1
|
Wang L, He K, Wang H. Phase-field-based lattice Boltzmann model for simulating thermocapillary flows. Phys Rev E 2023; 108:055306. [PMID: 38115446 DOI: 10.1103/physreve.108.055306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/02/2023] [Indexed: 12/21/2023]
Abstract
This paper proposes a simple and accurate lattice Boltzmann model for simulating thermocapillary flows, which can deal with the contrast between thermodynamic parameters. In this model, two lattice Boltzmann equations are utilized to solve the conservative Allen-Cahn equation and the incompressible Navier-Stokes equations, while another lattice Boltzmann equation is used for solving the temperature field, where the collision term is delicately designed such that the influence of the contrast between thermodynamic parameters is incorporated. In contrast to the previous lattice Boltzmann models for thermocapillary flows, the most distinct feature of the current model is that the forcing term used in the present thermal lattice Boltzmann equation is not needed to calculate space derivatives of the heat capacitance or the order parameter, making the scheme much more straightforward and able to retain the main merits of the lattice Boltzmann method. The developed model is first validated by considering the thermocapillary flows in a heated microchannel with two superimposed planar fluids. It is then used to simulate the thermocapillary migration of a two-dimensional deformable droplet, and its accuracy is consistent with the theoretical prediction when the Marangoni number approaches zero. Finally, we numerically study the motion of two recalcitrant bubbles in a two-dimensional channel where the relationship between surface tension and temperature is assumed to be a parabolic function. It is observed that due to the competition between the inertia and thermal effects, the bubbles can move against the liquid's bulk motion and towards areas with low surface tension.
Collapse
Affiliation(s)
- Lei Wang
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Kun He
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Huili Wang
- School of Mathematical and Computer Sciences, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
2
|
Yue L, Chai Z, Wang H, Shi B. Improved phase-field-based lattice Boltzmann method for thermocapillary flow. Phys Rev E 2022; 105:015314. [PMID: 35193195 DOI: 10.1103/physreve.105.015314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we present an improved phase-field-based lattice Boltzmann (LB) method for thermocapillary flows with large density, viscosity, and thermal conductivity ratios. The present method uses three LB models to solve the conservative Allen-Cahn equation, the incompressible Navier-Stokes equations, and the temperature equation. To overcome the difficulty caused by the convection term in solving the convection-diffusion equation for the temperature field, we first rewrite the temperature equation as a diffuse equation where the convection term is regarded as the source term and then construct an improved LB model for the diffusion equation. The macroscopic governing equations can be recovered correctly from the present LB method; moreover, the present LB method is much simpler and more efficient. In order to test the accuracy of this LB method, several numerical examples are considered, including the planar thermal Poiseuille flow of two immiscible fluids, the two-phase thermocapillary flow in a nonuniformly heated channel, and the thermocapillary Marangoni flow of a deformable bubble. It is found that the numerical results obtained from the present LB method are consistent with the theoretical prediction and available numerical data, which indicates that the present LB method is an effective approach for the thermocapillary flows.
Collapse
Affiliation(s)
- Liqing Yue
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenhua Chai
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huili Wang
- School of Mathematical and Computer Sciences, Wuhan Textile University, Wuhan 430074, China
| | - Baochang Shi
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Engineering Modeling and Scientific Computing, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Sato S, Sakuta H, Sadakane K, Yoshikawa K. Self-Synchronous Swinging Motion of a Pair of Autonomous Droplets. ACS OMEGA 2019; 4:12766-12770. [PMID: 31460400 PMCID: PMC6682140 DOI: 10.1021/acsomega.9b01533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Synchronized motion between two self-running oil droplets floating on an aqueous phase is reported. We describe the results of our observation on the interference between a pair of centimeter-sized nitrobenzene droplets undergoing back-and-forth motion on a waterway. The two droplets exhibit a swinging type of synchronization when a thin glass capillary is placed at the midpoint of the waterway with a narrow rectangle shape. Furthermore, 2:1 synchronized oscillation of the periodicities of this back-and-forth motion is generated when the capillary is shifted away from the center of the waterway. We discuss the mechanism of the emergence of synchronized swinging motion for the pair of droplets based on a simple mathematical model with nonlinear coupled differential equations.
Collapse
|
4
|
Orlishausen M, Butzhammer L, Schlotbohm D, Zapf D, Köhler W. Particle accumulation and depletion in a microfluidic Marangoni flow. SOFT MATTER 2017; 13:7053-7060. [PMID: 28848950 DOI: 10.1039/c7sm00954b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Thermosolutal and thermocapillary Marangoni convection at a liquid-gas interface in a microchannel structure of approximately 100 × 90 μm2 cross section creates a localized vortex that acts as a trap for micrometer and sub-micrometer sized tracer particles. Next to the vortex, depleted volumes appear that are entirely cleared of particles. This particle redistribution is caused by collisions of the tracers with the meniscus, which push the particles back onto the critical streamline with one particle radius distance to the meniscus. The streamlines between the meniscus and the critical streamline feed the depleted regions. Since the critical streamline depends on the particle radius, the effect leads to a particle fractionation according to their size. Diffusion allows only small particles to escape from the trap. Larger particles are permanently confined and their diffusion is rectified after every revolution at the meniscus, which produces a ratchet effect and increases the particle localization within the vortex.
Collapse
Affiliation(s)
- M Orlishausen
- Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany.
| | | | | | | | | |
Collapse
|
5
|
Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. LAB ON A CHIP 2016; 17:34-75. [PMID: 27841886 DOI: 10.1039/c6lc01018k] [Citation(s) in RCA: 545] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precise and effective control of droplet generation is critical for applications of droplet microfluidics ranging from materials synthesis to lab-on-a-chip systems. Methods for droplet generation can be either passive or active, where the former generates droplets without external actuation, and the latter makes use of additional energy input in promoting interfacial instabilities for droplet generation. A unified physical understanding of both passive and active droplet generation is beneficial for effectively developing new techniques meeting various demands arising from applications. Our review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co-flow, flow-focusing, and step emulsification configurations. The review of active approaches covers the state-of-the-art techniques employing either external forces from electrical, magnetic and centrifugal fields or methods of modifying intrinsic properties of flows or fluids such as velocity, viscosity, interfacial tension, channel wettability, and fluid density, with a focus on their implementations and actuation mechanisms. Also included in this review is the contrast among different approaches of either passive or active nature.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Gupta A, Sbragaglia M, Belardinelli D, Sugiyama K. Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows. Phys Rev E 2016; 94:063302. [PMID: 28085339 DOI: 10.1103/physreve.94.063302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 06/06/2023]
Abstract
Based on mesoscale lattice Boltzmann simulations with the "Shan-Chen" model, we explore the influence of thermocapillarity on the breakup properties of fluid threads in a microfluidic T-junction, where a dispersed phase is injected perpendicularly into a main channel containing a continuous phase, and the latter induces periodic breakup of droplets due to the cross-flowing. Temperature effects are investigated by switching on-off both positive-negative temperature gradients along the main channel direction, thus promoting a different thread dynamics with anticipated-delayed breakup. Numerical simulations are performed at changing the flow rates of both the continuous and dispersed phases, as well as the relative importance of viscous forces, surface tension forces, and thermocapillary stresses. The range of parameters is broad enough to characterize the effects of thermocapillarity on different mechanisms of breakup in the confined T-junction, including the so-called "squeezing" and "dripping" regimes, previously identified in the literature. Some simple scaling arguments are proposed to rationalize the observed behavior, and to provide quantitative guidelines on how to predict the droplet size after breakup.
Collapse
Affiliation(s)
- A Gupta
- Department of Physics & INFN, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - M Sbragaglia
- Department of Physics & INFN, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - D Belardinelli
- Department of Physics & INFN, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - K Sugiyama
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
7
|
Li C, Cheng G, Sedao X, Zhang W, Zhang H, Faure N, Jamon D, Colombier JP, Stoian R. Scattering effects and high-spatial-frequency nanostructures on ultrafast laser irradiated surfaces of zirconium metallic alloys with nano-scaled topographies. OPTICS EXPRESS 2016; 24:11558-11568. [PMID: 27410083 DOI: 10.1364/oe.24.011558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The origin of high-spatial-frequency laser-induced periodic surface structures (HSFL) driven by incident ultrafast laser fields, with their ability to achieve structure resolutions below λ/2, is often obscured by the overlap with regular ripples patterns at quasi-wavelength periodicities. We experimentally demonstrate here employing defined surface topographies that these structures are intrinsically related to surface roughness in the nano-scale domain. Using Zr-based bulk metallic glass (Zr-BMG) and its crystalline alloy (Zr-CA) counterpart formed by thermal annealing from its glassy precursor, we prepared surfaces showing either smooth appearances on thermoplastic BMG or high-density nano-protuberances from randomly distributed embedded nano-crystallites with average sizes below 200 nm on the recrystallized alloy. Upon ultrashort pulse irradiation employing linearly polarized 50 fs, 800 nm laser pulses, the surfaces show a range of nanoscale organized features. The change of topology was then followed under multiple pulse irradiation at fluences around and below the single pulse threshold. While the former material (Zr-BMG) shows a specific high quality arrangement of standard ripples around the laser wavelength, the latter (Zr-CA) demonstrates strong predisposition to form high spatial frequency rippled structures (HSFL). We discuss electromagnetic scenarios assisting their formation based on near-field interaction between particles and field-enhancement leading to structure linear growth. Finite-difference-time-domain simulations outline individual and collective effects of nanoparticles on electromagnetic energy modulation and the feedback processes in the formation of HSFL structures with correlation to regular ripples (LSFL).
Collapse
|
8
|
Rivière D, Selva B, Chraibi H, Delabre U, Delville JP. Convection flows driven by laser heating of a liquid layer. Phys Rev E 2016; 93:023112. [PMID: 26986418 DOI: 10.1103/physreve.93.023112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 06/05/2023]
Abstract
When a fluid is heated by the absorption of a continuous laser wave, the fluid density decreases in the heated area. This induces a pressure gradient that generates internal motion of the fluid. Due to mass conservation, convection eddies emerge in the sample. To investigate these laser-driven bulk flows at the microscopic scale, we built a setup to perform temperature measurements with a fluorescent-sensitive dye on the one hand, and measured the flow pattern at different beam powers, using a particle image velocimetry technique on the other hand. Temperature measurements were also used in numerical simulations in order to compare predictions to the experimental velocity profiles. The combination of our numerical and experimental approaches allows a detailed description of the convection flows induced by the absorption of light, which reveals a transition between a thin and a thick liquid layer regime. This supports the basis of optothermal approaches for microfluidic applications.
Collapse
Affiliation(s)
- David Rivière
- University of Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Bertrand Selva
- University of Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Hamza Chraibi
- University of Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Ulysse Delabre
- University of Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | - Jean-Pierre Delville
- University of Bordeaux, LOMA, UMR 5798, F-33400 Talence, France and CNRS, LOMA, UMR 5798, F-33400 Talence, France
| |
Collapse
|
9
|
Vélez-Cordero JR, Velázquez-Benítez AM, Hernández-Cordero J. Thermocapillary flow in glass tubes coated with photoresponsive layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5326-5336. [PMID: 24731004 DOI: 10.1021/la404221p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Thermocapillary flow has proven to be a good alternative to induce and control the motion of drops and bubbles in microchannels. Temperature gradients are usually established by implanting metallic heaters adjacent to the channel or by including a layer of photosensitive material capable of absorbing radiative energy. In this work we show that single drops can be pumped through capillaries coated with a photoresponsive composite (PDMS + carbon nanopowder) and irradiated with a light source via an optical fiber. Maximum droplet speeds achieved with this approach were found to be ~300 μm/s, and maximum displacements, around 120% of the droplet length. The heat generation capacity of the coatings was proven having either a complete coating over the capillary surface or a periodic array of pearls of the photoresponsive material along the capillary produced by the so-called Rayleigh-Plateau instability. The effect of the photoresponsive layer thickness and contact angle hysteresis of the solid-liquid interface were found to be important parameters in the photoinduced thermocapillary effect. Furthermore, a linear relationship between the optical intensity I(o) and droplet velocity v was found for a wide range of the former, allowing us to analyze the results and estimate response times for heat transfer using heat conduction theory.
Collapse
Affiliation(s)
- J Rodrigo Vélez-Cordero
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México , Apdo. Postal 70-360, México D.F. 04510, México
| | | | | |
Collapse
|
10
|
Liu H, Valocchi AJ, Zhang Y, Kang Q. Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:013010. [PMID: 23410429 DOI: 10.1103/physreve.87.013010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Indexed: 06/01/2023]
Abstract
A phase-field-based hybrid model that combines the lattice Boltzmann method with the finite difference method is proposed for simulating immiscible thermocapillary flows with variable fluid-property ratios. Using a phase field methodology, an interfacial force formula is analytically derived to model the interfacial tension force and the Marangoni stress. We present an improved lattice Boltzmann equation (LBE) method to capture the interface between different phases and solve the pressure and velocity fields, which can recover the correct Cahn-Hilliard equation (CHE) and Navier-Stokes equations. The LBE method allows not only use of variable mobility in the CHE, but also simulation of multiphase flows with high density ratio because a stable discretization scheme is used for calculating the derivative terms in forcing terms. An additional convection-diffusion equation is solved by the finite difference method for spatial discretization and the Runge-Kutta method for time marching to obtain the temperature field, which is coupled to the interfacial tension through an equation of state. The model is first validated against analytical solutions for the thermocapillary driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration of a three-dimensional deformable droplet and bubble at various Marangoni numbers and density ratios, and satisfactory agreement is obtained between numerical results and theoretical predictions.
Collapse
Affiliation(s)
- Haihu Liu
- Department of Civil & Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
11
|
Baigl D. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives. LAB ON A CHIP 2012; 12:3637-53. [PMID: 22864577 DOI: 10.1039/c2lc40596b] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Using light to control liquid motion is a new paradigm for the actuation of microfluidic systems. We review here the different principles and strategies to induce or control liquid motion using light, which includes the use of radiation pressure, optical tweezers, light-induced wettability gradients, the thermocapillary effect, photosensitive surfactants, the chromocapillary effect, optoelectrowetting, photocontrolled electroosmotic flows and optical dielectrophoresis. We analyze the performance of these approaches to control using light many kinds of microfluidic operations involving discrete pL- to μL-sized droplets (generation, driving, mixing, reaction, sorting) or fluid flows in microchannels (valve operation, injection, pumping, flow rate control). We show that a complete toolbox is now available to control microfluidic systems by light. We finally discuss the perspectives of digital optofluidics as well as microfluidics based on all optical fluidic chips and optically reconfigurable devices.
Collapse
Affiliation(s)
- Damien Baigl
- Department of Chemistry, Ecole Normale Supérieure, Paris, France.
| |
Collapse
|