• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698096)   Today's Articles (72)
For: Komura Y, Okabe Y. Difference of energy density of states in the Wang-Landau algorithm. Phys Rev E Stat Nonlin Soft Matter Phys 2012;85:010102. [PMID: 22400498 DOI: 10.1103/physreve.85.010102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/08/2011] [Indexed: 05/31/2023]
Number Cited by Other Article(s)
1
Kurbanova DR, Murtazaev AK, Ramazanov MK, Magomedov MA. Phase Diagram of the Four-Vertex Potts Model with Competing Exchange Interactions. JETP LETTERS 2022;115:471-476. [DOI: 10.1134/s0021364022100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 01/03/2025]
2
Zhang C, Drake JA, Ma J, Pettitt BM. Optimal updating magnitude in adaptive flat-distribution sampling. J Chem Phys 2017;147:174105. [PMID: 29117700 PMCID: PMC5669982 DOI: 10.1063/1.5008618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/08/2017] [Indexed: 11/14/2022]  Open
3
Chan CH, Brown G, Rikvold PA. Macroscopically constrained Wang-Landau method for systems with multiple order parameters and its application to drawing complex phase diagrams. Phys Rev E 2017;95:053302. [PMID: 28618623 DOI: 10.1103/physreve.95.053302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 11/07/2022]
4
Shevchenko Y, Nefedev K, Okabe Y. Entropy of diluted antiferromagnetic Ising models on frustrated lattices using the Wang-Landau method. Phys Rev E 2017;95:052132. [PMID: 28618636 DOI: 10.1103/physreve.95.052132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Indexed: 06/07/2023]
5
Belardinelli RE, Pereyra VD. Nonconvergence of the Wang-Landau algorithms with multiple random walkers. Phys Rev E 2016;93:053306. [PMID: 27301004 DOI: 10.1103/physreve.93.053306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 12/11/2022]
6
Koh YW, Lee HK, Okabe Y. Dynamically optimized Wang-Landau sampling with adaptive trial moves and modification factors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013;88:053302. [PMID: 24329374 DOI: 10.1103/physreve.88.053302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 09/16/2013] [Indexed: 06/03/2023]
7
Persson RAX. Perturbation method to calculate the density of states. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012;86:066708. [PMID: 23368079 DOI: 10.1103/physreve.86.066708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/26/2012] [Indexed: 06/01/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA