1
|
Paul S, Dhar A, Chaudhuri D. Dynamical crossovers and correlations in a harmonic chain of active particles. SOFT MATTER 2024; 20:8638-8653. [PMID: 39435525 DOI: 10.1039/d4sm00350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We explore the dynamics of a tracer in an active particle harmonic chain, investigating the influence of interactions. Our analysis involves calculating mean-squared displacements (MSDs) and space-time correlations through Green's function techniques and numerical simulations. Depending on chain characteristics, i.e., different time scales determined by interaction stiffness and persistence of activity, tagged-particle MSDs exhibit ballistic, diffusive, and single-file diffusion (SFD) scaling over time, with crossovers explained by our analytic expressions. Our results reveal transitions in bulk particle displacement distributions from an early-time bimodal to late-time Gaussian, passing through regimes of unimodal distributions with finite support and negative excess kurtosis and longer-tailed distributions with positive excess kurtosis. The distributions exhibit data collapse, aligning with ballistic, diffusive, and SFD scaling in the appropriate time regimes. However, at much longer times, the distributions become Gaussian. Finally, we derive analytic expressions for steady-state static and dynamic two-point displacement correlations. We verify these from simulations and highlight the differences from the equilibrium results.
Collapse
Affiliation(s)
- Subhajit Paul
- International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore-560089, India.
- Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India.
| | - Abhishek Dhar
- International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore-560089, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar-751005, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
2
|
Karan C, Chaudhuri A, Chaudhuri D. Inertia and activity: spiral transitions in semi-flexible, self-avoiding polymers. SOFT MATTER 2024; 20:6221-6230. [PMID: 39049672 DOI: 10.1039/d4sm00511b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We consider a two-dimensional, tangentially active, semi-flexible, self-avoiding polymer to find a dynamical re-entrant transition between motile open chains and spinning achiral spirals with increasing activity. Utilizing probability distributions of the turning number, we ascertain the comparative stability of the spiral structure and present a detailed phase diagram within the activity inertia plane. The onset of spiral formation at low activity levels is governed by a torque balance and is independent of inertia. At higher activities, however, inertial effects lead to spiral destabilization, an effect absent in the overdamped limit. We further delineate alterations in size and shape by analyzing the end-to-end distance distribution and the radius of gyration tensor. The Kullback-Leibler divergence from equilibrium distributions exhibits a non-monotonic relationship with activity, reaching a peak at the most compact spirals characterized by the most persistent spinning. As inertia increases, this divergence from equilibrium diminishes.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Abhishek Chaudhuri
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, S. A. S. Nagar, Manauli, PO 140306, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
3
|
Khali SS, Peruani F, Chaudhuri D. When an active bath behaves as an equilibrium one. Phys Rev E 2024; 109:024120. [PMID: 38491633 DOI: 10.1103/physreve.109.024120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
Active scalar baths consisting of active Brownian particles are characterized by a non-Gaussian velocity distribution, a kinetic temperature, and a diffusion coefficient that scale with the square of the active velocity v_{0}. While these results hold in overdamped active systems, inertial effects lead to normal velocity distributions, with kinetic temperature and diffusion coefficient increasing as ∼v_{0}^{α} with 1<α<2. Remarkably, the late-time diffusivity and mobility decrease with mass. Moreover, we show that the equilibrium Einstein relation is asymptotically recovered with inertia. In summary, the inertial mass restores an equilibriumlike behavior.
Collapse
Affiliation(s)
| | - Fernando Peruani
- LPTM, CY Cergy Paris Université, 2 Avenue A. Chauvin, 95302 Cergy-Pontoise Cedex, France
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Max-Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| |
Collapse
|
4
|
Fernandes Martins G, Horowitz JM. Topologically constrained fluctuations and thermodynamics regulate nonequilibrium response. Phys Rev E 2023; 108:044113. [PMID: 37978593 DOI: 10.1103/physreve.108.044113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/07/2023] [Indexed: 11/19/2023]
Abstract
The limits on a system's response to external perturbations inform our understanding of how physical properties can be shaped by microscopic characteristics. Here, we derive constraints on the steady-state nonequilibrium response of physical observables in terms of the topology of the microscopic state space and the strength of thermodynamic driving. Notably, evaluation of these limits requires no kinetic information beyond the state-space structure. When applied to models of receptor binding, we find that sensitivity is bounded by the steepness of a Hill function with a Hill coefficient enhanced by the chemical driving beyond the structural equilibrium limit.
Collapse
Affiliation(s)
| | - Jordan M Horowitz
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48104, USA
| |
Collapse
|
5
|
Karan C, Chaudhuri D. Cooperation and competition in the collective drive by motor proteins: mean active force, fluctuations, and self-load. SOFT MATTER 2023; 19:1834-1843. [PMID: 36789956 DOI: 10.1039/d2sm01183b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We consider the dynamics of a bio-filament under the collective drive of motor proteins. They are attached irreversibly to a substrate and undergo stochastic attachment-detachment with the filament to produce a directed force on it. We establish the dependence of the mean directed force and force correlations on the parameters describing the individual motor proteins using analytical theory and direct numerical simulations. The effective Langevin description for the filament motion gives mean-squared displacement, asymptotic diffusion constant, and mobility leading to an effective temperature. Finally, we show how competition between motor protein extensions generates a self-load, describable in terms of the effective temperature, affecting the filament motion.
Collapse
Affiliation(s)
- Chitrak Karan
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Sainik School, Bhubaneswar, 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
6
|
Agarwal GS, Dattagupta S. Generalized fluctuation theorems for classical systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052139. [PMID: 26651678 DOI: 10.1103/physreve.92.052139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 06/05/2023]
Abstract
The fluctuation theorem has a very special place in the study of nonequilibrium dynamics of physical systems. The form in which it is used most extensively is the Gallavoti-Cohen fluctuation theorem which is in terms of the distribution of the work p(W)/p(-W)=exp(αW). We derive the general form of the fluctuation theorems for an arbitrary multidimensional Gaussian Markov process. Interestingly, the parameter α is by no means universal, hitherto taken for granted in the case of linear Gaussian processes. As a matter of fact, conditions under which α does become a universal parameter 1/KT are found to be rather restrictive. As an application we consider fluctuation theorems for classical cyclotron motion of an electron in a parabolic potential. The motion of the electron is described by four coupled Langevin equations and thus is nontrivial. The generalized theorems are equally valid for nonequilibrium steady states and could be especially important in the presence of anisotropic diffusion.
Collapse
Affiliation(s)
- G S Agarwal
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Sushanta Dattagupta
- Visva-Bharati, Santiniketan 731235, India and Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
7
|
Fatriansyah JF, Sasaki Y, Orihara H. Nonequilibrium steady-state response of a nematic liquid crystal under simple shear flow and electric fields. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032504. [PMID: 25314462 DOI: 10.1103/physreve.90.032504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Indexed: 06/04/2023]
Abstract
The effect of a dc electric field on the response of a nematic liquid crystal under shear flow has been investigated by measuring the shear stress response to an ac electric field used as a probe. It was found that both the first- and second-order responses do not vanish at high frequencies, but have constant nonzero values. The experimental results are in good agreement with calculations based on the Ericksen-Leslie theory. The role of the Parodi relation (which is derived from the Onsager reciprocal relation) in the stress response is discussed.
Collapse
Affiliation(s)
- Jaka Fajar Fatriansyah
- Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Yuji Sasaki
- Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hiroshi Orihara
- Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
8
|
Chaudhuri D. Active Brownian particles: entropy production and fluctuation response. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022131. [PMID: 25215712 DOI: 10.1103/physreve.90.022131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Indexed: 06/03/2023]
Abstract
Within the Rayleigh-Helmholtz model of active Brownian particles, activity is due to a nonlinear velocity-dependent force. In the presence of external trapping potential or constant force, the steady state of the system breaks detailed balance producing a net entropy. Using molecular dynamics simulations, we obtain the probability distributions of entropy production in these steady states. The distribution functions obey fluctuation theorems for entropy production. Using the simulation, we further show that the steady-state response function obeys a modified fluctuation-dissipation relation.
Collapse
Affiliation(s)
- Debasish Chaudhuri
- Indian Institute of Technology Hyderabad, Yeddumailaram 502205, Andhra Pradesh, India
| |
Collapse
|
9
|
Sarracino A. Time asymmetry of the Kramers equation with nonlinear friction: fluctuation-dissipation relation and ratchet effect. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052124. [PMID: 24329231 DOI: 10.1103/physreve.88.052124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Indexed: 06/03/2023]
Abstract
We show by numerical simulations that the presence of nonlinear velocity-dependent friction forces can induce a finite net drift in the stochastic motion of a particle in contact with an equilibrium thermal bath and in an asymmetric periodic spatial potential. In particular, we study the Kramers equation for a particle subjected to Coulomb friction, namely a constant force acting in the direction opposite to the particle's velocity. We characterize the nonequilibrium irreversible dynamics by studying the generalized fluctuation-dissipation relation for this ratchet model driven by Coulomb friction.
Collapse
Affiliation(s)
- A Sarracino
- CNR-ISC and Dipartimento di Fisica, Università Sapienza, p.le A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
10
|
Ganguly C, Chaudhuri D. Stochastic thermodynamics of active Brownian particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:032102. [PMID: 24125209 DOI: 10.1103/physreve.88.032102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Indexed: 06/02/2023]
Abstract
Examples of self-propulsion in strongly fluctuating environments are abundant in nature, e.g., molecular motors and pumps operating in living cells. Starting from the Langevin equation of motion, we develop a stochastic thermodynamic description of noninteracting self-propelled particles using simple models of velocity-dependent forces. We derive fluctuation theorems for entropy production and a modified fluctuation-dissipation relation, characterizing the linear response in nonequilibrium steady states. We study these notions in a simple model of molecular motors, and in the Rayleigh-Helmholtz and energy-depot models of self-propelled particles.
Collapse
Affiliation(s)
- Chandrima Ganguly
- Indian Institute of Technology Hyderabad, Yeddumailaram 502205, Andhra Pradesh, India
| | | |
Collapse
|
11
|
Orihara H, Yang F, Takigami Y, Takikawa Y, Na YH. Influence of shear flow on the linear response of a nematic liquid crystal to external electric fields. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:041701. [PMID: 23214597 DOI: 10.1103/physreve.86.041701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Indexed: 06/01/2023]
Abstract
We have investigated the linear response of shear stress to ac electric fields under shear flow in a nematic liquid crystal. The experimental results were compared with the theoretical results derived from the Ericksen-Leslie theory. Although close agreement was obtained at low shear rates, discrepancies were observed at high shear rates. By introducing a two-mode coupling model the experimental results were well reproduced for the entire range of shear rates, and nonconservative forces were found to play an important role in determining the fluctuation dynamics, which is a characteristic of nonequilibrium steady states.
Collapse
Affiliation(s)
- Hiroshi Orihara
- Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan.
| | | | | | | | | |
Collapse
|
12
|
Crisanti A, Puglisi A, Villamaina D. Nonequilibrium and information: the role of cross correlations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:061127. [PMID: 23005071 DOI: 10.1103/physreve.85.061127] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Indexed: 06/01/2023]
Abstract
We discuss the relevance of information contained in cross correlations among different degrees of freedom, which is crucial in nonequilibrium systems. In particular we consider a stochastic system where two degrees of freedom X{1} and X{2}-in contact with two different thermostats-are coupled together. The production of entropy and the violation of equilibrium fluctuation-dissipation theorem (FDT) are both related to the cross correlation between X{1} and X{2}. Information about such cross correlation may be lost when single-variable reduced models for X_{1} are considered. Two different procedures are typically applied: (a) one totally ignores the coupling with X{2}; and (b) one models the effect of X{2} as an average memory effect, obtaining a generalized Langevin equation. In case (a) discrepancies between the system and the model appear both in entropy production and linear response; the latter can be exploited to define effective temperatures, but those are meaningful only when time scales are well separated. In case (b) linear response of the model well reproduces that of the system; however the loss of information is reflected in a loss of entropy production. When only linear forces are present, such a reduction is dramatic and makes the average entropy production vanish, posing problems in interpreting FDT violations.
Collapse
Affiliation(s)
- A Crisanti
- CNR-ISC and Dipartimento di Fisica, Università Sapienza - p.le A. Moro 2, Roma 00185, Italy
| | | | | |
Collapse
|