1
|
Monfared S, Ravichandran G, Andrade JE, Doostmohammadi A. Short-range correlation of stress chains near solid-to-liquid transition in active monolayers. J R Soc Interface 2024; 21:20240022. [PMID: 38715321 PMCID: PMC11077009 DOI: 10.1098/rsif.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Using a three-dimensional model of cell monolayers, we study the spatial organization of active stress chains as the monolayer transitions from a solid to a liquid state. The critical exponents that characterize this transition map the isotropic stress percolation onto the two-dimensional random percolation universality class, suggesting short-range stress correlations near this transition. This mapping is achieved via two distinct, independent pathways: (i) cell-cell adhesion and (ii) active traction forces. We unify our findings by linking the nature of this transition to high-stress fluctuations, distinctly linked to each pathway. The results elevate the importance of the transmission of mechanical information in dense active matter and provide a new context for understanding the non-equilibrium statistical physics of phase transition in active systems.
Collapse
Affiliation(s)
- Siavash Monfared
- Niels Bohr Institute, University of Copenhagen, Kobenhavn, 2100, Denmark
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, , CA, 91125, USA
| | - José E. Andrade
- Division of Engineering and Applied Science, California Institute of Technology, , CA, 91125, USA
| | | |
Collapse
|
2
|
Dashti H, Saberi AA, Rahbari SHE, Kurths JFSTR. Emergence of rigidity percolation in flowing granular systems. SCIENCE ADVANCES 2023; 9:eadh5586. [PMID: 37656797 DOI: 10.1126/sciadv.adh5586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 09/03/2023]
Abstract
Jammed granular media and glasses exhibit spatial long-range correlations as a result of mechanical equilibrium. However, the existence of such correlations in the flowing matter, where the mechanical equilibrium is unattainable, has remained elusive. Here, we investigate this problem in the context of the percolation of interparticle forces in flowing granular media. We find that the flow rate introduces an effective long-range correlation, which plays the role of a relevant perturbation giving rise to a spectrum of varying exponents on a critical line as a function of the flow rate. Our numerical simulations along with analytical arguments predict a crossover flow rate [Formula: see text] below which the effect of induced disorder is weak and the universality of the force chain structure is shown to be given by the standard rigidity percolation. We also find a power-law behavior for the critical exponents with the flow rate [Formula: see text].
Collapse
Affiliation(s)
- Hor Dashti
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Abbas Ali Saberi
- Department of Physics, University of Tehran, P. O. Box, 14395-547 Tehran, Iran
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - S H E Rahbari
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - J Formula See Text Rgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Department of Physics, Humboldt University, Berlin, Germany
| |
Collapse
|
3
|
Ikeda H, Hukushima K. Nonaffine displacements below jamming under athermal quasistatic compression. Phys Rev E 2021; 103:032902. [PMID: 33862705 DOI: 10.1103/physreve.103.032902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/23/2021] [Indexed: 11/07/2022]
Abstract
Critical properties of frictionless spherical particles below jamming are studied using extensive numerical simulations, paying particular attention to the nonaffine part of the displacements during the athermal quasistatic compression. It is shown that the squared norm of the nonaffine displacement exhibits a power-law divergence toward the jamming transition point. A possible connection between this critical exponent and that of the shear viscosity is discussed. The participation ratio of the displacements vanishes in the thermodynamic limit at the transition point, meaning that the nonaffine displacements are localized marginally with a fractal dimension. Furthermore, the distribution of the displacement is shown to have a power-law tail, the exponent of which is related to the fractal dimension.
Collapse
Affiliation(s)
- Harukuni Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan
| | - Koji Hukushima
- Graduate School of Arts and Sciences, The University of Tokyo 153-8902, Japan.,Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
4
|
Tsai JCJ, Huang GH, Tsai CE. Signature of Transition between Granular Solid and Fluid: Rate-Dependent Stick Slips in Steady Shearing. PHYSICAL REVIEW LETTERS 2021; 126:128001. [PMID: 33834824 DOI: 10.1103/physrevlett.126.128001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/04/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Despite extensive studies on either smooth granular-fluid flow or the solidlike deformation at the slow limit, the change between these two extremes remains largely unexplored. By systematically investigating the fluctuations of tightly packed grains under steady shearing, we identify a transition zone with prominent stick-slip avalanches. We establish a state diagram, and propose a new dimensionless shear rate based on the speed dependence of interparticle friction and particle size. With fluid-immersed particles confined in a fixed volume and forced to "flow" at viscous numbers J decades below reported values, we answer how a granular system can transition to the regime sustained by solid-to-solid friction that goes beyond existing paradigms based on suspension rheology.
Collapse
Affiliation(s)
| | - Guan-Hao Huang
- Institute of Physics, Academia Sinica, 11529 Taipei, Taiwan
| | - Cheng-En Tsai
- Institute of Physics, Academia Sinica, 11529 Taipei, Taiwan
- Department of Physics, National Central University, 320317 Chung-Li, Taiwan
| |
Collapse
|
5
|
Abaurrea-Velasco C, Lozano C, Bechinger C, de Graaf J. Autonomously Probing Viscoelasticity in Disordered Suspensions. PHYSICAL REVIEW LETTERS 2020; 125:258002. [PMID: 33416358 DOI: 10.1103/physrevlett.125.258002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Recent experiments show a strong rotational diffusion enhancement for self-propelled microrheological probes in colloidal glasses. Here, we provide microscopic understanding using simulations with a frictional probe-medium coupling that converts active translation into rotation. Diffusive enhancement emerges from the medium's disordered structure and peaks at a second-order transition in the number of contacts. Our results reproduce the salient features of the colloidal glass experiment and support an effective description that is applicable to a broader class of viscoelastic suspensions.
Collapse
Affiliation(s)
- Clara Abaurrea-Velasco
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University,Princetonplein 5, 3584 CC Utrecht, Netherlands
| | - Celia Lozano
- Fachbereich Physik, Universität Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Clemens Bechinger
- Fachbereich Physik, Universität Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Joost de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University,Princetonplein 5, 3584 CC Utrecht, Netherlands
| |
Collapse
|
6
|
Tuckman PJ, VanderWerf K, Yuan Y, Zhang S, Zhang J, Shattuck MD, O'Hern CS. Contact network changes in ordered and disordered disk packings. SOFT MATTER 2020; 16:9443-9455. [PMID: 32940321 PMCID: PMC9118336 DOI: 10.1039/d0sm01137a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the mechanical response of packings of purely repulsive, frictionless disks to quasistatic deformations. The deformations include simple shear strain at constant packing fraction and at constant pressure, "polydispersity" strain (in which we change the particle size distribution) at constant packing fraction and at constant pressure, and isotropic compression. For each deformation, we show that there are two classes of changes in the interparticle contact networks: jump changes and point changes. Jump changes occur when a contact network becomes mechanically unstable, particles "rearrange", and the potential energy (when the strain is applied at constant packing fraction) or enthalpy (when the strain is applied at constant pressure) and all derivatives are discontinuous. During point changes, a single contact is either added to or removed from the contact network. For repulsive linear spring interactions, second- and higher-order derivatives of the potential energy/enthalpy are discontinuous at a point change, while for Hertzian interactions, third- and higher-order derivatives of the potential energy/enthalpy are discontinuous. We illustrate the importance of point changes by studying the transition from a hexagonal crystal to a disordered crystal induced by applying polydispersity strain. During this transition, the system only undergoes point changes, with no jump changes. We emphasize that one must understand point changes, as well as jump changes, to predict the mechanical properties of jammed packings.
Collapse
Affiliation(s)
- Philip J Tuckman
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Kyle VanderWerf
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Ye Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. and Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Shiyun Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jerry Zhang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA
| | - Mark D Shattuck
- Benjamin Levich Institute and Physics Department, The City College of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA and Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA and Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA. and Graduate Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
7
|
Abstract
Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions embedded in a fibrous network is compressed, heterogeneous rearrangement of the inclusions can induce tension within the interstitial network, leading to a macroscopic crossover from an initial bending-dominated softening regime to a stretching-dominated stiffening regime, which occurs before and independently of jamming of the inclusions. Using a coarse-grained particle-network model, we first establish a phase diagram for compression-driven, stretching-dominated stress propagation and jamming in uniaxially compressed two- and three-dimensional systems. Then, we demonstrate that a more detailed computational model of stiff inclusions in a subisostatic semiflexible fiber network exhibits quantitative agreement with the predictions of our coarse-grained model as well as qualitative agreement with experiments.
Collapse
|
8
|
Treado JD, Mei Z, Regan L, O’Hern CS. Void distributions reveal structural link between jammed packings and protein cores. Phys Rev E 2019; 99:022416. [PMID: 30934238 PMCID: PMC6902428 DOI: 10.1103/physreve.99.022416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 11/07/2022]
Abstract
Dense packing of hydrophobic residues in the cores of globular proteins determines their stability. Recently, we have shown that protein cores possess packing fraction ϕ≈0.56, which is the same as dense, random packing of amino-acid-shaped particles. In this article, we compare the structural properties of protein cores and jammed packings of amino-acid-shaped particles in much greater depth by measuring their local and connected void regions. We find that the distributions of surface Voronoi cell volumes and local porosities obey similar statistics in both systems. We also measure the probability that accessible, connected void regions percolate as a function of the size of a spherical probe particle and show that both systems possess the same critical probe size. We measure the critical exponent τ that characterizes the size distribution of connected void clusters at the onset of percolation. We find that the cluster size statistics are similar for void percolation in packings of amino-acid-shaped particles and randomly placed spheres, but different from that for void percolation in jammed sphere packings. We propose that the connected void regions are a defining structural feature of proteins and can be used to differentiate experimentally observed proteins from decoy structures that are generated using computational protein design software. This work emphasizes that jammed packings of amino-acid-shaped particles can serve as structural and mechanical analogs of protein cores, and could therefore be useful in modeling the response of protein cores to cavity-expanding and -reducing mutations.
Collapse
Affiliation(s)
- John D. Treado
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Zhe Mei
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Lynne Regan
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Corey S. O’Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520, USA
- Integrated Graduate Program in Physical & Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
9
|
Ergodicity breaking transition in a glassy soft sphere system at small but non-zero temperatures. Sci Rep 2018; 8:1837. [PMID: 29382860 PMCID: PMC5789873 DOI: 10.1038/s41598-018-20152-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/15/2018] [Indexed: 11/30/2022] Open
Abstract
While the glass transition at non-zero temperature seems to be hard to access for experimental, theoretical, or simulation studies, jamming at zero temperature has been studied in great detail. Motivated by the exploration of the energy landscape that has been successfully used to investigate athermal jamming, we introduce a new method that includes the possibility of the thermally excited crossing of energy barriers. We then determine whether the ground state configurations of a soft sphere system are accessible or not and as a consequence whether the system is ergodic or effectively non-ergodic. Interestingly, we find an transition where the system becomes effectively non-ergodic if the density is increased. The transition density in the limit of small but non-zero temperatures is independent of temperature and below the transition density of athermal jamming. This confirms recent computer simulation studies where athermal jamming occurs deep inside the glass phase. In addition, we show that the ergodicity breaking transition is in the universality class of directed percolation. Therefore, our approach not only makes the transition from an ergodic to an effectively non-ergodic systems easily accessible and helps to reveal its universality class but also shows that it is fundamentally different from athermal jamming.
Collapse
|
10
|
Reichhardt C, Reichhardt CJO. Velocity force curves, laning, and jamming for oppositely driven disk systems. SOFT MATTER 2018; 14:490-498. [PMID: 29214253 DOI: 10.1039/c7sm02162c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Using simulations we examine a two-dimensional disk system in which two disk species are driven in opposite directions. We measure the average velocity of one of the species versus the applied driving force and identify four phases as function of drive and disk density: a jammed state, a completely phase separated state, a continuously mixing phase, and a laning phase. The transitions between these phases are correlated with jumps in the velocity-force curves that are similar to the behavior observed at dynamical phase transitions in driven particle systems with quenched disorder such as vortices in type-II superconductors. In some cases the transitions between phases are associated with negative differential mobility in which the average absolute velocity of either species decreases with increasing drive. We also consider the situation where the drive is applied to only one species as well as systems in which both species are driven in the same direction with different drive amplitudes. We show that the phases are robust against the addition of thermal fluctuations. Finally, we discuss how the transitions we observe could be related to absorbing phase transitions where a system in a phase separated or laning regime organizes to a state in which contacts between the disks no longer occur and dynamical fluctuations are lost.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | |
Collapse
|
11
|
Pathak SN, Esposito V, Coniglio A, Ciamarra MP. Force percolation transition of jammed granular systems. Phys Rev E 2017; 96:042901. [PMID: 29347617 DOI: 10.1103/physreve.96.042901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 06/07/2023]
Abstract
The mechanical and transport properties of jammed materials originate from an underlying percolating network of contact forces between the grains. Using extensive simulations we investigate the force-percolation transition of this network, where two particles are considered as linked if their interparticle force overcomes a threshold. We show that this transition belongs to the random percolation universality class, thus ruling out the existence of long-range correlations between the forces. Through a combined size and pressure scaling for the percolative quantities, we show that the continuous force percolation transition evolves into the discontinuous jamming transition in the zero pressure limit, as the size of the critical region scales with the pressure.
Collapse
Affiliation(s)
- Sudhir N Pathak
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Valentina Esposito
- Dipartimento di Matematica e Fisica, Università degli studi della Campania "Luigi Vanvitelli," Viale Lincoln 5, 81100 Caserta, Italy
| | - Antonio Coniglio
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| |
Collapse
|
12
|
Otsuki M, Hayakawa H. Discontinuous change of shear modulus for frictional jammed granular materials. Phys Rev E 2017; 95:062902. [PMID: 28709191 DOI: 10.1103/physreve.95.062902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Indexed: 06/07/2023]
Abstract
The shear modulus of jammed frictional granular materials with harmonic repulsive interaction under an oscillatory shear is numerically investigated. It is confirmed that the storage modulus, the real part of the shear modulus, for frictional grains with sufficiently small strain amplitude γ_{0} discontinuously emerges at the jamming transition point. The storage modulus for small γ_{0} differs from that of frictionless grains even in the zero friction limit, whereas they are almost identical with each other for sufficiently large γ_{0}, where the transition becomes continuous. The stress-strain curve exhibits a hysteresis loop even for a small strain, which connects a linear region for sufficiently small strain to another linear region for larger strain. We propose a scaling law to interpolate between the states of small and large γ_{0}.
Collapse
Affiliation(s)
- Michio Otsuki
- Department of Physics and Materials Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690-8504, Japan
| | - Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Inasawa S, Katayama T, Yamaguchi Y. Surface freezing and surface coverage as key factors for spontaneous formation of colloidal fibers in vacuum drying of colloidal suspensions. SOFT MATTER 2016; 12:7663-7669. [PMID: 27550740 DOI: 10.1039/c6sm01739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, we investigated vacuum drying of droplets of colloidal suspension. Because of the loss of the latent heat of vaporization, the drying droplet was cooled and then formed ice. Colloidal fibers consisting of packed particles spontaneously formed when the droplet froze from the gas-liquid interface. Conversely, we observed formation of sponge-like porous structures of particles when the whole droplet almost simultaneously froze. However, the freezing mode was not the only factor for formation of colloidal fibers. We found that the surface coverage of particles on the gas-liquid interface was also important. Owing to drying, some particles accumulated at the interface before freezing. When the surface coverage was higher than a threshold value, formation of fibers was severely restricted even in the surface freezing mode. Our results clearly show the important roles of surface freezing and the surface coverage of particles on the gas-liquid interface in formation of colloidal fibers.
Collapse
Affiliation(s)
- S Inasawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | | | | |
Collapse
|
14
|
Atkinson S, Stillinger FH, Torquato S. Static structural signatures of nearly jammed disordered and ordered hard-sphere packings: Direct correlation function. Phys Rev E 2016; 94:032902. [PMID: 27739707 DOI: 10.1103/physreve.94.032902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 06/06/2023]
Abstract
The nonequilibrium process by which hard-particle systems may be compressed into disordered, jammed states has received much attention because of its wide utility in describing a broad class of amorphous materials. While dynamical signatures are known to precede jamming, the task of identifying static structural signatures indicating the onset of jamming have proven more elusive. The observation that compressing hard-particle packings towards jamming is accompanied by an anomalous suppression of density fluctuations (termed "hyperuniformity") has paved the way for the analysis of jamming as an "inverted critical point" in which the direct correlation function c(r), rather than the total correlation function h(r), diverges. We expand on the notion that c(r) provides both universal and protocol-specific information as packings approach jamming. By considering the degree and position of singularities (discontinuities in the nth derivative) as well as how they are changed by the convolutions found in the Ornstein-Zernike equation, we establish quantitative statements about the structure of c(r) with regards to singularities it inherits from h(r). These relations provide a concrete means of identifying features that must be expressed in c(r) if one hopes to reproduce various details in the pair correlation function accurately and provide stringent tests on the associated numerics. We also analyze the evolution of systems of three-dimensional monodisperse hard spheres of diameter D as they approach ordered and disordered jammed configurations. For the latter, we use the Lubachevsky-Stillinger (LS) molecular dynamics and Torquato-Jiao (TJ) sequential linear programming algorithms, which both generate disordered packings, but can show perceptible structural differences. We identify a short-ranged scaling c(r)∝-1/r as r→0 that accompanies the formation of the delta function at c(D) that indicates the formation of contacts in all cases, and show that this scaling behavior is, in this case, a consequence of the growing long rangedness in c(r), e.g., c∝-1/r^{2} as r→∞ for disordered packings. At densities in the vicinity of the freezing density, we find striking qualitative differences in the structure factor S(k) as well as c(r) between TJ- and LS-generated configurations, including the early formation of a delta function at c(D) in the TJ algorithm's packings, indicating the early formation of clusters of particles in near contact. Both algorithms yield structure factors that tend towards zero in the low-wave-number limit as jamming is approached. Correspondingly, we observe the expected power-law decay in c(r) for large r, in agreement with previous theoretical work. Our work advances the notion that static signatures are exhibited by hard-particle packings as they approach jamming and underscores the utility of the direct correlation function as a sensitive means of monitoring for the appearance of an incipient rigid network.
Collapse
Affiliation(s)
- Steven Atkinson
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Center for Theoretical Science, Program of Applied and Computational Mathematics, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
15
|
Kovalcinova L, Goullet A, Kondic L. Percolation and jamming transitions in particulate systems with and without cohesion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032204. [PMID: 26465466 DOI: 10.1103/physreve.92.032204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Indexed: 06/05/2023]
Abstract
We consider percolation and jamming transitions for particulate systems exposed to compression. For the systems built of particles interacting by purely repulsive forces in addition to friction and viscous damping, it is found that these transitions are influenced by a number of effects, and in particular by the compression rate. In a quasistatic limit, we find that for the considered type of interaction between the particles, percolation and jamming transitions coincide. For cohesive systems, however, or for any system exposed to even slow dynamics, the differences between the considered transitions are found and quantified.
Collapse
Affiliation(s)
- L Kovalcinova
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA
| | - A Goullet
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA
| | - L Kondic
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA
| |
Collapse
|
16
|
Levis D, Berthier L. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062301. [PMID: 25019770 DOI: 10.1103/physreve.89.062301] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 06/03/2023]
Abstract
We introduce a kinetic Monte Carlo model for self-propelled hard disks to capture with minimal ingredients the interplay between thermal fluctuations, excluded volume, and self-propulsion in large assemblies of active particles. We analyze in detail the resulting (density, self-propulsion) nonequilibrium phase diagram over a broad range of parameters. We find that purely repulsive hard disks spontaneously aggregate into fractal clusters as self-propulsion is increased and rationalize the evolution of the average cluster size by developing a kinetic model of reversible aggregation. As density is increased, the nonequilibrium clusters percolate to form a ramified structure reminiscent of a physical gel. We show that the addition of a finite amount of noise is needed to trigger a nonequilibrium phase separation, showing that demixing in active Brownian particles results from a delicate balance between noise, interparticle interactions, and self-propulsion. We show that self-propulsion has a profound influence on the dynamics of the active fluid. We find that the diffusion constant has a nonmonotonic behavior as self-propulsion is increased at finite density and that activity produces strong deviations from Fickian diffusion that persist over large time scales and length scales, suggesting that systems of active particles generically behave as dynamically heterogeneous systems.
Collapse
Affiliation(s)
- Demian Levis
- Laboratoire Charles Coulomb, UMR 5221 CNRS, and Université Montpellier 2, Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221 CNRS, and Université Montpellier 2, Montpellier, France
| |
Collapse
|
17
|
Reichhardt C, Reichhardt CJO. Aspects of jamming in two-dimensional athermal frictionless systems. SOFT MATTER 2014; 10:2932-2944. [PMID: 24695520 DOI: 10.1039/c3sm53154f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work we provide an overview of jamming transitions in two dimensional systems focusing on the limit of frictionless particle interactions in the absence of thermal fluctuations. We first discuss jamming in systems with short range repulsive interactions, where the onset of jamming occurs at a critical packing density and where certain quantities show a divergence indicative of critical behavior. We describe how aspects of the dynamics change as the jamming density is approached and how these dynamics can be explored using externally driven probes. Different particle shapes can produce jamming densities much lower than those observed for disk-shaped particles, and we show how jamming exhibits fragility for some shapes while for other shapes this is absent. Next we describe the effects of long range interactions and jamming behavior in systems such as charged colloids, vortices in type-II superconductors, and dislocations. We consider the effect of adding obstacles to frictionless jamming systems and discuss connections between this type of jamming and systems that exhibit depinning transitions. Finally, we discuss open questions such as whether the jamming transition in all these different systems can be described by the same or a small subset of universal behaviors, as well as future directions for studies of jamming transitions in two dimensional systems, such as jamming in self-driven or active matter systems.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | |
Collapse
|
18
|
Milz L, Schmiedeberg M. Connecting the random organization transition and jamming within a unifying model system. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062308. [PMID: 24483445 DOI: 10.1103/physreve.88.062308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Indexed: 06/03/2023]
Abstract
While the random organization transition describes the change from reversible to irreversible dynamics in a nonequilibrium system, the athermal jamming transition at zero shear rate occurs when particles can no longer avoid overlaps. Despite the obvious differences between these two transitions, we show that they both occur within the same model packing problem. In this unifying model system the particles are first randomly distributed and then displaced in each step if they overlap. For random displacements we obtain a random organization transition, while jamming occurs in the case of deterministic shifts. We also analyze the critical behavior of random organization. Our results show that random organization and jamming are opposite limits of random sphere packings, and we expect that various equilibrium and nonequilibrium transitions can be formulated as related intermediate packing problems.
Collapse
Affiliation(s)
- Lars Milz
- Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany and Institut für Theoretische Physik 2: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany
| | - Michael Schmiedeberg
- Institut für Theoretische Physik 2: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany and Fachbereich 4: Physik, Universität Osnabrück, D-49076 Osnabrück, Germany
| |
Collapse
|
19
|
Ebrahimnazhad Rahbari SH, Khadem-Maaref M, Seyed Yaghoubi SKA. Universal features of the jamming phase diagram of wet granular materials. Phys Rev E 2013; 88:042203. [PMID: 24229163 DOI: 10.1103/physreve.88.042203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/03/2013] [Indexed: 11/07/2022]
Abstract
We investigate the influence of the shape of a particle on the structure of the jamming phase diagram of wet granular materials. We compute the jamming phase diagram of wet dimers (two fused disks) and compare it with that of the wet disks. Amplitude of the external force at solidification, i.e., the jamming force F(s), is computed as a function of the packing fraction ϕ, the capillary bridge energy ɛ, and the aspect ratio of dimers α. Based on data collapse, an equation for amplitude of the external force at solidification F(s)(ϕ,ɛ,α) is derived. F(s) has scaling and logarithmic relations with ϕ and ɛ, respectively, exactly the same type reported for wet disks earlier. Interestingly, F(s) does not depend on the aspect ratio of dimers α. The only difference is that wet dimers are found to be more stiffer than wet disks. However, the similarities of the equations describing F(s)(ϕ,ɛ,α) of wet dimers and disks imply that there exists, yet unknown, universal aspects of mechanical response of wet granular materials to the external forces, independent from the particle shape. In addition, we study local orientation of particles and its statistical properties.
Collapse
Affiliation(s)
- S H Ebrahimnazhad Rahbari
- Faculty of Physics, Plasma and Condensed Matter Computational Lab, Shahid Madani University of Azarbayjan, Tabriz, Iran and Department of Complex Fluids, Max-Planck Institute for Dynamics and Self-Organization, 37073 Göttingen, Germany
| | | | | |
Collapse
|
20
|
Schreck CF, Hoy RS, Shattuck MD, O'Hern CS. Particle-scale reversibility in athermal particulate media below jamming. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052205. [PMID: 24329257 DOI: 10.1103/physreve.88.052205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 11/04/2013] [Indexed: 06/03/2023]
Abstract
We perform numerical simulations of repulsive, frictionless athermal disks in two and three spatial dimensions undergoing cyclic quasistatic simple shear to investigate particle-scale reversible motion. We identify three classes of steady-state dynamics as a function of packing fraction φ and maximum strain amplitude per cycle γ(max). Point-reversible states, where particles do not collide and exactly retrace their intracycle trajectories, occur at low φ and γ(max). Particles in loop-reversible states undergo numerous collisions and execute complex trajectories but return to their initial positions at the end of each cycle. For sufficiently large φ and γ(max), systems display irreversible dynamics with nonzero self-diffusion. Loop-reversible dynamics enables the reliable preparation of configurations with specified structural and mechanical properties over a broad range of φ.
Collapse
Affiliation(s)
- Carl F Schreck
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520-8260, USA and Department of Physics, Yale University, New Haven, Connecticut 06520-8120, USA
| | - Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Mark D Shattuck
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520-8260, USA and Benjamin Levich Institute and Physics Department, The City College of the City University of New York, New York, New York 10031, USA
| | - Corey S O'Hern
- Department of Mechanical Engineering & Materials Science, Yale University, New Haven, Connecticut 06520-8260, USA and Department of Physics, Yale University, New Haven, Connecticut 06520-8120, USA and Department of Applied Physics, Yale University, New Haven, Connecticut 06520-8120, USA
| |
Collapse
|
21
|
Bandi MM, Rivera MK, Krzakala F, Ecke RE. Fragility and hysteretic creep in frictional granular jamming. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042205. [PMID: 23679405 DOI: 10.1103/physreve.87.042205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 02/11/2013] [Indexed: 06/02/2023]
Abstract
The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bidispersed disks subject to quasistatic, uniaxial compression without vibrational disturbances (zero granular temperature). Three primary results are presented in this experimental study. First, using disks with different static friction coefficients (μ), we experimentally verify numerical results that predict jamming onset at progressively lower packing fractions with increasing friction. Second, we show that the first compression cycle measurably differs from subsequent cycles. The first cycle is fragile-a metastable configuration with simultaneous jammed and unjammed clusters-over a small packing fraction interval (φ(1)<φ<φ(2)) and exhibits simultaneous exponential rise in pressure and exponential decrease in disk displacements over the same packing fraction interval. This fragile behavior is explained through a percolation mechanism of stressed contacts where cluster growth exhibits spatial correlation with disk displacements and contributes to recent results emphasizing fragility in frictional jamming. Control experiments show that the fragile state results from the experimental incompatibility between the requirements for zero friction and zero granular temperature. Measurements with several disk materials of varying elastic moduli E and friction coefficients μ show that friction directly controls the start of the fragile state but indirectly controls the exponential pressure rise. Finally, under repetitive loading (compression) and unloading (decompression), we find the system exhibits pressure hysteresis, and the critical packing fraction φ(c) increases slowly with repetition number. This friction-induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend on the quasistatic step size Δφ, which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ, which acts to stabilize the pack.
Collapse
Affiliation(s)
- M M Bandi
- MPA-10, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | |
Collapse
|
22
|
Puckett JG, Daniels KE. Equilibrating temperaturelike variables in jammed granular subsystems. PHYSICAL REVIEW LETTERS 2013; 110:058001. [PMID: 23414047 DOI: 10.1103/physrevlett.110.058001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Indexed: 06/01/2023]
Abstract
Although jammed granular systems are athermal, several thermodynamiclike descriptions have been proposed which make quantitative predictions about the distribution of volume and stress within a system and provide a corresponding temperaturelike variable. We perform experiments with an apparatus designed to generate a large number of independent, jammed, two-dimensional configurations. Each configuration consists of a single layer of photoelastic disks supported by a gentle layer of air. New configurations are generated by cyclically dilating, mixing, and then recompacting the system through a series of boundary displacements. Within each configuration, a bath of particles surrounds a smaller subsystem of particles with a different interparticle friction coefficient than the bath. The use of photoelastic particles permits us to find all particle positions as well as the vector forces at each interparticle contact. By comparing the temperaturelike quantities in both systems, we find compactivity (conjugate to the volume) does not equilibrate between the systems, while the angoricity (conjugate to the stress) does. Both independent components of the angoricity are linearly dependent on the hydrostatic pressure, in agreement with predictions of the stress ensemble.
Collapse
Affiliation(s)
- James G Puckett
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | |
Collapse
|