1
|
Tiana-Alsina J, Masoller C. Quantifying the synchronization of the spikes emitted by coupled lasers. CHAOS (WOODBURY, N.Y.) 2023; 33:073124. [PMID: 37433656 DOI: 10.1063/5.0150971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Synchronization phenomena is ubiquitous in nature, and in spite of having been studied for decades, it still attracts a lot of attention as is still challenging to detect and quantify, directly from the analysis of noisy signals. Semiconductor lasers are ideal for performing experiments because they are stochastic, nonlinear, and inexpensive and display different synchronization regimes that can be controlled by tuning the lasers' parameters. Here, we analyze experiments done with two mutually optically coupled lasers. Due to the delay in the coupling (due to the finite time the light takes to travel between the lasers), the lasers synchronize with a lag: the intensity time traces show well-defined spikes, and a spike in the intensity of one laser may occur shortly before (or shortly after) a spike in the intensity of the other laser. Measures that quantify the degree of synchronization of the lasers from the analysis of the intensity signals do not fully quantify the synchronicity of the spikes because they also take into account the synchronization of fast irregular fluctuations that occur between spikes. By analyzing only the coincidence of the spike times, we show that event synchronization measures quantify spike synchronization remarkably well. We show that these measures allow us to quantify the degree of synchronization and, also, to identify the leading laser and the lagging one.
Collapse
Affiliation(s)
- Jordi Tiana-Alsina
- Department de Física Aplicada, Facultat de Fisica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona, Spain
| | - Cristina Masoller
- Departament de Fisica, Universitat Politecnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
2
|
Kreinberg S, Porte X, Schicke D, Lingnau B, Schneider C, Höfling S, Kanter I, Lüdge K, Reitzenstein S. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels. Nat Commun 2019; 10:1539. [PMID: 30948766 PMCID: PMC6449346 DOI: 10.1038/s41467-019-09559-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/19/2019] [Indexed: 11/25/2022] Open
Abstract
Synchronization of coupled oscillators at the transition between classical physics and quantum physics has become an emerging research topic at the crossroads of nonlinear dynamics and nanophotonics. We study this unexplored field by using quantum dot microlasers as optical oscillators. Operating in the regime of cavity quantum electrodynamics (cQED) with an intracavity photon number on the order of 10 and output powers in the 100 nW range, these devices have high β-factors associated with enhanced spontaneous emission noise. We identify synchronization of mutually coupled microlasers via frequency locking associated with a sub-gigahertz locking range. A theoretical analysis of the coupling behavior reveals striking differences from optical synchronization in the classical domain with negligible spontaneous emission noise. Beyond that, additional self-feedback leads to zero-lag synchronization of coupled microlasers at ultra-low light levels. Our work has high potential to pave the way for future experiments in the quantum regime of synchronization.
Collapse
Affiliation(s)
- Sören Kreinberg
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Xavier Porte
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.
| | - David Schicke
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Benjamin Lingnau
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Christian Schneider
- Technische Physik, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sven Höfling
- Technische Physik, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, UK
| | - Ido Kanter
- Gonda Brain Research Center and Department of Physics, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Kathy Lüdge
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Stephan Reitzenstein
- Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.
| |
Collapse
|
3
|
Tomiyama M, Yamasaki K, Arai K, Inubushi M, Yoshimura K, Uchida A. Effect of bandwidth limitation of optical noise injection on common-signal-induced synchronization in multi-mode semiconductor lasers. OPTICS EXPRESS 2018; 26:13521-13535. [PMID: 29801376 DOI: 10.1364/oe.26.013521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
We investigate common-signal-induced synchronization in two multi-mode semiconductor lasers subject to a bandwidth-limited optical noise signal. Synchronization can be achieved when the number of longitudinal modes is matched between the two lasers. The peak wavelengths need to be matched between the two lasers to achieve synchronization. In contrast, small correlation is observed when the peak wavelengths are mismatched. The synchronization is degraded as the number of longitudinal modes in one of the lasers is decreased. However, large correlation is obtained if the overlapped modes are selected and compared. We discuss the possibility of an unauthorized user reproducing the synchronized waveforms. It is difficult to completely reproduce the synchronized waveforms using synchronization if the bandwidth of the noise drive signal is limited.
Collapse
|
4
|
Ohara S, Dal Bosco AK, Ugajin K, Uchida A, Harayama T, Inubushi M. Dynamics-dependent synchronization in on-chip coupled semiconductor lasers. Phys Rev E 2018; 96:032216. [PMID: 29346910 DOI: 10.1103/physreve.96.032216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 11/07/2022]
Abstract
Synchronization properties of chaotic dynamics in two mutually coupled semiconductor lasers with optical feedback embedded in a photonic integrated circuit are investigated from the point of view of their dynamical content. A phenomenon in which the two lasers can show qualitatively different synchronization properties according to the frequency range of investigation and their nonlinear dynamics is identified and termed dynamics-dependent synchronization. In-phase synchronization is observed for original signals and antiphase synchronization is observed for low-pass filtered signals in the case where one of the lasers shows chaotic oscillations while the other laser exhibits low-frequency fluctuations dynamics. The experimental conditions causing the synchronization states to vary according to the considered frequency interval are studied and the key roles of asymmetric coupling strength and injection currents are clarified.
Collapse
Affiliation(s)
- Shoma Ohara
- Department of Information and Computer Sciences, Saitama University, 255 Shimo-Okubo Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Andreas Karsaklian Dal Bosco
- Department of Information and Computer Sciences, Saitama University, 255 Shimo-Okubo Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Kazusa Ugajin
- Department of Information and Computer Sciences, Saitama University, 255 Shimo-Okubo Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Atsushi Uchida
- Department of Information and Computer Sciences, Saitama University, 255 Shimo-Okubo Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Takahisa Harayama
- Department of Applied Physics, School of Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masanobu Inubushi
- NTT Communication Science Laboratories, NTT Corporation, 3-1 Morinosato, Wakamiya, Atsugi-Shi, Kanagawa 243-0198, Japan
| |
Collapse
|
5
|
Shahin S, Vallini F, Monifi F, Rabinovich M, Fainman Y. Heteroclinic dynamics of coupled semiconductor lasers with optoelectronic feedback. OPTICS LETTERS 2016; 41:5238-5241. [PMID: 27842102 DOI: 10.1364/ol.41.005238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Generalized Lotka-Volterra (GLV) equations are important equations used in various areas of science to describe competitive dynamics among a population of N interacting nodes in a network topology. In this Letter, we introduce a photonic network consisting of three optoelectronically cross-coupled semiconductor lasers to realize a GLV model. In such a network, the interaction of intensity and carrier inversion rates, as well as phases of laser oscillator nodes, result in various dynamics. We study the influence of asymmetric coupling strength and frequency detuning between semiconductor lasers and show that inhibitory asymmetric coupling is required to achieve consecutive amplitude oscillations of the laser nodes. These studies were motivated primarily by the dynamical models used to model brain cognitive activities and their correspondence with dynamics obtained among coupled laser oscillators.
Collapse
|
6
|
Porte X, Soriano MC, Brunner D, Fischer I. Bidirectional private key exchange using delay-coupled semiconductor lasers. OPTICS LETTERS 2016; 41:2871-2874. [PMID: 27304310 DOI: 10.1364/ol.41.002871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We experimentally demonstrate a key exchange cryptosystem based on the phenomenon of identical chaos synchronization. In our protocol, the private key is symmetrically generated by the two communicating partners. It is built up from the synchronized bits occurring between two current-modulated bidirectionally coupled semiconductor lasers with additional self-feedback. We analyze the security of the exchanged key and discuss the amplification of its privacy. We demonstrate private key generation rates up to 11 Mbit/s over a public channel.
Collapse
|
7
|
Argyris A, Bourmpos M, Syvridis D. Experimental synchrony of semiconductor lasers in coupled networks. OPTICS EXPRESS 2016; 24:5600-5614. [PMID: 29092382 DOI: 10.1364/oe.24.005600] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The emission and synchronization of mutually-coupled semiconductor lasers with short cavities has been already recorded, with transversely unstable solutions existing within the chaotic synchronization manifold. Noise and laser-mismatch induced instabilities cause short de-synchronization events within the overall generalized synchronization, influencing the pragmatism of using these signals in secure data exchange applications. However, such operation can be functional for user authentication and sensing applications by assessing a time-averaged performance of synchrony. Until now, this has not been examined either in large-scale laser network configurations or in large transmission coupling paths, as real network implementations oblige. Here we present the first implementation of a fully-coupled fiber network with up to 16 semiconductor lasers, independently controlled and coupled through long interacting cavities. High level of consistent global or cluster synchrony via chaotic signals is demonstrated among all devices of the same origin and under appropriate operation. Devices that are not identical fail to synchronize at any condition, when coupled to the network. Under multiplexed operation, groups of lasers that emit at spectral distances as low as 50pm are shown to preserve intra-cluster synchronization when transmitted in the same fiber-optic channel, despite their large bandwidth of emitted signals.
Collapse
|
8
|
Clerkin E, O'Brien S, Amann A. Multistabilities and symmetry-broken one-color and two-color states in closely coupled single-mode lasers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032919. [PMID: 24730925 DOI: 10.1103/physreve.89.032919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Indexed: 06/03/2023]
Abstract
We theoretically investigate the dynamics of two mutually coupled, identical single-mode semi-conductor lasers. For small separation and large coupling between the lasers, symmetry-broken one-color states are shown to be stable. In this case the light outputs of the lasers have significantly different intensities while at the same time the lasers are locked to a single common frequency. For intermediate coupling we observe stable symmetry-broken two-color states, where both lasers lase simultaneously at two optical frequencies which are separated by up to 150 GHz. Using a five-dimensional model, we identify the bifurcation structure which is responsible for the appearance of symmetric and symmetry-broken one-color and two-color states. Several of these states give rise to multistabilities and therefore allow for the design of all-optical memory elements on the basis of two coupled single-mode lasers. The switching performance of selected designs of optical memory elements is studied numerically.
Collapse
Affiliation(s)
- Eoin Clerkin
- Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland and Department of Physics, University College Cork, Cork, Ireland
| | - Stephen O'Brien
- Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland
| | - Andreas Amann
- Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland and School of Mathematical Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Zamora-Munt J, Mirasso CR, Toral R. Suppression of deterministic and stochastic extreme desynchronization events using anticipated synchronization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012921. [PMID: 24580311 DOI: 10.1103/physreve.89.012921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Indexed: 06/03/2023]
Abstract
We numerically show that extreme events induced by parameter mismatches or noise in coupled oscillatory systems can be anticipated and suppressed before they actually occur. We show this in a main system unidirectionally coupled to an auxiliary system subject to a negative delayed feedback. Each system consists of two electronic oscillators coupled in a master-slave configuration. Extreme events are observed in this coupled system as large and sporadic desynchronization events. Under certain conditions, the auxiliary system can predict the dynamics of the main system. We use this to efficiently suppress the extreme events by applying a direct corrective reset to the main system.
Collapse
Affiliation(s)
- Jordi Zamora-Munt
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), E-07122 Palma de Mallorca, Spain
| | - Claudio R Mirasso
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), E-07122 Palma de Mallorca, Spain
| | - Raul Toral
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), E-07122 Palma de Mallorca, Spain
| |
Collapse
|
10
|
Soriano MC, Flunkert V, Fischer I. Relation between delayed feedback and delay-coupled systems and its application to chaotic lasers. CHAOS (WOODBURY, N.Y.) 2013; 23:043133. [PMID: 24387572 DOI: 10.1063/1.4844335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a systematic approach to identify the similarities and differences between a chaotic system with delayed feedback and two mutually delay-coupled systems. We consider the general case in which the coupled systems are either unsynchronized or in a generally synchronized state, in contrast to the mostly studied case of identical synchronization. We construct a new time-series for each of the two coupling schemes, respectively, and present analytic evidence and numerical confirmation that these two constructed time-series are statistically equivalent. From the construction, it then follows that the distribution of time-series segments that are small compared to the overall delay in the system is independent of the value of the delay and of the coupling scheme. By focusing on numerical simulations of delay-coupled chaotic lasers, we present a practical example of our findings.
Collapse
Affiliation(s)
- Miguel C Soriano
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Valentin Flunkert
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Ingo Fischer
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
11
|
Hicke K, Porte X, Fischer I. Characterizing the deterministic nature of individual power dropouts in semiconductor lasers subject to delayed feedback. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052904. [PMID: 24329328 DOI: 10.1103/physreve.88.052904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/07/2013] [Indexed: 06/03/2023]
Abstract
We implement a method to identify the deterministic nature of specific events in the dynamics of a semiconductor laser subject to time-delayed optical feedback. Specifically, we study the power dropouts in the low-frequency fluctuations regime on an individual event basis and identify whether the underlying dominant mechanism is deterministic. Our approach is based on sychronization with a twin system in a symmetric relay configuration. We investigate the dependence of the fraction of deterministically driven (i.e., synchronized) dropouts on the laser's pump current as a key parameter. Our experimental results are corroborated by numerical modeling based on rate equations. Our numerical findings also provide insights into the influence of spontaneous emission noise.
Collapse
Affiliation(s)
- K Hicke
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - X Porte
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - I Fischer
- Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| |
Collapse
|
12
|
Gutiérrez R, Sevilla-Escoboza R, Piedrahita P, Finke C, Feudel U, Buldú JM, Huerta-Cuellar G, Jaimes-Reátegui R, Moreno Y, Boccaletti S. Generalized synchronization in relay systems with instantaneous coupling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:052908. [PMID: 24329332 DOI: 10.1103/physreve.88.052908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 09/23/2013] [Indexed: 06/03/2023]
Abstract
We demonstrate the existence of generalized synchronization in systems that act as mediators between two dynamical units that, in turn, show complete synchronization with each other. These are the so-called relay systems. Specifically, we analyze the Lyapunov spectrum of the full system to elucidate when complete and generalized synchronization appear. We show that once a critical coupling strength is achieved, complete synchronization emerges between the systems to be synchronized, and at the same point, generalized synchronization with the relay system also arises. Next, we use two nonlinear measures based on the distance between phase-space neighbors to quantify the generalized synchronization in discretized time series. Finally, we experimentally show the robustness of the phenomenon and of the theoretical tools here proposed to characterize it.
Collapse
Affiliation(s)
- R Gutiérrez
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - R Sevilla-Escoboza
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco 47460, Mexico and Complex Systems Group, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - P Piedrahita
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009, Spain
| | - C Finke
- d-fine GmbH, Opernplatz 2, 60313 Frankfurt, Germany
| | - U Feudel
- ICBM, University of Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26111 Oldenburg, Germany and IPST, University of Maryland, College Park, Maryland 20742-2431, USA
| | - J M Buldú
- Complex Systems Group, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain and Center for Biomedical Technology, Technical University of Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - G Huerta-Cuellar
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco 47460, Mexico
| | - R Jaimes-Reátegui
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno, Jalisco 47460, Mexico
| | - Y Moreno
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza 50009, Spain and Department of Theoretical Physics, University of Zaragoza, Zaragoza 50009, Spain and Complex Networks and Systems Lagrange Lab, Institute for Scientific Interchange, Turin, Italy
| | - S Boccaletti
- CNR Institute of Complex Systems, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|