1
|
Guo Q, Cozzo E, Zheng Z, Moreno Y. Lévy random walks on multiplex networks. Sci Rep 2016; 6:37641. [PMID: 27892508 PMCID: PMC5124865 DOI: 10.1038/srep37641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/01/2016] [Indexed: 11/08/2022] Open
Abstract
Random walks constitute a fundamental mechanism for many dynamics taking place on complex networks. Besides, as a more realistic description of our society, multiplex networks have been receiving a growing interest, as well as the dynamical processes that occur on top of them. Here, inspired by one specific model of random walks that seems to be ubiquitous across many scientific fields, the Lévy flight, we study a new navigation strategy on top of multiplex networks. Capitalizing on spectral graph and stochastic matrix theories, we derive analytical expressions for the mean first passage time and the average time to reach a node on these networks. Moreover, we also explore the efficiency of Lévy random walks, which we found to be very different as compared to the single layer scenario, accounting for the structure and dynamics inherent to the multiplex network. Finally, by comparing with some other important random walk processes defined on multiplex networks, we find that in some region of the parameters, a Lévy random walk is the most efficient strategy. Our results give us a deeper understanding of Lévy random walks and show the importance of considering the topological structure of multiplex networks when trying to find efficient navigation strategies.
Collapse
Affiliation(s)
- Quantong Guo
- School of Mathematics and Systems Science, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics Informatics Behavioral Semantics(LMIB), Ministry of Education, China
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50018, Spain
| | - Emanuele Cozzo
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50018, Spain
| | - Zhiming Zheng
- School of Mathematics and Systems Science, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics Informatics Behavioral Semantics(LMIB), Ministry of Education, China
- School of Mathematical Sciences, Peking University, Beijing 100191, China
| | - Yamir Moreno
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50018, Spain
- Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain
- Complex Networks and Systems Lagrange Lab, Institute for Scientific Interchange, Turin, Italy
| |
Collapse
|
2
|
Arun RK, Chaudhury K, Ghosh M, Biswas G, Chanda N, Chakraborty S. Controlled splitting and focusing of a stream of nanoparticles in a converging-diverging microchannel. LAB ON A CHIP 2014; 14:3800-3808. [PMID: 25110161 DOI: 10.1039/c4lc00542b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We demonstrate the potential of a converging-diverging microchannel to split a stream of nanoparticles towards the interfacial region of the dispersed and the carrier phases, introduced through the middle inlet and through the remaining two inlets respectively, while maintaining a low Reynolds number limit (<10) for the flow of both phases. In addition to the splitting of passive tracer particles, such as polystyrene beads as used herein, the present setup has the potential to be utilized for a controlled reaction and thereby the separation of products towards an intended location, as observed from the experimentation with silver-nanoparticles and hydrogen-peroxide solution. Moreover, the microscale dimension of the channel allows controlled deposition of the reaction product over the bottom surface of the channel, allowing the possibility of bottom-up fabrication of microscale features. We unveil the underlying hydrodynamics that lead to such behaviours through numerical simulations, which are consistent with the experimental observations. The phenomenological features are found to be guided by the splitting of the intrinsic streamlines conforming to the flow geometry under consideration.
Collapse
Affiliation(s)
- Ravi Kumar Arun
- Micro System Technology Laboratory, CSIR-Central Mechanical Engineering Research Institute, MG Avenue, Durgapur, India.
| | | | | | | | | | | |
Collapse
|
3
|
Yang Y, Zhang Z. Random walks in unweighted and weighted modular scale-free networks with a perfect trap. J Chem Phys 2013; 139:234106. [PMID: 24359351 DOI: 10.1063/1.4835655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Designing optimal structure favorable to diffusion and effectively controlling the trapping process are crucial in the study of trapping problem--random walks with a single trap. In this paper, we study the trapping problem occurring on unweighted and weighted networks, respectively. The networks under consideration display the striking scale-free, small-world, and modular properties, as observed in diverse real-world systems. For binary networks, we concentrate on three cases of trapping problems with the trap located at a peripheral node, a neighbor of the root with the least connectivity, and a farthest node, respectively. For weighted networks with edge weights controlled by a parameter, we also study three trapping problems, in which the trap is placed separately at the root, a neighbor of the root with the least degree, and a farthest node. For all the trapping problems, we obtain the analytical formulas for the average trapping time (ATT) measuring the efficiency of the trapping process, as well as the leading scaling of ATT. We show that for all the trapping problems in the binary networks with a trap located at different nodes, the dominating scalings of ATT reach the possible minimum scalings, implying that the networks have optimal structure that is advantageous to efficient trapping. Furthermore, we show that for trapping in the weighted networks, the ATT is controlled by the weight parameter, through modifying which, the ATT can behave superlinearly, linearly, sublinearly, or logarithmically with the system size. This work could help improving the design of systems with efficient trapping process and offers new insight into control of trapping in complex systems.
Collapse
Affiliation(s)
- Yihang Yang
- School of Computer Science, Fudan University, Shanghai 200433, China
| | - Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Lin Y, Zhang Z. Random walks in weighted networks with a perfect trap: an application of Laplacian spectra. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062140. [PMID: 23848660 DOI: 10.1103/physreve.87.062140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 06/02/2023]
Abstract
Trapping processes constitute a primary problem of random walks, which characterize various other dynamical processes taking place on networks. Most previous works focused on the case of binary networks, while there is much less related research about weighted networks. In this paper, we propose a general framework for the trapping problem on a weighted network with a perfect trap fixed at an arbitrary node. By utilizing the spectral graph theory, we provide an exact formula for mean first-passage time (MFPT) from one node to another, based on which we deduce an explicit expression for average trapping time (ATT) in terms of the eigenvalues and eigenvectors of the Laplacian matrix associated with the weighted graph, where ATT is the average of MFPTs to the trap over all source nodes. We then further derive a sharp lower bound for the ATT in terms of only the local information of the trap node, which can be obtained in some graphs. Moreover, we deduce the ATT when the trap is distributed uniformly in the whole network. Our results show that network weights play a significant role in the trapping process. To apply our framework, we use the obtained formulas to study random walks on two specific networks: trapping in weighted uncorrelated networks with a deep trap, the weights of which are characterized by a parameter, and Lévy random walks in a connected binary network with a trap distributed uniformly, which can be looked on as random walks on a weighted network. For weighted uncorrelated networks we show that the ATT to any target node depends on the weight parameter, that is, the ATT to any node can change drastically by modifying the parameter, a phenomenon that is in contrast to that for trapping in binary networks. For Lévy random walks in any connected network, by using their equivalence to random walks on a weighted complete network, we obtain the optimal exponent characterizing Lévy random walks, which have the minimal average of ATTs taken over all target nodes.
Collapse
Affiliation(s)
- Yuan Lin
- School of Computer Science, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
5
|
Lin Y, Zhang Z. Influence of trap location on the efficiency of trapping in dendrimers and regular hyperbranched polymers. J Chem Phys 2013; 138:094905. [DOI: 10.1063/1.4793309] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Wang Y, Zeng A, Di Z, Fan Y. Spectral coarse graining for random walks in bipartite networks. CHAOS (WOODBURY, N.Y.) 2013; 23:013104. [PMID: 23556941 DOI: 10.1063/1.4773823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Many real-world networks display a natural bipartite structure, yet analyzing and visualizing large bipartite networks is one of the open challenges in complex network research. A practical approach to this problem would be to reduce the complexity of the bipartite system while at the same time preserve its functionality. However, we find that existing coarse graining methods for monopartite networks usually fail for bipartite networks. In this paper, we use spectral analysis to design a coarse graining scheme specific for bipartite networks, which keeps their random walk properties unchanged. Numerical analysis on both artificial and real-world networks indicates that our coarse graining can better preserve most of the relevant spectral properties of the network. We validate our coarse graining method by directly comparing the mean first passage time of the walker in the original network and the reduced one.
Collapse
Affiliation(s)
- Yang Wang
- Department of Systems Science, School of Management, Beijing Normal University, Beijing 100875, People's Republic of China
| | | | | | | |
Collapse
|
7
|
Yang Y, Zhang Z. Optimal scale-free network with a minimum scaling of transport efficiency for random walks with a perfect trap. J Chem Phys 2013; 138:034101. [DOI: 10.1063/1.4774269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Zhang Z, Shan T, Chen G. Random walks on weighted networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:012112. [PMID: 23410288 DOI: 10.1103/physreve.87.012112] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Random walks constitute a fundamental mechanism for a large set of dynamics taking place on networks. In this article, we study random walks on weighted networks with an arbitrary degree distribution, where the weight of an edge between two nodes has a tunable parameter. By using the spectral graph theory, we derive analytical expressions for the stationary distribution, mean first-passage time (MFPT), average trapping time (ATT), and lower bound of the ATT, which is defined as the average MFPT to a given node over every starting point chosen from the stationary distribution. All these results depend on the weight parameter, indicating a significant role of network weights on random walks. For the case of uncorrelated networks, we provide explicit formulas for the stationary distribution as well as ATT. Particularly, for uncorrelated scale-free networks, when the target is placed on a node with the highest degree, we show that ATT can display various scalings of network size, depending also on the same parameter. Our findings could pave a way to delicately controlling random-walk dynamics on complex networks.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433,
| | | | | |
Collapse
|
9
|
Zhang Z, Sheng Y, Hu Z, Chen G. Optimal and suboptimal networks for efficient navigation measured by mean-first passage time of random walks. CHAOS (WOODBURY, N.Y.) 2012; 22:043129. [PMID: 23278064 DOI: 10.1063/1.4768665] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
For a random walk on a network, the mean first-passage time from a node i to another node j chosen stochastically, according to the equilibrium distribution of Markov chain representing the random walk is called the Kemeny constant, which is closely related to the navigability on the network. Thus, the configuration of a network that provides optimal or suboptimal navigation efficiency is a question of interest. It has been proved that complete graphs have the exact minimum Kemeny constant over all graphs. In this paper, by using another method we first prove that complete graphs are the optimal networks with a minimum Kemeny constant, which grows linearly with the network size. Then, we study the Kemeny constant of a class of sparse networks that exhibit remarkable scale-free and fractal features as observed in many real-life networks, which cannot be described by complete graphs. To this end, we determine the closed-form solutions to all eigenvalues and their degeneracies of the networks. Employing these eigenvalues, we derive the exact solution to the Kemeny constant, which also behaves linearly with the network size for some particular cases of networks. We further use the eigenvalue spectra to determine the number of spanning trees in the networks under consideration, which is in complete agreement with previously reported results. Our work demonstrates that scale-free and fractal properties are favorable for efficient navigation, which could be considered when designing networks with high navigation efficiency.
Collapse
Affiliation(s)
- Zhongzhi Zhang
- School of Computer Science, Fudan University, Shanghai 200433, China.
| | | | | | | |
Collapse
|
10
|
Lin Y, Julaiti A, Zhang Z. Mean first-passage time for random walks in general graphs with a deep trap. J Chem Phys 2012; 137:124104. [DOI: 10.1063/1.4754735] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Wu B, Lin Y, Zhang Z, Chen G. Trapping in dendrimers and regular hyperbranched polymers. J Chem Phys 2012; 137:044903. [DOI: 10.1063/1.4737635] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|