1
|
Thelen TQ, Rehn DA, Fontes CJ, Starrett CE. Predicting excitation energies in warm and hot dense matter. Phys Rev E 2024; 110:015207. [PMID: 39161004 DOI: 10.1103/physreve.110.015207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/10/2024] [Indexed: 08/21/2024]
Abstract
In a dense plasma environment, the energy levels of an ion shift relative to the isolated ion values. This shift is reflected in the optical spectrum of the plasma and can be measured in, for example, emission experiments. In this work we use a recently developed method of modeling electronic states in warm dense matter to predict these level energies. In this model excited state energies are calculated directly by enforcing constrained one-electron occupation factors, thus allowing the calculation of specific transition and ionization energies. This model includes plasma effects self-consistently, so the effect of continuum lowering is included in an ab initio sense. We use the model to calculate the K-edge and K-alpha energies of solid density magnesium, aluminum, and silicon over a range of temperatures, finding close agreement with experimental results. We also calculate the ionization potential depression to compare to widely used models and investigate the effects of temperature on the lowering of the continuum.
Collapse
|
2
|
Ovechkin AA, Loboda PA, Popova VV, Akulinina EY, Berezovskaya ME, Korolev AS, Kolchugin SV. Plasma ionization balance in chemical-picture and average-atom models. Phys Rev E 2023; 108:015207. [PMID: 37583194 DOI: 10.1103/physreve.108.015207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/02/2023] [Indexed: 08/17/2023]
Abstract
We propose an approximate method to calculate ion partition functions in the context of the chemical-picture representation of plasmas as an interacting mixture of various ions and free electrons under the local-thermodynamic-equilibrium conditions. The method uses the superconfiguration approach and implies that the first-order corrections to the energies of excited electron configurations due to the electron-electron interaction may be replaced by a similar first-order correction to the energy of the basic configuration of an ion with the same number of bound electrons. The method enables one to significantly speed up the calculations and generally provides quite accurate results. Using the method proposed, plasma ionization balance and average ion charges calculated on the base of the chemical-picture representation show a good agreement with the relevant average-atom data. For the case of weak electron-ion nonideality, we provide approximate relations between the chemical-picture and average-atom values of the average ion charge, chemical potential, and plasma-density depression of ionization potential.
Collapse
Affiliation(s)
- A A Ovechkin
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| | - P A Loboda
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
- National Research Nuclear University-Moscow Engineering Physics Institute (MEPhI), 31, Kashirskoe sh., Moscow 115409, Russia
| | - V V Popova
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| | - E Yu Akulinina
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| | - M E Berezovskaya
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| | - A S Korolev
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| | - S V Kolchugin
- Russian Federal Nuclear Center-Zababakhin All-Russian Research Institute of Technical Physics (RFNC-VNIITF), 13, Vasilyeva st., Snezhinsk, Chelyabinsk region 456770, Russia
| |
Collapse
|
3
|
Clérouin J, Blanchet A, Blancard C, Faussurier G, Soubiran F, Bethkenhagen M. Equivalence between pressure- and structure-defined ionization in hot dense carbon. Phys Rev E 2022; 106:045204. [PMID: 36397512 DOI: 10.1103/physreve.106.045204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The determination of the ionization of a system in the hot dense regime is a long standing issue. Recent studies have shown inconsistencies between standard predictions using average atom models and evaluations deduced from electronic transport properties computed with quantum molecular dynamics simulations [Bethkenhagen et al., Phys. Rev. Res. 2, 023260 (2020)]2643-156410.1103/PhysRevResearch.2.023260. Here, we propose a definition of the ionization based on its effect on the plasma structure as given by the pair distribution function (PDF), and on the concept of effective one-component plasma (eOCP). We also introduce a definition based on the total pressure and on a modelization of the electronic pressure. We show the equivalence of these definitions on two studies of carbon along the 100 eV isotherm and the 10 g/cm^{3} isochor. Simulations along the 100 eV isotherm are obtained with the newly implemented Ext. First principles molecular dynamics (Fpmd) method in Abinit for densities ranging from 1 to 500 g/cm^{3}and along the 10 g/cm^{3} isochor with the recently published Spectral quadrature DFT (Sqdft) simulations, between 8 and 860 eV. The resulting ionizations are compared to the predictions of the average-atom code Qaam which is based on the muffin-tin approximation. A disagreement between the eOCP and the actual PDFs (non-OCP behavior) is interpreted as the onset of bonding in the system.
Collapse
Affiliation(s)
- Jean Clérouin
- CEA-DAM-DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière sous conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - Augustin Blanchet
- CEA-DAM-DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière sous conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - Christophe Blancard
- CEA-DAM-DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière sous conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - Gérald Faussurier
- CEA-DAM-DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière sous conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - François Soubiran
- CEA-DAM-DIF, F-91297 Arpajon, France
- Université Paris-Saclay, CEA, Laboratoire Matière sous conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - Mandy Bethkenhagen
- CNRS, École Normale Supérieure de Lyon, Laboratoire de Géologie de Lyon LGLTPE UMR 5276, Centre Blaise Pascal, 46 allée d'Italie Lyon 69364, France
| |
Collapse
|
4
|
Multi-Configuration Calculation of Ionization Potential Depression. PLASMA 2022. [DOI: 10.3390/plasma5040029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The modelling of ionization potential depression in warm and hot dense plasmas constitutes a real theoretical challenge due to ionic coupling and electron degeneracy effects. In this work, we present a quantum statistical model based on a multi-configuration description of the electronic structure in the framework of Density Functional Theory. We discuss different conceptual issues inherent to the definition of ionization potential depression and compare our results with the famous and widely-used Ecker-Kröll and Stewart-Pyatt models.
Collapse
|
5
|
Davletov AE, Kurbanov F, Mukhametkarimov YS. Influence of dust particles on ionization equilibrium in partially ionized plasmas. Phys Rev E 2020; 101:063203. [PMID: 32688540 DOI: 10.1103/physreve.101.063203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
A chemical model is proposed for a dusty plasma consisting of electrons, ions, neutrals, and positively charged dust particles all being at thermodynamic equilibrium. An expression is derived for the Helmholtz free energy, which comprises the ideal part, taking into account the charge of dust particles, and the excess part, evaluated in the framework of the self-consistent chemical model [Phys. Rev. E 83, 016405 (2011)PLEEE81539-375510.1103/PhysRevE.83.016405]. The ionization potential depression for a dust-free partially ionized hydrogen is analytically evaluated for weakly and strongly ionized states to consistently account for the presence of charged and neutral components. An ad hoc interpolation of the ionization potential depression, valid across the whole ionization region, is put forward and subsequent solution of the generalized Saha equation is found to be in a perfect agreement with exact calculations. Minimization of the Helmholtz free energy of dusty plasmas provides the number densities of free electrons, free ions, neutrals, and the dust electric charge as well. Based on consideration of weakly and strongly ionized states, a straightforward comparison is made of the ionization equilibrium in a partially ionized plasma with and without dust particles to demonstrate that at thermal equilibrium positively charged dusts are responsible for an increase in the number density of free electrons and a decrease in the number density of free ions. It is analytically proved that nonideality effects result in a growth of the number densities of free electrons and ions by obtaining the so-called electron and proton ionization potential depressions. Electric charge of dust particles is systematically studied as a full plasma component rather than considering a detailed balance of the electron and ion fluxes on the surface of a solitary dust grain.
Collapse
Affiliation(s)
- A E Davletov
- Department of Physics and Technology, Al-Farabi Kazakh National University, 71 Al-Farabi av., 050040 Almaty, Kazakhstan
| | - F Kurbanov
- Department of Physics and Technology, Al-Farabi Kazakh National University, 71 Al-Farabi av., 050040 Almaty, Kazakhstan
| | - Ye S Mukhametkarimov
- Department of Physics and Technology, Al-Farabi Kazakh National University, 71 Al-Farabi av., 050040 Almaty, Kazakhstan
| |
Collapse
|
6
|
Faussurier G, Blancard C. Density effects on electronic configurations in dense plasmas. Phys Rev E 2018; 97:023206. [PMID: 29548182 DOI: 10.1103/physreve.97.023206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Indexed: 06/08/2023]
Abstract
We present a quantum mechanical model to describe the density effects on electronic configurations inside a plasma environment. Two different approaches are given by starting from a quantum average-atom model. Illustrations are shown for an aluminum plasma in local thermodynamic equilibrium at solid density and at a temperature of 100 eV and in the thermodynamic conditions of a recent experiment designed to characterize the effects of the ionization potential depression treatment. Our approach compares well with experiment and is consistent in that case with the approach of Stewart and Pyatt to describe the ionization potential depression rather than with the method of Ecker and Kröll.
Collapse
Affiliation(s)
- Gérald Faussurier
- Commissariat i I'Energie Atomique, DAM, DIF, F-91297 Arpajon, France
| | | |
Collapse
|
7
|
Faussurier G, Blancard C. Temperature relaxation in dense plasma mixtures. Phys Rev E 2016; 94:033210. [PMID: 27739738 DOI: 10.1103/physreve.94.033210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/07/2022]
Abstract
We present a model to calculate temperature-relaxation rates in dense plasma mixtures. The electron-ion relaxation rates are calculated using an average-atom model and the ion-ion relaxation rates by the Landau-Spitzer approach. This method allows the study of the temperature relaxation in many-temperature electron-ion and ion-ion systems such as those encountered in inertial confinement fusion simulations. It is of interest for general nonequilibrium thermodynamics dealing with energy flows between various systems and should find broad use in present high energy density experiments.
Collapse
|
8
|
Driver KP, Soubiran F, Zhang S, Militzer B. First-principles equation of state and electronic properties of warm dense oxygen. J Chem Phys 2015; 143:164507. [DOI: 10.1063/1.4934348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- K. P. Driver
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - F. Soubiran
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - Shuai Zhang
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| | - B. Militzer
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
- Department of Astronomy, University of California, Berkeley, California 94720, USA
| |
Collapse
|
9
|
Ticknor C, Collins LA, Kress JD. Transport properties and equation of state for HCNO mixtures in and beyond the warm dense matter regime. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:023101. [PMID: 26382529 DOI: 10.1103/physreve.92.023101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 06/05/2023]
Abstract
We present simulations of a four-component mixture of HCNO with orbital free molecular dynamics (OFMD). These simulations were conducted for 5-200 eV with densities ranging between 0.184 and 36.8 g/cm3. We extract the equation of state from the simulations and compare to average atom models. We found that we only need to add a cold curve model to find excellent agreement. Additionally, we studied mass transport properties. We present fits to the self-diffusion and shear viscosity that are able to reproduce the transport properties over the parameter range studied. We compare these OFMD results to models based on the Coulomb coupling parameter and one-component plasmas.
Collapse
Affiliation(s)
- Christopher Ticknor
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Lee A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Joel D Kress
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
10
|
Alastuey A, Ballenegger V. Thermodynamics of atomic and ionized hydrogen: analytical results versus equation-of-state tables and Monte Carlo data. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:066402. [PMID: 23368054 DOI: 10.1103/physreve.86.066402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 06/01/2023]
Abstract
We compute thermodynamical properties of a low-density hydrogen gas within the physical picture, in which the system is described as a quantum electron-proton plasma interacting via the Coulomb potential. Our calculations are done using the exact scaled low-temperature (SLT) expansion, which provides a rigorous extension of the well-known virial expansion-valid in the fully ionized phase-into the Saha regime where the system is partially or fully recombined into hydrogen atoms. After recalling the SLT expansion of the pressure [A. Alastuey et al., J. Stat. Phys. 130, 1119 (2008)], we obtain the SLT expansions of the chemical potential and of the internal energy, up to order exp(-|E_{H}|/kT) included (E_{H}≃-13.6 eV). Those truncated expansions describe the first five nonideal corrections to the ideal Saha law. They account exactly, up to the considered order, for all effects of interactions and thermal excitations, including the formation of bound states (atom H, ions H^{-} and H_{2}^{+}, molecule H_{2},⋯) and atom-charge and atom-atom interactions. Among the five leading corrections, three are easy to evaluate, while the remaining ones involve well-defined internal partition functions for the molecule H_{2} and ions H^{-} and H_{2}^{+}, for which no closed-form analytical formula exist currently. We provide accurate low-temperature approximations for those partition functions by using known values of rotational and vibrational energies. We compare then the predictions of the SLT expansion, for the pressure and the internal energy, with, on the one hand, the equation-of-state tables obtained within the opacity program at Livermore (OPAL) and, on the other hand, data of path integral quantum Monte Carlo (PIMC) simulations. In general, a good agreement is found. At low densities, the simple analytical SLT formulas reproduce the values of the OPAL tables up to the last digit in a large range of temperatures, while at higher densities (ρ∼10^{-2} g/cm^{3}), some discrepancies among the SLT, OPAL, and PIMC results are observed.
Collapse
Affiliation(s)
- A Alastuey
- Laboratoire de Physique, ENS Lyon, UMR CNRS 5672, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | |
Collapse
|