1
|
Upadhyaya A, Akella VS. Stochastic migrations of Marangoni surfers between two lobes of a dumbbell-shaped confinement. SOFT MATTER 2024; 20:8775-8782. [PMID: 39451127 DOI: 10.1039/d4sm00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We report an experimental investigation on the stochastic migration dynamics of Marangoni surfers (camphor-infused paper disks) between the two lobes of a dumbbell-shaped chamber. We characterize the migration dynamics using survival analysis of a configuration, wherein a configuration represents a distinct distribution of disks between the lobes. We observe that a configuration's stability decreases with increasing pairwise interactions. Consequently, the configuration with equal partitioning of disks between the lobes-that is exactly one-half of disks in each lobe for even-numbered systems but with one extra disk in either of the lobes for odd-numbered systems-has the lowest pairwise interactions, thus is always the most stable configuration. Furthermore, all configurations exhibit a stretched exponential decay with time, which is ascribed to a disk's activity decay with time or "aging"-a phenomenon validated by modeling a camphor disk as a chiral active particle (CAP) as initially proposed by Cruz et al.
Collapse
Affiliation(s)
- Alakesh Upadhyaya
- Department of Physics, Indian Institute of Technology Jammu, NH-44, Jagti Village, Jammu, J & K, India.
| | - V S Akella
- Department of Physics, Indian Institute of Technology Jammu, NH-44, Jagti Village, Jammu, J & K, India.
| |
Collapse
|
2
|
Jaiswal S, Thakur S. Response of chemically active dimer motor in phase-separating binary fluid mixture: Motility regulation and self-aggregation. Phys Rev E 2024; 110:L052601. [PMID: 39690691 DOI: 10.1103/physreve.110.l052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024]
Abstract
The design of synthetic chemically powered nanomotors often considers the fuel and product to be miscible. The propulsion properties of such motors can be altered if the binary fluid consisting of fuel and product is phase separating. The dynamical properties of a dimer motor in a phase-separating binary mixture are discussed. Depending on the strength of phase separation and the activity of the dimer, the single-motor propulsion velocity either decreases or reverses its direction. The velocity reversal is shown to be related to the generated fluid flow around the motor. The collective dynamics of the motors in such phase-separating fluid results in the formation of self-assembled structures.
Collapse
|
3
|
Bailey MR, Fedosov DA, Paratore F, Grillo F, Gompper G, Isa L. Low efficiency of Janus microswimmers as hydrodynamic mixers. Phys Rev E 2024; 110:044601. [PMID: 39562881 DOI: 10.1103/physreve.110.044601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/01/2024] [Indexed: 11/21/2024]
Abstract
The generation of fluid flows by autophoretic microswimmers has been proposed as a mechanism to enhance mass transport and mixing at the micro- and nanoscale. Here, we experimentally investigate the ability of model 2D active baths of photocatalytic silica-titania Janus microspheres to enhance the diffusivity of tracer particles at different microswimmer densities below the onset of collective behavior. Inspired by the similarities between our experimental findings and previous results for biological microorganisms, we then model our Janus microswimmers using a general squirmer framework, specifically treating them as neutral squirmers. The numerical simulations faithfully capture our observations, offer an insight into the microscopic mechanism underpinning tracer transport, and allow us to expand the parameter space beyond our experimental system. We find strong evidence that near-field interactions dominate enhancements in tracer diffusivity in active Janus baths, leading to the identification of an operating window for enhanced tracer transport by chemical microswimmers based on scaling arguments. Based on this argumentation, we suggest that for many chemically active colloidal systems, hydrodynamics alone is likely to be insufficient to induce appreciable mixing of passive components with large diffusion coefficients.
Collapse
Affiliation(s)
- Maximilian R Bailey
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | | | - Federico Paratore
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Fabio Grillo
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | | | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
4
|
Nourhani A. Phoresis kernel theory for passive and active spheres with nonuniform phoretic mobility. SOFT MATTER 2024; 20:6907-6919. [PMID: 39189589 DOI: 10.1039/d4sm00360h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
By introducing geometry-based phoresis kernels, we establish a direct connection between the translational and rotational velocities of a phoretic sphere and the distributions of the driving fields or fluxes. The kernels quantify the local contribution of the field or flux to the particle dynamics. The field kernels for both passive and active particles share the same functional form, depending on the position-dependent surface phoretic mobility. For uniform phoretic mobility, the translational field kernel is proportional to the surface normal vector, while the rotational field kernel is zero; thus, a phoretic sphere with uniform phoretic mobility does not rotate. As case studies, we discuss examples of a self-phoretic axisymmetric particle influenced by a globally-driven field gradient, a general scenario for axisymmetric self-phoretic particle and two of its special cases, and a non-axisymmetric active particle.
Collapse
Affiliation(s)
- Amir Nourhani
- Department of Mechanical Engineering, University of Akron, Akron, OH, USA.
- Biomimicry Research and Innovation Center (BRIC), University of Akron, Akron, OH, USA
- Department of Biology, University of Akron, Akron, OH, USA
| |
Collapse
|
5
|
Upadhyaya A, Akella VS. The narrow escape problem of a chiral active particle (CAP): an optimal scheme. SOFT MATTER 2024; 20:2280-2287. [PMID: 38356307 DOI: 10.1039/d4sm00045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We report a simulation study on the narrow escape kinetics of a chiral active particle (CAP) confined to a circular domain with a narrow escape opening. The study's main objective is to optimize the CAP's escape chances as a function of the relevant parameters, such as translational and rotational speeds of the CAP, domain size, etc. We identified three regimes in the escape kinetics, namely the noise-dominated regime, the optimal regime, and the chiral activity-dominated regime. In particular, the optimal regime is characterized by an escape scheme that involves a direct passage to the domain boundary at first and then a unidirectional drift along the boundary towards the exit. Furthermore, we propose a non-dimensionalization approach to optimize the escape performance across microorganisms with varying motile characteristics. Additionally, we explore the influence of the translational and rotational noise on the CAP's escape kinetics.
Collapse
Affiliation(s)
- Alakesh Upadhyaya
- Department of Physics, Indian Institute of Technology Jammu, NH-44, Jagti Village, Jammu, J & K, India.
| | - V S Akella
- Department of Physics, Indian Institute of Technology Jammu, NH-44, Jagti Village, Jammu, J & K, India.
| |
Collapse
|
6
|
Khatri N, Kapral R. Clustering of chemically propelled nanomotors in chemically active environments. CHAOS (WOODBURY, N.Y.) 2024; 34:033103. [PMID: 38427933 DOI: 10.1063/5.0188624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Synthetic nanomotors powered by chemical reactions have been designed to act as vehicles for active cargo transport, drug delivery, and a variety of other uses. Collections of such motors, acting in consort, can self-assemble to form swarms or clusters, providing opportunities for applications on various length scales. While such collective behavior has been studied when the motors move in a chemically inactive fluid environment, when the medium in which they move is a chemical network that supports complex spatial and temporal patterns, through simulation and theoretical analysis we show that collective behavior changes. Spatial patterns in the environment can guide and control motor collective states, and interactions of the motors with their environment can give rise to distinctive spatiotemporal motor patterns. The results are illustrated by studies of the motor dynamics in systems that support Turing patterns and spiral waves. This work is relevant for potential applications that involve many active nanomotors moving in complex chemical or biological environments.
Collapse
Affiliation(s)
- Narender Khatri
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Bailey MR, Barriuso Gutiérrez CM, Martín-Roca J, Niggel V, Carrasco-Fadanelli V, Buttinoni I, Pagonabarraga I, Isa L, Valeriani C. Minimal numerical ingredients describe chemical microswimmers' 3-D motion. NANOSCALE 2024; 16:2444-2451. [PMID: 38214073 DOI: 10.1039/d3nr03695b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The underlying mechanisms and physics of catalytic Janus microswimmers is highly complex, requiring details of the associated phoretic fields and the physiochemical properties of catalyst, particle, boundaries, and the fuel used. Therefore, developing a minimal (and more general) model capable of capturing the overall dynamics of these autonomous particles is highly desirable. In the presented work, we demonstrate that a coarse-grained dissipative particle-hydrodynamics model is capable of describing the behaviour of various chemical microswimmer systems. Specifically, we show how a competing balance between hydrodynamic interactions experienced by a squirmer in the presence of a substrate, gravity, and mass and shape asymmetries can reproduce a range of dynamics seen in different experimental systems. We hope that our general model will inspire further synthetic work where various modes of swimmer motion can be encoded via shape and mass during fabrication, helping to realise the still outstanding goal of microswimmers capable of complex 3-D behaviour.
Collapse
Affiliation(s)
- Maximilian R Bailey
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
| | - C Miguel Barriuso Gutiérrez
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
| | - José Martín-Roca
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
- Departamento de Química Física, Facultad de Química, Universidad Complutense de Madrid, Madrid, Spain
| | - Vincent Niggel
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Virginia Carrasco-Fadanelli
- Department of Physics, Institute of Experimental Colloidal Physics, Heinrich-Heine University, Düsseldorf, Germany
| | - Ivo Buttinoni
- Department of Physics, Institute of Experimental Colloidal Physics, Heinrich-Heine University, Düsseldorf, Germany
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain.
- GISC - Grupo Interdiplinar de Sistemas Complejos, Madrid, Spain
| |
Collapse
|
8
|
Peng Z, Kapral R. Self-organization of active colloids mediated by chemical interactions. SOFT MATTER 2024; 20:1100-1113. [PMID: 38221884 DOI: 10.1039/d3sm01272g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Self-propelled colloidal particles exhibit rich non-equilibrium phenomena and have promising applications in fields such as drug delivery and self-assembled active materials. Previous experimental and theoretical studies have shown that chemically active colloids that consume or produce a chemical can self-organize into clusters with diverse characteristics depending on the effective phoretic interactions. In this paper, we investigate self-organization in systems with multiple chemical species that undergo a network of reactions and multiple colloidal species that participate in different reactions. Active colloids propelled by complex chemical reactions with potentially nonlinear kinetics can be realized using enzymatic reactions that occur on the surface of enzyme-coated particles. To demonstrate how the self-organizing behavior depends on the chemical reactions active colloids catalyze and their chemical environment, we consider first a single type of colloid undergoing a simple catalytic reaction, and compare this often-studied case with self-organization in binary mixtures of colloids with sequential reactions, and binary mixtures with nonlinear autocatalytic reactions. Our results show that in general active colloids at low particle densities can form localized clusters in the presence of bulk chemical reactions and phoretic attractions. The characteristics of the clusters, however, depend on the reaction kinetics in the bulk and on the particles and phoretic coefficients. With one or two chemical species that only undergo surface reactions, the space for possible self-organizations are limited. By considering the additional system parameters that enter the chemical reaction network involving reactions on the colloids and in the fluid, the design space of colloidal self-organization can be enlarged, leading to a variety of non-equilibrium structures.
Collapse
Affiliation(s)
- Zhiwei Peng
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
9
|
Roca-Bonet S, Wagner M, Ripoll M. Clustering of self-thermophilic asymmetric dimers: the relevance of hydrodynamics. SOFT MATTER 2022; 18:7741-7751. [PMID: 35916336 DOI: 10.1039/d2sm00523a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Self-thermophilic dimers are characterized by a net phoretic attraction which, in combination with hydrodynamic interactions, results in the formation of crystalline-like aggregates. To distinguish the effect of the different contributions is frequently an important challenge. We present a simulation investigation done in parallel in the presence and the absence of hydrodynamic interactions for the case of asymmetric self-thermophoretic dimers. In the absence of hydrodynamics, the clusters have the standard heads-in configurations. In contrast, in the presence of hydrodynamics, clusters with heads-in conformation are being formed, in which dimers with their propulsion velocity pointing out of the cluster are assembled and stabilized by strong hydrodynamic osmotic flows. Significant variation in the material properties is to be expected from such differences in the collective behavior, whose understanding and control is of great relevance for the development of new synthetic active materials.
Collapse
Affiliation(s)
- Sergi Roca-Bonet
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Martin Wagner
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Marisol Ripoll
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
10
|
Affiliation(s)
- Namita Jain
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
11
|
Bera A, Sahoo S, Thakur S, Das SK. Active particles in explicit solvent: Dynamics of clustering for alignment interaction. Phys Rev E 2022; 105:014606. [PMID: 35193229 DOI: 10.1103/physreve.105.014606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
We study the dynamics of clustering in systems containing active particles that are immersed in an explicit solvent. For this, we have adopted a hybrid simulation method, consisting of molecular dynamics and multiparticle collision dynamics. In our model, the overlap-avoiding passive interaction of an active particle with another active particle or a solvent particle has been taken care of via variants of the Lennard-Jones potential. Dynamic interactions among the active particles have been incorporated via a Vicsek-like alignment rule in self-propulsion that facilitates clustering. We quantify the effects of activity and importance of hydrodynamics on the dynamics of clustering via variations of relevant system parameters. Results are obtained for low overall density of active particles, for which the state point is close to the vapor branch of the coexistence curve, and thus the morphology consists of disconnected clusters. In such a situation, the mechanism of growth switches among particle diffusion, diffusive coalescence, and ballistic aggregation, depending upon the presence or absence of active and hydrodynamic interactions providing different kinds of mobilities to the clusters. Corresponding growth laws have been quantified and discussed in the context of appropriate theoretical pictures. Our results suggest that multiparticle collision dynamics is an effective method for the investigation of hydrodynamic phenomena in phase-separating active matter systems.
Collapse
Affiliation(s)
- Arabinda Bera
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| | - Soudamini Sahoo
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Madhya Pradesh 462066, India
| | - Subir K Das
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India
| |
Collapse
|
12
|
Wagner M, Roca-Bonet S, Ripoll M. Collective behavior of thermophoretic dimeric active colloids in three-dimensional bulk. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:43. [PMID: 33772651 PMCID: PMC8004524 DOI: 10.1140/epje/s10189-021-00043-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/22/2021] [Indexed: 05/20/2023]
Abstract
Colloids driven by phoresis constitute one of the main avenues for the design of synthetic microswimmers. For these swimmers, the specific form of the phoretic and hydrodynamic interactions dramatically influences their dynamics. Explicit solvent simulations allow the investigation of the different behaviors of dimeric Janus active colloids. The phoretic character is modified from thermophilic to thermophobic, and this, together with the relative size of the beads, strongly influences the resulting solvent velocity fields. Hydrodynamic flows can change from puller-type to pusher-type, although the actual flows significantly differ from these standard flows. Such hydrodynamic interactions combined with phoretic interactions between dimers result in several interesting phenomena in three-dimensional bulk conditions. Thermophilic dimeric swimmers are attracted to each other and form large and stable aggregates. Repulsive phoretic interactions among thermophobic dimeric swimmers hinder such clustering and lead, together with long- and short-ranged attractive hydrodynamic interactions, to short-lived, aligned swarming structures.
Collapse
Affiliation(s)
- Martin Wagner
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Sergi Roca-Bonet
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Marisol Ripoll
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
13
|
Chen JX, Yuan R, Cui R, Qiao L. The dynamics and self-assembly of chemically self-propelled sphere dimers. NANOSCALE 2021; 13:1055-1060. [PMID: 33393558 DOI: 10.1039/d0nr06368a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The dynamics of chemically powered sphere dimers at the micro- and nano-scales confined in a quasi-two-dimensional geometry are investigated. The dimer consists of a Janus particle and a non-catalytic sphere. A chemical reaction taking place on the catalytic surface of the Janus particle creates asymmetric concentration gradients that give rise to the self-propulsion of both rotation and translation of the dimer. Due to the chemical interactions, ensembles of dimers spontaneously form anti-parallel aligned doublets that exhibit the same rotation direction and lose translational motion. The chirality of the dimer plays an important role in the process of doublet formation. The study displays new collective dynamics and structures when both translational and rotational self-propulsion occur.
Collapse
Affiliation(s)
- Jiang-Xing Chen
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China.
| | | | | | | |
Collapse
|
14
|
Gaspard P, Kapral R. Active Matter, Microreversibility, and Thermodynamics. RESEARCH 2020; 2020:9739231. [PMID: 32524094 PMCID: PMC7260603 DOI: 10.34133/2020/9739231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/19/2020] [Indexed: 11/12/2022]
Abstract
Active matter, comprising many active agents interacting and moving in fluids or more complex environments, is a commonly occurring state of matter in biological and physical systems. By its very nature, active matter systems exist in nonequilibrium states. In this paper, the active agents are small Janus colloidal particles that use chemical energy provided by chemical reactions occurring on their surfaces for propulsion through a diffusiophoretic mechanism. As a result of interactions among these colloids, either directly or through fluid velocity and concentration fields, they may act collectively to form structures such as dynamic clusters. A general nonequilibrium thermodynamics framework for the description of such systems is presented that accounts for both self-diffusiophoresis and diffusiophoresis due to external concentration gradients, and is consistent with microreversibility. It predicts the existence of a reciprocal effect of diffusiophoresis back onto the reaction rate for the entire collection of colloids in the system, as well as the existence of a clustering instability that leads to nonequilibrium inhomogeneous system states.
Collapse
Affiliation(s)
- Pierre Gaspard
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (U.L.B.), Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
15
|
Martin-Gomez A, Eisenstecken T, Gompper G, Winkler RG. Hydrodynamics of polymers in an active bath. Phys Rev E 2020; 101:052612. [PMID: 32575238 DOI: 10.1103/physreve.101.052612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The conformational and dynamical properties of active polymers in solution are determined by the nature of the activity. Here, the behavior of polymers with self-propelled, active Brownian particle-type monomers differs qualitatively from that of polymers with monomers driven externally by colored-noise forces. We present simulation and theoretical results for polymers in solution in the presence of external active noise. In simulations, a semiflexible bead-spring chain is considered, in analytical calculations, a continuous linear wormlike chain. Activity is taken into account by independent monomer or site velocities, with orientations changing in a diffusive manner. In simulations, hydrodynamic interactions (HIs) are taken into account by the Rotne-Prager-Yamakawa tensor or by an implementation of the active polymer in the multiparticle-collision-dynamics approach for fluids. To arrive at an analytical solution, the preaveraged Oseen tensor is employed. The active process implies a dependence of the stationary-state properties on HIs via the polymer relaxation times. With increasing activity, HIs lead to an enhanced swelling of flexible polymers, and the conformational properties differ substantially from those of polymers with self-propelled monomers in the presence of HIs, or free-draining polymers. The polymer mean-square displacement is enhanced by HIs. Over a wide range of timescales, hydrodynamics leads to a subdiffusive regime of the site mean-square displacement for flexible active polymers, with an exponent of 5/7, larger than that of the Rouse (1/2) and Zimm (2/3) models of passive polymers.
Collapse
Affiliation(s)
- Aitor Martin-Gomez
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
16
|
de Buyl P. Mesoscopic simulations of anisotropic chemically powered nanomotors. Phys Rev E 2019; 100:022603. [PMID: 31574644 DOI: 10.1103/physreve.100.022603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 11/07/2022]
Abstract
Chemically powered self-propelled colloids generate a motor force by converting locally a source of energy into directed motion, a process that has been explored both in experiments and in computational models. The use of active colloids as building blocks for nanotechnology opens the doors to interesting applications, provided we understand the behavior of these elementary constituents. We build a consistent mesoscopic simulation model for self-propelled colloids of complex shape with the aim of resolving the coupling between their translational and rotational motion. Considering a passive L-shaped colloidal particle, we study its Brownian dynamics and locate its center of hydrodynamics, the tracking point at which translation and rotation decouple. The active L particle displays the same circling trajectories that have been found experimentally, a result which we compare with the Brownian dynamics model. We put forward the role of hydrodynamics by comparing our results with a fluid model in which the particles' velocities are reset randomly. There, the trajectories only display random orientations. We obtain these original simulation results without any parametrization of the algorithm, which makes it a useful method for the preliminary study of active colloids, prior to experimental work.
Collapse
Affiliation(s)
- Pierre de Buyl
- Instituut voor Theoretische Fysica, KU Leuven B-3001, Belgium
| |
Collapse
|
17
|
Huang MJ, Schofield J, Gaspard P, Kapral R. From single particle motion to collective dynamics in Janus motor systems. J Chem Phys 2019; 150:124110. [PMID: 30927899 DOI: 10.1063/1.5081820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jeremy Schofield
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Pierre Gaspard
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (U.L.B.), Code Postal 231, Campus Plaine, B-1050 Brussels, Belgium
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
18
|
Sahoo S, Singh SP, Thakur S. Enhanced self-propulsion of a sphere-dimer in viscoelastic fluid. SOFT MATTER 2019; 15:2170-2177. [PMID: 30758376 DOI: 10.1039/c8sm02311e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Micro-swimmers often have to encounter a medium that exhibits non-Newtonian behaviour. To understand the effect of complex environments on the propulsion dynamics of swimmers, here we have investigated a self-propelled sphere-dimer in a viscoelastic medium, using a coarse-grained hybrid mesoscopic simulation technique. We have shown that a viscoelastic fluid can result in the enhancement of swimming speed, as compared to the speed in a Newtonian fluid with the same viscosity. A non-linear response in the dimer velocity is seen for higher Péclet numbers in viscoelastic fluids. With help of various dynamical quantities, we have shown that the observed non-linear response of the directed velocity is associated with the micro-structural properties of the fluid. These include the alignment of the fluid elements and the density inhomogeneity around the moving dimer. The enhancement of self-propulsion velocity has been probed in detail, and the factors affecting the propulsion are identified.
Collapse
Affiliation(s)
- Soudamini Sahoo
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India.
| | | | | |
Collapse
|
19
|
Petrelli I, Digregorio P, Cugliandolo LF, Gonnella G, Suma A. Active dumbbells: Dynamics and morphology in the coexisting region. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:128. [PMID: 30353425 DOI: 10.1140/epje/i2018-11739-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
With the help of molecular dynamics simulations we study an ensemble of active dumbbells in purely repulsive interaction. We derive the phase diagram in the density-activity plane and we characterise the various phases with liquid, hexatic and solid character. The analysis of the structural and dynamical properties, such as enstrophy, mean-square displacement, polarisation, and correlation functions, shows the continuous character of liquid and hexatic phases in the coexisting region when the activity is increased starting from the passive limit.
Collapse
Affiliation(s)
- Isabella Petrelli
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126, Bari, Italy
| | - Pasquale Digregorio
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126, Bari, Italy
| | - Leticia F Cugliandolo
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 4 Place Jussieu, 75252, Paris Cedex 05, France
| | - Giuseppe Gonnella
- Dipartimento di Fisica, Università degli Studi di Bari and INFN, Sezione di Bari, via Amendola 173, I-70126, Bari, Italy
| | - Antonio Suma
- SISSA - Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136, Trieste, Italy.
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, 19122, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Robertson B, Huang MJ, Chen JX, Kapral R. Synthetic Nanomotors: Working Together through Chemistry. Acc Chem Res 2018; 51:2355-2364. [PMID: 30207448 DOI: 10.1021/acs.accounts.8b00239] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Active matter, some of whose constituent elements are active agents that can move autonomously, behaves very differently from matter without such agents. The active agents can self-assemble into structures with a variety of forms and dynamical properties. Swarming, where groups of living agents move cooperatively, is commonly observed in the biological realm, but it is also seen in the physical realm in systems containing small synthetic motors. The existence of diverse forms of self-assembled structures has stimulated the search for new applications that involve active matter. We consider active systems where the agents are synthetic chemically powered motors with various shapes and sizes that operate by phoretic mechanisms, especially self-diffusiophoresis. These motors are able to move autonomously in solution by consuming fuel from their environment. Chemical reactions take place on catalytic portions of the motor surface and give rise to concentration gradients that lead to directed motion. They can operate in this way only if the chemical composition of the system is maintained in a nonequilibrium state since no net fluxes are possible in a system at equilibrium. In contrast to many other active systems, chemistry plays an essential part in determining the properties of the collective dynamics and self-assembly of these chemically powered motor systems. The inhomogeneous concentration fields that result from asymmetric motor reactions are felt by other motors in the system and strongly influence how they move. This chemical coupling effect often dominates other interactions due to fluid flow fields and direct interactions among motors and determines the form that the collective dynamics takes. Since we consider small motors with micrometer and nanometer sizes, thermal fluctuations are strong and cannot be neglected. The media in which the motors operate may not be simple and may contain crowding agents or molecular filaments that influence how the motors assemble and move. The collective motion is also influenced by the chemical gradients that arise from reactions in the surrounding medium. By adopting a microscopic perspective, where the motors, fluid environment, and crowding elements are treated at the coarse-grained molecular level, all of the many-body interactions that give rise to the collective behavior naturally emerge from the molecular dynamics. Through simulations and theory, this Account describes how active matter made from chemically powered nanomotors moving in simple and more complicated media can form different dynamical structures that are strongly influenced by interactions arising from cooperative chemical reactions on the motor surfaces.
Collapse
Affiliation(s)
- Bryan Robertson
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Mu-Jie Huang
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jiang-Xing Chen
- Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
21
|
Chen J, Chen Y, Kapral R. Chemically Propelled Motors Navigate Chemical Patterns. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800028. [PMID: 30250781 PMCID: PMC6145410 DOI: 10.1002/advs.201800028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/15/2018] [Indexed: 05/06/2023]
Abstract
Very small synthetic motors that use chemical reactions to drive their motion are being studied widely because of their potential applications, which often involve active transport and dynamics on nanoscales. Like biological molecular machines, they must be able to perform their tasks in complex, highly fluctuating environments that can form chemical patterns with diverse structures. Motors in such systems can actively assemble into dynamic clusters and other unique nonequilibrium states. It is shown how chemical patterns with small characteristic dimensions may be utilized to suppress rotational Brownian motions of motors and guide them to move along prescribed paths, properties that can be exploited in applications. In systems with larger pattern length scales, domains can serve as catch basins for motors through chemotactic effects. The resulting collective motor dynamics in such confining domains can be used to explore new aspects of active particle collective dynamics or promote specific types of active self-assembly. More generally, when chemically self-propelled motors operate in far-from-equilibrium active chemical media the variety of possible phenomena and the scope of their potential applications are substantially increased.
Collapse
Affiliation(s)
- Jiang‐Xing Chen
- Department of PhysicsHangzhou Dianzi UniversityHangzhou310018China
| | - Yu‐Guo Chen
- Department of PhysicsHangzhou Dianzi UniversityHangzhou310018China
| | - Raymond Kapral
- Chemical Physics Theory GroupDepartment of ChemistryUniversity of TorontoTorontoOntarioM5S 3H6Canada
| |
Collapse
|
22
|
Colberg PH, Kapral R. Many-body dynamics of chemically propelled nanomotors. J Chem Phys 2018; 147:064910. [PMID: 28810764 DOI: 10.1063/1.4997572] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The collective behavior of chemically propelled sphere-dimer motors made from linked catalytic and noncatalytic spheres in a quasi-two-dimensional confined geometry is studied using a coarse-grained microscopic dynamical model. Chemical reactions at the catalytic spheres that convert fuel to product generate forces that couple to solvent degrees of freedom as a consequence of momentum conservation in the microscopic dynamics. The collective behavior of the many-body system is influenced by direct intermolecular interactions among the motors, chemotactic effects due to chemical gradients, hydrodynamic coupling, and thermal noise. Segregation into high and low density phases and globally homogeneous states with strong fluctuations are investigated as functions of the motor characteristics. Factors contributing to this behavior are discussed in the context of active Brownian models.
Collapse
Affiliation(s)
- Peter H Colberg
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
23
|
Zöttl A, Stark H. Simulating squirmers with multiparticle collision dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:61. [PMID: 29766348 DOI: 10.1140/epje/i2018-11670-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Multiparticle collision dynamics is a modern coarse-grained simulation technique to treat the hydrodynamics of Newtonian fluids by solving the Navier-Stokes equations. Naturally, it also includes thermal noise. Initially it has been applied extensively to spherical colloids or bead-spring polymers immersed in a fluid. Here, we review and discuss the use of multiparticle collision dynamics for studying the motion of spherical model microswimmers called squirmers moving in viscous fluids.
Collapse
Affiliation(s)
- Andreas Zöttl
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, OX1 3NP, Oxford, UK.
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany.
| | - Holger Stark
- Institute for Theoretical Physics, Technische Universität Berlin, Hardenbergstr. 36, 10623, Berlin, Germany
| |
Collapse
|
24
|
Robertson B, Stark H, Kapral R. Collective orientational dynamics of pinned chemically-propelled nanorotors. CHAOS (WOODBURY, N.Y.) 2018; 28:045109. [PMID: 31906629 DOI: 10.1063/1.5018297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collections of chemically propelled nanomotors free to move in solution can form dynamic clusters with diverse properties as a result of interactions through hydrodynamic flow and concentration fields, as well as direct intermolecular interactions between motors. Here, we study the collective rotational behavior of pinned sphere-dimer motors where direct motor-motor interactions play no role. Since the centers of mass of the motors are pinned, they cannot execute directed translational motion, but they can pump fluid and rotate; thus, the rotors remain coupled through hydrodynamic and chemical fields. Using a microscopic simulation method that accounts for coupling through both these fields, we show that different rotor configurations with a high degree of correlation exist and their forms depend on the nature of the fluid-rotor interactions. The correlations are greatly reduced or completely destroyed when the chemical interactions are removed, indicating that hydrodynamic coupling, while present, plays a lesser role in determining the collective rotor dynamics. These conclusions are supported by Langevin dynamics simulations that neglect hydrodynamics and include an approximate form of coupling through chemical fields.
Collapse
Affiliation(s)
- Bryan Robertson
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
25
|
Nourhani A, Brown D, Pletzer N, Gibbs JG. Engineering Contactless Particle-Particle Interactions in Active Microswimmers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1703910. [PMID: 29239516 DOI: 10.1002/adma.201703910] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Artificial self-propelled colloidal particles have recently served as effective building blocks for investigating many dynamic behaviors exhibited by nonequilibrium systems. However, most studies have relied upon excluded volume interactions between the active particles. Experimental systems in which the mobile entities interact over long distances in a well-defined and controllable manner are valuable so that new modes of multiparticle dynamics can be studied systematically in the laboratory. Here, a system of self-propelled microscale Janus particles is engineered to have contactless particle-particle interactions that lead to long-range attraction, short-range repulsion, and mutual alignment between adjacent swimmers. The unique modes of motion that arise can be tuned by modulating the system's parameters.
Collapse
Affiliation(s)
- Amir Nourhani
- Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Daniel Brown
- Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Nicholas Pletzer
- Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - John G Gibbs
- Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ, 86011, USA
| |
Collapse
|
26
|
Vidal-Urquiza GC, Córdova-Figueroa UM. Dynamics of a magnetic active Brownian particle under a uniform magnetic field. Phys Rev E 2017; 96:052607. [PMID: 29347786 DOI: 10.1103/physreve.96.052607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The dynamics of a magnetic active Brownian particle undergoing three-dimensional Brownian motion, both translation and rotation, under the influence of a uniform magnetic field is investigated. The particle self-propels at a constant speed along its magnetic dipole moment, which reorients due to the interplay between Brownian and magnetic torques, quantified by the Langevin parameter α. In this work, the time-dependent active diffusivity and the crossover time (τ^{cross})-from ballistic to diffusive regimes-are calculated through the time-dependent correlation function of the fluctuations of the propulsion direction. The results reveal that, for any value of α, the particle undergoes a directional (or ballistic) propulsive motion at very short times (t≪τ^{cross}). In this regime, the correlation function decreases linearly with time, and the active diffusivity increases with it. It the opposite time limit (t≫τ^{cross}), the particle moves in a purely diffusive regime with a correlation function that decays asymptotically to zero and an active diffusivity that reaches a constant value equal to the long-time active diffusivity of the particle. As expected in the absence of a magnetic field (α=0), the crossover time is equal to the characteristic time scale for rotational diffusion, τ_{rot}. In the presence of a magnetic field (α>0), the correlation function, the active diffusivity, and the crossover time decrease with increasing α. The magnetic field regulates the regimes of propulsion of the particle. Here, the field reduces the period of time at which the active particle undergoes a directional motion. Consequently, the active particle rapidly reaches a diffusive regime at τ^{cross}≪τ_{rot}. In the limit of weak fields (α≪1), the crossover time decreases quadratically with α, while in the limit of strong fields (α≫1) it decays asymptotically as α^{-1}. The results are in excellent agreement with those obtained by Brownian dynamics simulations.
Collapse
Affiliation(s)
- Glenn C Vidal-Urquiza
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico 00681, USA
| | - Ubaldo M Córdova-Figueroa
- Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico 00681, USA
| |
Collapse
|
27
|
Altemose A, Sánchez‐Farrán MA, Duan W, Schulz S, Borhan A, Crespi VH, Sen A. Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies. Angew Chem Int Ed Engl 2017; 56:7817-7821. [DOI: 10.1002/anie.201703239] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alicia Altemose
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | | | - Wentao Duan
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Steve Schulz
- Manheim Township High School Lancaster PA 17606 USA
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University University Park PA 16802 USA
| | - Vincent H. Crespi
- Departments of Physics, Chemistry, and Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Ayusman Sen
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
28
|
Altemose A, Sánchez‐Farrán MA, Duan W, Schulz S, Borhan A, Crespi VH, Sen A. Chemically Controlled Spatiotemporal Oscillations of Colloidal Assemblies. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alicia Altemose
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | | | - Wentao Duan
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| | - Steve Schulz
- Manheim Township High School Lancaster PA 17606 USA
| | - Ali Borhan
- Department of Chemical Engineering, The Pennsylvania State University University Park PA 16802 USA
| | - Vincent H. Crespi
- Departments of Physics, Chemistry, and Materials Science and Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Ayusman Sen
- Department of Chemistry The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
29
|
Sarkar D, Thakur S. Spontaneous beating and synchronization of extensile active filament. J Chem Phys 2017; 146:154901. [DOI: 10.1063/1.4979946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Debarati Sarkar
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
30
|
Debnath T, Ghosh PK, Nori F, Li Y, Marchesoni F, Li B. Diffusion of active dimers in a Couette flow. SOFT MATTER 2017; 13:2793-2799. [PMID: 28345093 DOI: 10.1039/c7sm00356k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the 3D dynamics of an elastic dimer consisting of an active swimmer bound to a passive cargo, both suspended in a Couette flow. Using numerical simulations, we determine the diffusivity of such an active dimer in the presence of long-range hydrodynamic interactions for different values of its self-propulsion speed and the Couette flow. We observe that the effect of hydrodynamic interactions is greatly enhanced under the condition that self-propulsion is strong enough to contrast the shear flow. The magnitude of the effect grows with the size of the dimer's constituents relative to their distance, which makes it appreciable under experimental conditions.
Collapse
Affiliation(s)
- Tanwi Debnath
- Department of Chemistry, University of Calcutta, Kolkata 700009, India
| | | | | | | | | | | |
Collapse
|
31
|
Brown AT, Poon WCK, Holm C, de Graaf J. Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents. SOFT MATTER 2017; 13:1200-1222. [PMID: 28098324 DOI: 10.1039/c6sm01867j] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Polar solvents like water support the bulk dissociation of themselves and their solutes into ions, and the re-association of these ions into neutral molecules in a dynamic equilibrium, e.g., H2O2 ⇌ H+ + HO2-. Using continuum theory, we study the influence of these association-dissociation reactions on the self-propulsion of colloids driven by surface chemical reactions (chemical swimmers). We find that association-dissociation reactions should have a strong influence on swimmers' behaviour, and therefore should be included in future modelling. In particular, such bulk reactions should permit charged swimmers to propel electrophoretically even if all species involved in the surface reactions are neutral. The bulk reactions also significantly modify the predicted speed of chemical swimmers propelled by ionic currents, by up to an order of magnitude. For swimmers whose surface reactions produce both anions and cations (ionic self-diffusiophoresis), the bulk reactions produce an additional reactive screening length, analogous to the Debye length in electrostatics. This in turn leads to an inverse relationship between swimmer radius and swimming speed, which could provide an alternative explanation for recent experimental observations on Pt-polystyrene Janus swimmers [S. Ebbens et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2012, 85, 020401]. We also use our continuum theory to investigate the effect of the Debye screening length itself, going beyond the infinitely-thin-screening-length approximation used by previous analytical theories. We identify significant departures from this limiting behaviour for micron-sized swimmers under typical experimental conditions and find that the approximation fails entirely for nanoscale swimmers.
Collapse
Affiliation(s)
- Aidan T Brown
- SUPA, School of Physics and Astronomy, The University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Wilson C K Poon
- SUPA, School of Physics and Astronomy, The University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Christian Holm
- Institute for Computational Physics, Stuttgart University, Pfaffenwaldring 27, D-70569 Stuttgart, Germany
| | - Joost de Graaf
- SUPA, School of Physics and Astronomy, The University of Edinburgh, King's Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK. and Institute for Computational Physics, Stuttgart University, Pfaffenwaldring 27, D-70569 Stuttgart, Germany
| |
Collapse
|
32
|
Ilse SE, Holm C, de Graaf J. Surface roughness stabilizes the clustering of self-propelled triangles. J Chem Phys 2016; 145:134904. [PMID: 27782450 DOI: 10.1063/1.4963804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sven Erik Ilse
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - Joost de Graaf
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| |
Collapse
|
33
|
Yan W, Brady JF. The behavior of active diffusiophoretic suspensions: An accelerated Laplacian dynamics study. J Chem Phys 2016; 145:134902. [DOI: 10.1063/1.4963722] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Wen Yan
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John F. Brady
- Divisions of Chemistry & Chemical Engineering and Engineering & Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
34
|
Gupta S, Sreeja KK, Thakur S. Autonomous movement of a chemically powered vesicle. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042703. [PMID: 26565268 DOI: 10.1103/physreve.92.042703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 06/05/2023]
Abstract
We investigate the diffusio-phoretic motion of a deformable vesicle. A vesicle is built from the linked catalytic and noncatalytic vertices that consumes fuel in the environment and utilize the resulting self-generated concentration gradient to exhibit propulsive motion. Under nonequilibrium conditions it is found that the self-propulsion velocity of the vesicle depends on its shape, which in turn is controlled by the bending rigidity of the membrane and solvent density around it. The self-propulsion velocity of the vesicle for different shapes has been calculated and the factors which affect the velocity are identified.
Collapse
Affiliation(s)
- Shivam Gupta
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - K K Sreeja
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Snigdha Thakur
- Department of Physics, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
35
|
Showalter K, Epstein IR. From chemical systems to systems chemistry: Patterns in space and time. CHAOS (WOODBURY, N.Y.) 2015; 25:097613. [PMID: 26428566 DOI: 10.1063/1.4918601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a brief, idiosyncratic overview of the past quarter century of progress in nonlinear chemical dynamics and discuss what we view as the most exciting recent developments and some challenges and likely areas of progress in the next 25 years.
Collapse
Affiliation(s)
- Kenneth Showalter
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506-6045, USA
| | - Irving R Epstein
- Department of Chemistry and Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| |
Collapse
|
36
|
Pohl O, Stark H. Self-phoretic active particles interacting by diffusiophoresis: A numerical study of the collapsed state and dynamic clustering. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:93. [PMID: 26314260 DOI: 10.1140/epje/i2015-15093-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 06/04/2023]
Abstract
Self-phoretic active colloids move and orient along self-generated chemical gradients by diffusiophoresis, a mechanism reminiscent of bacterial chemotaxis. In combination with the activity of the colloids, this creates effective repulsive and attractive interactions between particles depending on the sign of the translational and rotational diffusiophoretic parameters. A delicate balance of these interactions causes dynamic clustering and for overall strong effective attraction the particles collapse to one single cluster. Using Langevin dynamics simulations, we extend the state diagram of our earlier work (Phys. Rev. Lett. 112, 238303 (2014)) to regions with translational phoretic repulsion. With increasing repulsive strength, the collapsed cluster first starts to fluctuate strongly, then oscillates between a compact form and a colloidal cloud, and ultimately the colloidal cloud becomes static. The oscillations disappear if the phoretic interactions within compact clusters are not screened. We also study dynamic clustering at larger area fractions by exploiting cluster size distributions and mean cluster sizes. In particular, we identify the dynamic clustering 2 state as a signature of phoretic interactions. We analyze fusion and fission rate functions to quantify the kinetics of cluster formation and identify them as local signatures of phoretic interactions, since they can be measured on single clusters.
Collapse
Affiliation(s)
- Oliver Pohl
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany,
| | | |
Collapse
|
37
|
Wang W, Duan W, Ahmed S, Sen A, Mallouk TE. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Acc Chem Res 2015; 48:1938-46. [PMID: 26057233 DOI: 10.1021/acs.accounts.5b00025] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The assembly of complex structures from simpler, individual units is a hallmark of biology. Examples include the pairing of DNA strands, the assembly of protein chains into quaternary structures, the formation of tissues and organs from cells, and the self-organization of bacterial colonies, flocks of birds, and human beings in cities. While the individual behaviors of biomolecules, bacteria, birds, and humans are governed by relatively simple rules, groups assembled from many individuals exhibit complex collective behaviors and functions that do not exist in the absence of the hierarchically organized structure. Self-assembly is a familiar concept to chemists who study the formation and properties of monolayers, crystals, and supramolecular structures. In chemical self-assembly, disorder evolves to order as the system approaches equilibrium. In contrast, living assemblies are typically characterized by two additional features: (1) the system constantly dissipates energy and is not at thermodynamic equilibrium; (2) the structure is dynamic and can transform or disassemble in response to stimuli or changing conditions. To distinguish them from equilibrium self-assembled structures, living (or nonliving) assemblies of objects with these characteristics are referred to as active matter. In this Account, we focus on the powered assembly and collective behavior of self-propelled colloids. These nano- and microparticles, also called nano- and micromotors or microswimmers, autonomously convert energy available in the environment (in the form of chemical, electromagnetic, acoustic, or thermal energy) into mechanical motion. Collections of these colloids are a form of synthetic active matter. Because of the analogy to living swimmers of similar size such as bacteria, the dynamic interactions and collective behavior of self-propelled colloids are interesting in the context of understanding biological active matter and in the development of new applications. The progression from individual particle motion to pairwise interactions, and then to multiparticle behavior, can be studied systematically with colloidal particles. Colloidal particles are also amenable to designs (in terms of materials, shapes, and sizes) that are not readily available in, for example, microbial systems. We review here our efforts and those of other groups in studying these fundamental interactions and the collective behavior that emerges from them. Although this field is still very new, there are already unique and interesting applications in analysis, diagnostics, separations, and materials science that derive from our understanding of how powered colloids interact and assemble.
Collapse
Affiliation(s)
- Wei Wang
- School
of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Wentao Duan
- Department of Chemistry, and §Departments of Chemistry, Physics,
and Biochemistry
and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Suzanne Ahmed
- Department of Chemistry, and §Departments of Chemistry, Physics,
and Biochemistry
and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ayusman Sen
- Department of Chemistry, and §Departments of Chemistry, Physics,
and Biochemistry
and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | |
Collapse
|
38
|
Yang M, Theers M, Hu J, Gompper G, Winkler RG, Ripoll M. Effect of angular momentum conservation on hydrodynamic simulations of colloids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:013301. [PMID: 26274301 DOI: 10.1103/physreve.92.013301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 06/04/2023]
Abstract
In contrast to most real fluids, angular momentum is not a locally conserved quantity in some mesoscopic simulation methods. Here we quantify the importance of this conservation in the flow fields associated with different colloidal systems. The flow field is analytically calculated with and without angular momentum conservation for the multiparticle collision dynamics (MPC) method, and simulations are performed to verify the predictions. The flow field generated around a colloidal particle moving under an external force with slip boundary conditions depends on the conservation of angular momentum, and the amplitude of the friction force is substantially affected. Interestingly, no dependence on the angular momentum conservation is found for the flow fields generated around colloids under the influence of phoretic forces. Moreover, circular Couette flow between a no-slip and a slip cylinder is investigated, which allows us to validate one of the two existing expressions for the MPC stress tensor.
Collapse
Affiliation(s)
- Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Mario Theers
- Theoretical Soft-Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Jinglei Hu
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
- Theoretical Soft-Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft-Matter and Biophysics, Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marisol Ripoll
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
39
|
Reigh SY, Kapral R. Catalytic dimer nanomotors: continuum theory and microscopic dynamics. SOFT MATTER 2015; 11:3149-58. [PMID: 25752942 DOI: 10.1039/c4sm02857k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.
Collapse
Affiliation(s)
- Shang Yik Reigh
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| | | |
Collapse
|
40
|
Colberg PH, Reigh SY, Robertson B, Kapral R. Chemistry in motion: tiny synthetic motors. Acc Chem Res 2014; 47:3504-11. [PMID: 25357202 DOI: 10.1021/ar5002582] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
CONSPECTUS: Diffusion is the principal transport mechanism that controls the motion of solute molecules and other species in solution; however, the random walk process that underlies diffusion is slow and often nonspecific. Although diffusion is an essential mechanism for transport in the biological realm, biological systems have devised more efficient transport mechanisms using molecular motors. Most biological motors utilize some form of chemical energy derived from their surroundings to induce conformational changes in order to carry out specific functions. These small molecular motors operate in the presence of strong thermal fluctuations and in the regime of low Reynolds numbers, where viscous forces dominate inertial forces. Thus, their dynamical behavior is fundamentally different from that of macroscopic motors, and different mechanisms are responsible for the production of useful mechanical motion. There is no reason why our interest should be confined to the small motors that occur naturally in biological systems. Recently, micron and nanoscale motors that use chemical energy to produce directed motion by a number of different mechanisms have been made in the laboratory. These small synthetic motors also experience strong thermal fluctuations and operate in regimes where viscous forces dominate. Potentially, these motors could be directed to perform different transport tasks, analogous to those of biological motors, for both in vivo and in vitro applications. Although some synthetic motors execute conformational changes to effect motion, the majority do not, and, instead, they use other mechanisms to convert chemical energy into directed motion. In this Account, we describe how synthetic motors that operate by self-diffusiophoresis make use of a self-generated concentration gradient to drive motor motion. A description of propulsion by self-diffusiophoresis is presented for Janus particle motors comprising catalytic and noncatalytic faces. The properties of the dynamics of chemically powered motors are illustrated by presenting the results of particle-based simulations of sphere-dimer motors constructed from linked catalytic and noncatalytic spheres. The geometries of both Janus and sphere-dimer motors with asymmetric catalytic activity support the formation of concentration gradients around the motors. Because directed motion can occur only when the system is not in equilibrium, the nature of the environment and the role it plays in motor dynamics are described. Rotational Brownian motion also acts to limit directed motion, and it has especially strong effects for very small motors. We address the following question: how small can motors be and still exhibit effects due to propulsion, even if only to enhance diffusion? Synthetic motors have the potential to transform the manner in which chemical dynamical processes are carried out for a wide range of applications.
Collapse
Affiliation(s)
- Peter H. Colberg
- Chemical Physics Theory Group,
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shang Yik Reigh
- Chemical Physics Theory Group,
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Bryan Robertson
- Chemical Physics Theory Group,
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Raymond Kapral
- Chemical Physics Theory Group,
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
41
|
Yang M, Wysocki A, Ripoll M. Hydrodynamic simulations of self-phoretic microswimmers. SOFT MATTER 2014; 10:6208-6218. [PMID: 25012361 DOI: 10.1039/c4sm00621f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A mesoscopic hydrodynamic model to simulate synthetic self-propelled Janus particles which is thermophoretically or diffusiophoretically driven is here developed. We first propose a model for a passive colloidal sphere which reproduces the correct rotational dynamics together with strong phoretic effect. This colloid solution model employs a multiparticle collision dynamics description of the solvent, and combines stick boundary conditions with colloid-solvent potential interactions. Asymmetric and specific colloidal surface is introduced to produce the properties of self-phoretic Janus particles. A comparative study of Janus and microdimer phoretic swimmers is performed in terms of their swimming velocities and induced flow behavior. Self-phoretic microdimers display long range hydrodynamic interactions with a decay of 1/r(2), which is similar to the decay of gradient fields generated by self-phoretic particle, and can be characterized as pullers or pushers. In contrast, Janus particles are characterized by short range hydrodynamic interactions with a decay of 1/r(3) and behave as neutral swimmers.
Collapse
Affiliation(s)
- Mingcheng Yang
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | | | | |
Collapse
|
42
|
Wang W, Duan W, Sen A, Mallouk TE. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proc Natl Acad Sci U S A 2013; 110:17744-9. [PMID: 24127603 PMCID: PMC3816472 DOI: 10.1073/pnas.1311543110] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nano- and microscale motors powered by catalytic reactions exhibit collective behavior such as swarming, predator-prey interactions, and chemotaxis that resemble those of biological microorganisms. A quantitative understanding of the catalytically generated forces between particles that lead to these behaviors has so far been lacking. Observations and numerical simulations of pairwise interactions between gold-platinum nanorods in hydrogen peroxide solutions show that attractive and repulsive interactions arise from the catalytically generated electric field. Electrokinetic effects drive the assembly of staggered doublets and triplets of nanorods that are moving in the same direction. None of these behaviors are observed with nanorods composed of a single metal. The motors also collect tracer microparticles at their head or tail, depending on the charge of the particles, actively assembling them into close-packed rafts and aggregates of rafts. These motor-tracer particle interactions can also be understood in terms of the catalytically generated electric field around the ends of the nanorod motors.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Wentao Duan
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Ayusman Sen
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| | - Thomas E. Mallouk
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
43
|
Kapral R. Perspective: nanomotors without moving parts that propel themselves in solution. J Chem Phys 2013; 138:020901. [PMID: 23320656 DOI: 10.1063/1.4773981] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Self-propelled nanomotors use chemical energy to produce directed motion. Like many molecular motors they suffer strong perturbations from the environment in which they move as a result of thermal fluctuations and do not rely on inertia for their propulsion. Such tiny motors are the subject of considerable research because of their potential applications, and a variety of synthetic motors have been made and are being studied for this purpose. Chemically powered self-propelled nanomotors without moving parts that rely on asymmetric chemical reactions to effect directed motion are the focus of this article. The mechanisms they use for propulsion, how size and fuel sources influence their motion, how they cope with strong molecular fluctuations, and how they behave collectively are described. The practical applications of such nanomotors are largely unrealized and the subject of speculation. Since molecular motors are ubiquitous in biology and perform a myriad of complex tasks, the hope is that synthetic motors might be able to perform analogous tasks. They may have the potential to change our perspective on how chemical dynamics takes place in complex systems.
Collapse
Affiliation(s)
- Raymond Kapral
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
44
|
Lobaskin V, Romenskyy M. Collective dynamics in systems of active Brownian particles with dissipative interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052135. [PMID: 23767515 DOI: 10.1103/physreve.87.052135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Indexed: 05/11/2023]
Abstract
We use computer simulations to study the onset of collective motion in systems of interacting active particles. Our model is a swarm of active Brownian particles with an internal energy depot and interactions inspired by the dissipative particle dynamics method, imposing pairwise friction force on the nearest neighbors. We study orientational ordering in a 2D system as a function of energy influx rate and particle density. The model demonstrates a transition into the ordered state on increasing the particle density and increasing the input power. Although both the alignment mechanism and the character of individual motion in our model differ from those in the well-studied Vicsek model, it demonstrates identical statistical properties and phase behavior.
Collapse
Affiliation(s)
- Vladimir Lobaskin
- School of Physics, Complex and Adaptive Systems Lab, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
45
|
|
46
|
|