shan-Chen (SC), Ladd, Guo et al., and the exact difference method (EDM) are ɛ_{Ladd}<ɛ_{Guo}<ɛ_{EDM}≤ɛ_{SC} with the relaxation time τ≥1, while ɛ_{Ladd}<ɛ_{Guo}<ɛ_{SC}<ɛ_{EDM} with τ<1; here ɛ is a parameter related to the mechanical stability and the subscripts are the corresponding force scheme. To be consistent with the thermodynamic theory, a force term is introduced to modify the coefficients in the pressure tensor. Some numerical simulations are conducted to show that the predictions of modified force treatment of the pseudopotential LBE are all in good agreement with the analytical solution and other predictions.
Collapse
Affiliation(s)
- Lin Zheng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Qinglan Zhai
- School of Economics Management and Law, Chaohu University, Chaohu 238000, P.R. China
| | - Song Zheng
- School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
40
|
Zhai Q, Zheng L, Zheng S. Pseudopotential lattice Boltzmann equation method for two-phase flow: A higher-order Chapmann-Enskog expansion. Phys Rev E 2017; 95:023313. [PMID: 28297988 DOI: 10.1103/physreve.95.023313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 06/06/2023]
Abstract
In this paper, a higher order Chapmann-Enskog expansion technique is applied to pseudopotential lattice Boltzmann equation (LBE), and the contribution of third order error terms to pressure tensor is analyzed in detail. To be consistent with the thermodynamic theory, a force term is introduced to modify the coefficients in the pressure tensor. Some numerical simulations are conducted to validate the LBE, and the results show that the predictions of the present LBE agree well with the analytical solution and other predictions.
Collapse
Affiliation(s)
- Qinglan Zhai
- School of Economics Management and Law, Chaohu University, Chaohu 238000, People's Republic of China
| | - Lin Zheng
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Song Zheng
- School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou Zhejiang 310018, People's Republic of China
| |
Collapse
|
41
|
Contact Angle Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied with the Pseudopotential Multiphase Lattice Boltzmann Model. COMPUTATION 2016. [DOI: 10.3390/computation4010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Khajepor S, Chen B. Multipseudopotential interaction: A consistent study of cubic equations of state in lattice Boltzmann models. Phys Rev E 2016; 93:013303. [PMID: 26871187 DOI: 10.1103/physreve.93.013303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 11/07/2022]
Abstract
A method is developed to analytically and consistently implement cubic equations of state into the recently proposed multipseudopotential interaction (MPI) scheme in the class of two-phase lattice Boltzmann (LB) models [S. Khajepor, J. Wen, and B. Chen, Phys. Rev. E 91, 023301 (2015)]10.1103/PhysRevE.91.023301. An MPI forcing term is applied to reduce the constraints on the mathematical shape of the thermodynamically consistent pseudopotentials; this allows the parameters of the MPI forces to be determined analytically without the need of curve fitting or trial and error methods. Attraction and repulsion parts of equations of state (EOSs), representing underlying molecular interactions, are modeled by individual pseudopotentials. Four EOSs, van der Waals, Carnahan-Starling, Peng-Robinson, and Soave-Redlich-Kwong, are investigated and the results show that the developed MPI-LB system can satisfactorily recover the thermodynamic states of interest. The phase interface is predicted analytically and controlled via EOS parameters independently and its effect on the vapor-liquid equilibrium system is studied. The scheme is highly stable to very high density ratios and the accuracy of the results can be enhanced by increasing the interface resolution. The MPI drop is evaluated with regard to surface tension, spurious velocities, isotropy, dynamic behavior, and the stability dependence on the relaxation time.
Collapse
Affiliation(s)
- Sorush Khajepor
- Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Baixin Chen
- Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
43
|
Regulski W, Szumbarski J, Łaniewski-Wołłk Ł, Gumowski K, Skibiński J, Wichrowski M, Wejrzanowski T. Pressure drop in flow across ceramic foams—A numerical and experimental study. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.06.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Zarghami A, Looije N, Van den Akker H. Assessment of interaction potential in simulating nonisothermal multiphase systems by means of lattice Boltzmann modeling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:023307. [PMID: 26382546 DOI: 10.1103/physreve.92.023307] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 06/05/2023]
Abstract
The pseudopotential lattice Boltzmann model (PP-LBM) is a very popular model for simulating multiphase systems. In this model, phase separation occurs via a short-range attraction between different phases when the interaction potential term is properly chosen. Therefore, the potential term is expected to play a significant role in the model and to affect the accuracy and the stability of the computations. The original PP-LBM suffers from some drawbacks such as being capable of dealing with low density ratios only, thermodynamic inconsistency, and spurious velocities. In this paper, we aim to analyze the PP-LBM with the view to simulate single-component (non-)isothermal multiphase systems at large density ratios and in spite of the presence of spurious velocities. For this purpose, the performance of two popular potential terms and of various implementation schemes for these potential terms is examined. Furthermore, the effects of different parameters (i.e., equation of state, viscosity, etc.) on the simulations are evaluated, and, finally, recommendations for a proper simulation of (non-)isothermal multiphase systems are presented.
Collapse
Affiliation(s)
- Ahad Zarghami
- Transport Phenomena Group, Department of Chemical Engineering, TU Delft, The Netherlands
| | - Niels Looije
- Transport Phenomena Group, Department of Chemical Engineering, TU Delft, The Netherlands
| | - Harry Van den Akker
- Transport Phenomena Group, Department of Chemical Engineering, TU Delft, The Netherlands
| |
Collapse
|
45
|
Khajepor S, Wen J, Chen B. Multipseudopotential interaction: a solution for thermodynamic inconsistency in pseudopotential lattice Boltzmann models. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:023301. [PMID: 25768630 DOI: 10.1103/physreve.91.023301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Indexed: 06/04/2023]
Abstract
Pseudopotential lattice Boltzmann (LB) models have been recognized as efficient numerical tools to simulate complex fluid systems, including those at thermodynamic equilibrium states and with phase transitions. However, when the equation of state (EOS) of real fluids is implemented, the existing pseudopotential LB models suffer from thermodynamic inconsistency. This study presents a multipseudopotential interparticle interaction (MPI) scheme, which is fully consistent with thermodynamics and applicable to engineering applications. In this framework, multiple pseudopotentials are employed to represent dominant interaction potentials at different extents of the mean free path of particles. By simulating van der Waals and Carnahan-Starling fluids, it is demonstrated that the MPI scheme can correctly simulate the physical nature of two-phase systems on the lattice including the continuum predictions of liquid-vapor coexistence states and the sound speeds in liquid and vapor phases. It is also shown that the lattice interactions of the MPI scheme represent underlying molecular interactions as they vary in a broad range from strong short-distance repulsions to weak long-distance attractions during phase transitions. Consequently, the MPI is proved to be a reliable LB scheme as it avoids generating unphysical potentials in implementing the EOSs of real fluids and limiting the spurious velocities at the interface of two-phase systems. Additionally, a straightforward procedure is suggested and discussed to preset the MPI system with the two-phase properties of a selected fluid.
Collapse
Affiliation(s)
- Sorush Khajepor
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - John Wen
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Baixin Chen
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
46
|
Lycett-Brown D, Luo KH. Improved forcing scheme in pseudopotential lattice Boltzmann methods for multiphase flow at arbitrarily high density ratios. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:023305. [PMID: 25768634 DOI: 10.1103/physreve.91.023305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 06/04/2023]
Abstract
The pseudopotential lattice Boltzmann method has been widely used to simulate many multiphase flow applications. However, there still exist problems with reproducing realistic values of density ratio and surface tension. In this study, a higher-order analysis of a general forcing term is derived. A forcing scheme is then constructed for the pseudopotential method that is able to accurately reproduce the full range of coexistence curves. As a result, multiphase flow of arbitrarily high density ratios independent of the surface tension can be simulated. Furthermore, the interface width can be tuned to allow for grid refinement and systematic error reduction. Numerical results confirm that the proposed scheme enables independent control of density ratio, surface tension, and interface width simultaneously.
Collapse
Affiliation(s)
- Daniel Lycett-Brown
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
47
|
Siebert DN, Philippi PC, Mattila KK. Consistent lattice Boltzmann equations for phase transitions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:053310. [PMID: 25493907 DOI: 10.1103/physreve.90.053310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Indexed: 06/04/2023]
Abstract
Unlike conventional computational fluid dynamics methods, the lattice Boltzmann method (LBM) describes the dynamic behavior of fluids in a mesoscopic scale based on discrete forms of kinetic equations. In this scale, complex macroscopic phenomena like the formation and collapse of interfaces can be naturally described as related to source terms incorporated into the kinetic equations. In this context, a novel athermal lattice Boltzmann scheme for the simulation of phase transition is proposed. The continuous kinetic model obtained from the Liouville equation using the mean-field interaction force approach is shown to be consistent with diffuse interface model using the Helmholtz free energy. Density profiles, interface thickness, and surface tension are analytically derived for a plane liquid-vapor interface. A discrete form of the kinetic equation is then obtained by applying the quadrature method based on prescribed abscissas together with a third-order scheme for the discretization of the streaming or advection term in the Boltzmann equation. Spatial derivatives in the source terms are approximated with high-order schemes. The numerical validation of the method is performed by measuring the speed of sound as well as by retrieving the coexistence curve and the interface density profiles. The appearance of spurious currents near the interface is investigated. The simulations are performed with the equations of state of Van der Waals, Redlich-Kwong, Redlich-Kwong-Soave, Peng-Robinson, and Carnahan-Starling.
Collapse
Affiliation(s)
- D N Siebert
- Federal University of Santa Catarina, 89218-000 Joinville, SC, Brazil
| | - P C Philippi
- Mechanical Engineering Department, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - K K Mattila
- Mechanical Engineering Department, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
48
|
Li Q, Luo KH. Achieving tunable surface tension in the pseudopotential lattice Boltzmann modeling of multiphase flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:053307. [PMID: 24329379 DOI: 10.1103/physreve.88.053307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Indexed: 06/03/2023]
Abstract
In this paper, we aim to address an important issue about the pseudopotential lattice Boltzmann (LB) model, which has attracted much attention as a mesoscopic model for simulating interfacial dynamics of complex fluids, but suffers from the problem that the surface tension cannot be tuned independently of the density ratio. In the literature, a multirange potential was devised to adjust the surface tension [Sbragaglia et al., Phys. Rev. E 75, 026702 (2007)]. However, it was recently found that the density ratio of the system will be changed when the multirange potential is employed to adjust the surface tension. An alternative approach is therefore proposed in the present work. The basic strategy is to add a source term to the LB equation so as to tune the surface tension of the pseudopotential LB model. The proposed approach can guarantee that the adjustment of the surface tension does not affect the mechanical stability condition of the pseudopotential LB model, and thus provides a separate control of the surface tension and the density ratio. Meanwhile, it still retains the mesoscopic feature and the computational simplicity of the pseudopotential LB model. Numerical simulations are carried out for stationary droplets, capillary waves, and droplet splashing on a thin liquid film. The numerical results demonstrate that the proposed approach is capable of achieving a tunable surface tension over a very wide range and can keep the density ratio unchanged when adjusting the surface tension.
Collapse
Affiliation(s)
- Qing Li
- Energy Technology Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - K H Luo
- Energy Technology Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom and Department of Mechanical Engineering, University College London, University of London, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
49
|
Srivastava S, Perlekar P, Boonkkamp JHMTT, Verma N, Toschi F. Axisymmetric multiphase lattice Boltzmann method. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:013309. [PMID: 23944585 DOI: 10.1103/physreve.88.013309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 06/02/2023]
Abstract
A lattice Boltzmann method for axisymmetric multiphase flows is presented and validated. The method is capable of accurately modeling flows with variable density. We develop the classic Shan-Chen multiphase model [Phys. Rev. E 47, 1815 (1993)] for axisymmetric flows. The model can be used to efficiently simulate single and multiphase flows. The convergence to the axisymmetric Navier-Stokes equations is demonstrated analytically by means of a Chapmann-Enskog expansion and numerically through several test cases. In particular, the model is benchmarked for its accuracy in reproducing the dynamics of the oscillations of an axially symmetric droplet and on the capillary breakup of a viscous liquid thread. Very good quantitative agreement between the numerical solutions and the analytical results is observed.
Collapse
Affiliation(s)
- Sudhir Srivastava
- Department of Applied Physics, Department of Mathematics and Computer Science and J.M. Burgerscentrum, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Li Q, Luo KH, Li XJ. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:053301. [PMID: 23767651 DOI: 10.1103/physreve.87.053301] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/07/2013] [Indexed: 06/02/2023]
Abstract
Owing to its conceptual simplicity and computational efficiency, the pseudopotential multiphase lattice Boltzmann (LB) model has attracted significant attention since its emergence. In this work, we aim to extend the pseudopotential LB model to simulate multiphase flows at large density ratio and relatively high Reynolds number. First, based on our recent work [Q. Li, K. H. Luo, and X. J. Li, Phys. Rev. E 86, 016709 (2012)], an improved forcing scheme is proposed for the multiple-relaxation-time pseudopotential LB model in order to achieve thermodynamic consistency and large density ratio in the model. Next, through investigating the effects of the parameter a in the Carnahan-Starling equation of state, we find that the interface thickness is approximately proportional to 1/√a. Using a smaller a will lead to a wider interface thickness, which can reduce the spurious currents and enhance the numerical stability of the pseudopotential model at large density ratio. Furthermore, it is found that a lower liquid viscosity can be gained in the pseudopotential model by increasing the kinematic viscosity ratio between the vapor and liquid phases. The improved pseudopotential LB model is numerically validated via the simulations of stationary droplet and droplet oscillation. Using the improved model as well as the above treatments, numerical simulations of droplet splashing on a thin liquid film are conducted at a density ratio in excess of 500 with Reynolds numbers ranging from 40 to 1000. The dynamics of droplet splashing is correctly reproduced and the predicted spread radius is found to obey the power law reported in the literature.
Collapse
Affiliation(s)
- Q Li
- Energy Technology Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | | | | |
Collapse
|