1
|
Lavrukhin EV, Karsanina MV, Gerke KM. Measuring structural nonstationarity: The use of imaging information to quantify homogeneity and inhomogeneity. Phys Rev E 2023; 108:064128. [PMID: 38243461 DOI: 10.1103/physreve.108.064128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Heterogeneity is the concept we encounter in numerous research areas and everyday life. While "not mixing apples and oranges" is easy to grasp, a more quantitative approach to such segregation is not always readily available. Consider the problem from a different angle: To what extent does one have to make apples more orange and oranges more "apple-shaped" to put them into the same basket (according to their appearance alone)? This question highlights the central problem of the blurred interface between heterogeneous and homogeneous, which also depends on the metrics used for its identification. This work uncovers the physics of structural stationarity quantification, based on correlation functions (CFs) and clustering based on CFs different between image subregions. By applying the methodology to a wide variety of synthetic and real images of binary porous media, we confirmed computationally that only periodically unit-celled structures and images produced by stationary processes with resolutions close to infinity are strictly stationary. Natural structures without recurring unit cells are only weakly stationary. We established a physically meaningful definition for these stationarity types and their distinction from nonstationarity. In addition, the importance of information content of the chosen metrics is highlighted and discussed. We believe the methodology as proposed in this contribution will find its way into numerous research areas dealing with materials, structures, and measurements and modeling based on structural imaging information.
Collapse
Affiliation(s)
- Efim V Lavrukhin
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 123242, Russia; Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow 119991, Russia; and Dokuchaev Soil Science Institute, Moscow 119017, Russia
| | - Marina V Karsanina
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 123242, Russia
| | - Kirill M Gerke
- Schmidt Institute of Physics of the Earth of Russian Academy of Sciences, Moscow 123242, Russia
| |
Collapse
|
2
|
Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Dennler N, Foncubierta-Rodriguez A, Neupert T, Sousa M. Learning-based defect recognition for quasi-periodic HRSTEM images. Micron 2021; 146:103069. [PMID: 33971479 DOI: 10.1016/j.micron.2021.103069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
Controlling crystalline material defects is crucial, as they affect properties of the material that may be detrimental or beneficial for the final performance of a device. Defect analysis on the sub-nanometer scale is enabled by high-resolution scanning transmission electron microscopy (HRSTEM), where the identification of defects is currently carried out based on human expertise. However, the process is tedious, highly time consuming and, in some cases, yields ambiguous results. Here we propose a semi-supervised machine learning method that assists in the detection of lattice defects from atomic resolution HRSTEM images. It involves a convolutional neural network that classifies image patches as defective or non-defective, a graph-based heuristic that chooses one non-defective patch as a model, and finally an automatically generated convolutional filter bank, which highlights symmetry breaking such as stacking faults, twin defects and grain boundaries. Additionally, we suggest a variance filter to segment amorphous regions and beam defects. The algorithm is tested on III-V/Si crystalline materials and successfully evaluated against different metrics and a baseline approach, showing promising results even for extremely small training data sets and for noise compromised images. By combining the data-driven classification generality, robustness and speed of deep learning with the effectiveness of image filters in segmenting faulty symmetry arrangements, we provide a valuable open-source tool to the microscopist community that can streamline future HRSTEM analyses of crystalline materials.
Collapse
Affiliation(s)
- Nik Dennler
- IBM Research Europe - Zurich, Rüschlikon, 8803, Switzerland; University of Zurich and ETH Zurich, Institute of Neuroinformatics, Zurich, 8057, Switzerland.
| | | | - Titus Neupert
- University of Zurich, Department of Physics, Zurich, 8057, Switzerland
| | - Marilyne Sousa
- IBM Research Europe - Zurich, Rüschlikon, 8803, Switzerland.
| |
Collapse
|
4
|
Banerjee SJ, Azharuddin M, Sen D, Savale S, Datta H, Dasgupta AK, Roy S. Using complex networks towards information retrieval and diagnostics in multidimensional imaging. Sci Rep 2015; 5:17271. [PMID: 26626047 PMCID: PMC4667282 DOI: 10.1038/srep17271] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022] Open
Abstract
We present a fresh and broad yet simple approach towards information retrieval in general and diagnostics in particular by applying the theory of complex networks on multidimensional, dynamic images. We demonstrate a successful use of our method with the time series generated from high content thermal imaging videos of patients suffering from the aqueous deficient dry eye (ADDE) disease. Remarkably, network analyses of thermal imaging time series of contact lens users and patients upon whom Laser-Assisted in situ Keratomileusis (Lasik) surgery has been conducted, exhibit pronounced similarity with results obtained from ADDE patients. We also propose a general framework for the transformation of multidimensional images to networks for futuristic biometry. Our approach is general and scalable to other fluctuation-based devices where network parameters derived from fluctuations, act as effective discriminators and diagnostic markers.
Collapse
Affiliation(s)
| | - Mohammad Azharuddin
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Debanjan Sen
- Regional Institute of Ophthalmology, Calcutta Medical College and Hospital, Kolkata 700 073, India
| | - Smruti Savale
- Regional Institute of Ophthalmology, Calcutta Medical College and Hospital, Kolkata 700 073, India
| | - Himadri Datta
- Regional Institute of Ophthalmology, Calcutta Medical College and Hospital, Kolkata 700 073, India
| | - Anjan Kr Dasgupta
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Soumen Roy
- Bose Institute, 93/1 Acharya PC Roy Road, Kolkata 700 009, India
| |
Collapse
|
5
|
|
6
|
Abin AA, Mahdisoltani F, Beigy H. WISECODE: wise image segmentation based on community detection. THE IMAGING SCIENCE JOURNAL 2014. [DOI: 10.1179/1743131x13y.0000000069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Hu D, Sarder P, Ronhovde P, Orthaus S, Achilefu S, Nussinov Z. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study. J Microsc 2013; 253:54-64. [PMID: 24251410 DOI: 10.1111/jmi.12097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 10/09/2013] [Indexed: 11/30/2022]
Abstract
Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution.
Collapse
Affiliation(s)
- D Hu
- Department of Physics, Washington University, St. Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
8
|
Bianconi G. Statistical mechanics of multiplex networks: entropy and overlap. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062806. [PMID: 23848728 DOI: 10.1103/physreve.87.062806] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 05/16/2023]
Abstract
There is growing interest in multiplex networks where individual nodes take part in several layers of networks simultaneously. This is the case, for example, in social networks where each individual node has different kinds of social ties or transportation systems where each location is connected to another location by different types of transport. Many of these multiplexes are characterized by a significant overlap of the links in different layers. In this paper we introduce a statistical mechanics framework to describe multiplex ensembles. A multiplex is a system formed by N nodes and M layers of interactions where each node belongs to the M layers at the same time. Each layer α is formed by a network G^{α}. Here we introduce the concept of correlated multiplex ensembles in which the existence of a link in one layer is correlated with the existence of a link in another layer. This implies that a typical multiplex of the ensemble can have a significant overlap of the links in the different layers. Moreover, we characterize microcanonical and canonical multiplex ensembles satisfying respectively hard and soft constraints and we discuss how to construct multiplexes in these ensembles. Finally, we provide the expression for the entropy of these ensembles that can be useful to address different inference problems involving multiplexes.
Collapse
Affiliation(s)
- Ginestra Bianconi
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
9
|
Hu D, Ronhovde P, Nussinov Z. Stability-to-instability transition in the structure of large-scale networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:066106. [PMID: 23368003 DOI: 10.1103/physreve.86.066106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Indexed: 06/01/2023]
Abstract
We examine phase transitions between the "easy," "hard," and "unsolvable" phases when attempting to identify structure in large complex networks ("community detection") in the presence of disorder induced by network "noise" (spurious links that obscure structure), heat bath temperature T, and system size N. The partition of a graph into q optimally disjoint subgraphs or "communities" inherently requires Potts-type variables. In earlier work [Philos. Mag. 92, 406 (2012)], when examining power law and other networks (and general associated Potts models), we illustrated that transitions in the computational complexity of the community detection problem typically correspond to spin-glass-type transitions (and transitions to chaotic dynamics in mechanical analogs) at both high and low temperatures and/or noise. The computationally "hard" phase exhibits spin-glass type behavior including memory effects. The region over which the hard phase extends in the noise and temperature phase diagram decreases as N increases while holding the average number of nodes per community fixed. This suggests that in the thermodynamic limit a direct sharp transition may occur between the easy and unsolvable phases. When present, transitions at low temperature or low noise correspond to entropy driven (or "order by disorder") annealing effects, wherein stability may initially increase as temperature or noise is increased before becoming unsolvable at sufficiently high temperature or noise. Additional transitions between contending viable solutions (such as those at different natural scales) are also possible. Identifying community structure via a dynamical approach where "chaotic-type" transitions were found earlier. The correspondence between the spin-glass-type complexity transitions and transitions into chaos in dynamical analogs might extend to other hard computational problems. In this work, we examine large networks (with a power law distribution in cluster size) that have a large number of communities (q≫1). We infer that large systems at a constant ratio of q to the number of nodes N asymptotically tend towards insolvability in the limit of large N for any positive T. The asymptotic behavior of temperatures below which structure identification might be possible, T_{×}=O[1/lnq], decreases slowly, so for practical system sizes, there remains an accessible, and generally easy, global solvable phase at low temperature. We further employ multivariate Tutte polynomials to show that increasing q emulates increasing T for a general Potts model, leading to a similar stability region at low T. Given the relation between Tutte and Jones polynomials, our results further suggest a link between the above complexity transitions and transitions associated with random knots.
Collapse
Affiliation(s)
- Dandan Hu
- Department of Physics, Washington University in St. Louis, Campus Box 1105, 1 Brookings Drive, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
10
|
|
11
|
Ronhovde P, Chakrabarty S, Hu D, Sahu M, Sahu KK, Kelton KF, Mauro NA, Nussinov Z. Detection of hidden structures for arbitrary scales in complex physical systems. Sci Rep 2012; 2:329. [PMID: 22461970 PMCID: PMC3314987 DOI: 10.1038/srep00329] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/29/2012] [Indexed: 11/14/2022] Open
Abstract
Recent decades have experienced the discovery of numerous complex materials. At the root of the complexity underlying many of these materials lies a large number of contending atomic- and largerscale configurations. In order to obtain a more detailed understanding of such systems, we need tools that enable the detection of pertinent structures on all spatial and temporal scales. Towards this end, we suggest a new method that applies to both static and dynamic systems which invokes ideas from network analysis and information theory. Our approach efficiently identifies basic unit cells, topological defects, and candidate natural structures. The method is particularly useful where a clear definition of order is lacking, and the identified features may constitute a natural point of departure for further analysis.
Collapse
|