1
|
Johal RS, Mehta V. Quantum Heat Engines with Complex Working Media, Complete Otto Cycles and Heuristics. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1149. [PMID: 34573774 PMCID: PMC8468726 DOI: 10.3390/e23091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022]
Abstract
Quantum thermal machines make use of non-classical thermodynamic resources, one of which include interactions between elements of the quantum working medium. In this paper, we examine the performance of a quasi-static quantum Otto engine based on two spins of arbitrary magnitudes subject to an external magnetic field and coupled via an isotropic Heisenberg exchange interaction. It has been shown earlier that the said interaction provides an enhancement of cycle efficiency, with an upper bound that is tighter than the Carnot efficiency. However, the necessary conditions governing engine performance and the relevant upper bound for efficiency are unknown for the general case of arbitrary spin magnitudes. By analyzing extreme case scenarios, we formulate heuristics to infer the necessary conditions for an engine with uncoupled as well as coupled spin model. These conditions lead us to a connection between performance of quantum heat engines and the notion of majorization. Furthermore, the study of complete Otto cycles inherent in the average cycle also yields interesting insights into the average performance.
Collapse
Affiliation(s)
- Ramandeep S. Johal
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S. Nagar, Manauli PO 140306, Punjab, India;
| | | |
Collapse
|
2
|
Gerstenmaier YC. Irreversible entropy production in low- and high-dissipation heat engines and the problem of the Curzon-Ahlborn efficiency. Phys Rev E 2021; 103:032141. [PMID: 33862798 DOI: 10.1103/physreve.103.032141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/02/2021] [Indexed: 11/07/2022]
Abstract
Heat engines performing finite time Carnot cycles are described by positive irreversible entropy functions added to the ideal reversible entropy part. The model applies for macroscopic and microscopic (quantum mechanical) engines. The mathematical and physical conditions for the solution of the power maximization problem are discussed. For entropy models which have no reversible limit, the usual "linear response regime" is not mathematically feasible; i.e., the efficiency at maximum power cannot be expanded in powers of the Carnot efficiency. Instead, a physically less intuitive expansion in powers of the ratio of heat-reservoir temperatures holds under conditions that will be inferred. Exact solutions for generalized entropy models are presented, and results are compared. For entropy generation in endoreversible models, it is proved for all heat transfer laws with general temperature-dependent heat resistances, that minimum entropy production is achieved when the temperature of the working substance remains constant in the isothermal processes. For isothermal transition time t, entropy production then is of the form a/[tf(t)±c] and not just equal to a/t for the low-dissipation limit. The cold side endoreversible entropy as a function of transition times inevitably experiences singularities. For Newtonian heat transfer with temperature-independent heat conductances, the Curzon-Ahlborn efficiency is exactly confirmed, which-only in this unique case-shows "universality" in the sense of independence from dissipation ratios of the hot and cold sides with coinciding lower and upper efficiency bounds for opposite dissipation ratios. Extended exact solutions for inclusion of adiabatic transition times are presented.
Collapse
|
3
|
Wu P, Xu Y, Zhan J, Li Y, Xue H, Pang H. The Research Development of Quantum Dots in Electrochemical Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801479. [PMID: 30141575 DOI: 10.1002/smll.201801479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/20/2018] [Indexed: 05/26/2023]
Abstract
Quantum dots, which are made from semiconductor materials, possess tunable physical dimensions and outstanding optoelectronic characteristics, and they have aroused widespread interest in recent years. In addition to applications in biomolecular analysis, sensors, organic photovoltaic devices, fluorescence, solar cells, photochemical reagents, light-emitting diodes, and catalysis, quantum dots have attracted mounting attention in the field of electrochemical energy storage owing to their size confinement and anisotropic geometry. In this review, a comprehensive summary is given and the research progress of the study of quantum dots for batteries and electrochemical capacitors in recent years, including their synthesis methods, micro/nanostructural features, and electrochemical performance, is appraised.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Yuxia Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Jingyi Zhan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Yan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|
4
|
Shiraishi N. Stationary engines in and beyond the linear response regime at the Carnot efficiency. Phys Rev E 2017; 95:052128. [PMID: 28618475 DOI: 10.1103/physreve.95.052128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 06/07/2023]
Abstract
The condition for stationary engines to attain the Carnot efficiency in and beyond the linear response regime is investigated. We find that this condition for finite-size engines is significantly different from that for macroscopic engines in the thermodynamic limit. For the case of finite-size engines, the tight-coupling condition in the linear response regime directly implies the attainability of the Carnot efficiency beyond the linear response regime. As opposed to this, for the case of macroscopic engines in the thermodynamic limit, there are three types of mechanisms to attain the Carnot efficiency. One mechanism allows engines to attain the Carnot efficiency only in the linear response limit, while the other two mechanisms enable engines to attain the Carnot efficiency beyond the linear response regime. These three mechanisms are classified by introducing a tight-coupling window.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
5
|
Chotorlishvili L, Azimi M, Stagraczyński S, Toklikishvili Z, Schüler M, Berakdar J. Superadiabatic quantum heat engine with a multiferroic working medium. Phys Rev E 2016; 94:032116. [PMID: 27739759 DOI: 10.1103/physreve.94.032116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 06/06/2023]
Abstract
A quantum thermodynamic cycle with a chiral multiferroic working substance such as LiCu_{2}O_{2} is presented. Shortcuts to adiabaticity are employed to achieve an efficient, finite-time quantum thermodynamic cycle, which is found to depend on the spin ordering. The emergent electric polarization associated with the chiral spin order, i.e., the magnetoelectric coupling, renders possible steering of the spin order by an external electric field and hence renders possible an electric-field control of the cycle. Due to the intrinsic coupling between the spin and the electric polarization, the cycle performs an electromagnetic work. We determine this work's mean-square fluctuations, the irreversible work, and the output power of the cycle. We observe that the work mean-square fluctuations are increased with the duration of the adiabatic strokes, while the irreversible work and the output power of the cycle show a nonmonotonic behavior. In particular, the irreversible work vanishes at the end of the quantum adiabatic strokes. This fact confirms that the cycle is reversible. Our theoretical findings evidence the existence of a system inherent maximal output power. By implementing a Lindblad master equation we quantify the role of thermal relaxations on the cycle efficiency. We also discuss the role of entanglement encoded in the noncollinear spin order as a resource to affect the quantum thermodynamic cycle.
Collapse
Affiliation(s)
- L Chotorlishvili
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - M Azimi
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - S Stagraczyński
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - Z Toklikishvili
- Department of Physics, Tbilisi State University, Chavchavadze avenue 3, 0128, Tbilisi, Georgia
| | - M Schüler
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| | - J Berakdar
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
6
|
Miri M, Etesami Z. Casimir rack and pinion as a miniaturized kinetic energy harvester. Phys Rev E 2016; 94:022147. [PMID: 27627286 DOI: 10.1103/physreve.94.022147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 06/06/2023]
Abstract
We study a nanoscale machine composed of a rack and a pinion with no contact, but intermeshed via the lateral Casimir force. We adopt a simple model for the random velocity of the rack subject to external random forces, namely, a dichotomous noise with zero mean value. We show that the pinion, even when it experiences random thermal torque, can do work against a load. The device thus converts the kinetic energy of the random motions of the rack into useful work.
Collapse
Affiliation(s)
- MirFaez Miri
- Department of Physics, University of Tehran, P.O. Box 14395-547, Tehran, Iran
| | - Zahra Etesami
- Department of Physics, University of Tehran, P.O. Box 14395-547, Tehran, Iran
| |
Collapse
|
7
|
Park JM, Chun HM, Noh JD. Efficiency at maximum power and efficiency fluctuations in a linear Brownian heat-engine model. Phys Rev E 2016; 94:012127. [PMID: 27575096 DOI: 10.1103/physreve.94.012127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 06/06/2023]
Abstract
We investigate the stochastic thermodynamics of a two-particle Langevin system. Each particle is in contact with a heat bath at different temperatures T_{1} and T_{2} (<T_{1}), respectively. Particles are trapped by a harmonic potential and driven by a linear external force. The system can act as an autonomous heat engine performing work against the external driving force. Linearity of the system enables us to examine thermodynamic properties of the engine analytically. We find that the efficiency of the engine at maximum power η_{MP} is given by η_{MP}=1-sqrt[T_{2}/T_{1}]. This universal form has been known as a characteristic of endoreversible heat engines. Our result extends the universal behavior of η_{MP} to nonendoreversible engines. We also obtain the large deviation function of the probability distribution for the stochastic efficiency in the overdamped limit. The large deviation function takes the minimum value at macroscopic efficiency η=η[over ¯] and increases monotonically until it reaches plateaus when η≤η_{L} and η≥η_{R} with model-dependent parameters η_{R} and η_{L}.
Collapse
Affiliation(s)
- Jong-Min Park
- Department of Physics, University of Seoul, Seoul 02504, Korea
| | - Hyun-Myung Chun
- Department of Physics, University of Seoul, Seoul 02504, Korea
| | - Jae Dong Noh
- Department of Physics, University of Seoul, Seoul 02504, Korea
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
8
|
Serra-Garcia M, Foehr A, Molerón M, Lydon J, Chong C, Daraio C. Mechanical Autonomous Stochastic Heat Engine. PHYSICAL REVIEW LETTERS 2016; 117:010602. [PMID: 27419553 DOI: 10.1103/physrevlett.117.010602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Indexed: 05/16/2023]
Abstract
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Collapse
Affiliation(s)
- Marc Serra-Garcia
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - André Foehr
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Miguel Molerón
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Joseph Lydon
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Christopher Chong
- Department of Mathematics, Bowdoin College, Brunswick, Maine 04011, USA
| | - Chiara Daraio
- Department of Mechanical and Process Engineering, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
- Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
9
|
Chapman A, Miyake A. How an autonomous quantum Maxwell demon can harness correlated information. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062125. [PMID: 26764650 DOI: 10.1103/physreve.92.062125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Indexed: 06/05/2023]
Abstract
We study an autonomous quantum system which exhibits refrigeration under an information-work trade-off like a Maxwell demon. The system becomes correlated as a single "demon" qubit interacts sequentially with memory qubits while in contact with two heat reservoirs of different temperatures. Using strong subadditivity of the von Neumann entropy, we derive a global Clausius inequality to show thermodynamic advantages from access to correlated information. It is demonstrated, in a matrix product density operator formalism, that our demon can simultaneously realize refrigeration against a thermal gradient and erasure of information from its memory, which is impossible without correlations. The phenomenon can be even enhanced by the presence of quantum coherence.
Collapse
Affiliation(s)
- Adrian Chapman
- Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Akimasa Miyake
- Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
10
|
Gelbwaser-Klimovsky D, Niedenzu W, Brumer P, Kurizki G. Power enhancement of heat engines via correlated thermalization in a three-level "working fluid". Sci Rep 2015; 5:14413. [PMID: 26394838 PMCID: PMC4585770 DOI: 10.1038/srep14413] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/18/2015] [Indexed: 11/09/2022] Open
Abstract
We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.
Collapse
Affiliation(s)
- David Gelbwaser-Klimovsky
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Wolfgang Niedenzu
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, Ontario M5S 3H6, Canada
| | - Gershon Kurizki
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Wang J, Lai Y, Ye Z, He J, Ma Y, Liao Q. Four-level refrigerator driven by photons. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:050102. [PMID: 26066099 DOI: 10.1103/physreve.91.050102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 06/04/2023]
Abstract
We propose a quantum absorption refrigerator driven by photons. The model uses a four-level system as its working substance and couples simultaneously to hot, cold, and solar heat reservoirs. Explicit expressions for the cooling power Q̇(c) and coefficient of performance (COP) η(COP) are derived, with the purpose of revealing and optimizing the performance of the device. Our model runs most efficiently under the tight coupling condition, and it is consistent with the third law of thermodynamics in the limit T→0.
Collapse
Affiliation(s)
- Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, China
- State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yiming Lai
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Zhuolin Ye
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, China
| | - Yongli Ma
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Qinghong Liao
- Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
12
|
Zhang Y, Lin G, Chen J. Three-terminal quantum-dot refrigerators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:052118. [PMID: 26066130 DOI: 10.1103/physreve.91.052118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Indexed: 06/04/2023]
Abstract
Based on two capacitively coupled quantum dots in the Coulomb-blockade regime, a model of three-terminal quantum-dot refrigerators is proposed. With the help of the master equation, the transport properties of steady-state charge current and energy flow between two quantum dots and thermal reservoirs are revealed. It is expounded that such a structure can be used to construct a refrigerator by controlling the voltage bias and temperature ratio. The thermodynamic performance characteristics of the refrigerator are analyzed, including the cooling power, coefficient of performance (COP), maximum cooling power, and maximum COP. Moreover, the optimal regions of main performance parameters are determined. The influence of dissipative tunnel processes on the optimal performance is discussed in detail. Finally, the performance characteristics of the refrigerators operated in two different cases are compared.
Collapse
Affiliation(s)
- Yanchao Zhang
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Guoxing Lin
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jincan Chen
- Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
13
|
Esposito M, Ochoa MA, Galperin M. Quantum thermodynamics: a nonequilibrium Green's function approach. PHYSICAL REVIEW LETTERS 2015; 114:080602. [PMID: 25768745 DOI: 10.1103/physrevlett.114.080602] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Indexed: 06/04/2023]
Abstract
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.
Collapse
Affiliation(s)
- Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Physics and Materials Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Maicol A Ochoa
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla California 92093, USA
| | - Michael Galperin
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla California 92093, USA
| |
Collapse
|
14
|
Verley G, Willaert T, Van den Broeck C, Esposito M. Universal theory of efficiency fluctuations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052145. [PMID: 25493777 DOI: 10.1103/physreve.90.052145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 06/04/2023]
Abstract
Using the fluctuation theorem supplemented with geometric arguments, we derive universal features of the (long-time) efficiency fluctuations for thermal and isothermal machines operating under steady or periodic driving, close or far from equilibrium. In particular, the probabilities for observing the reversible efficiency and the least likely efficiency are identical to those of the same machine working under the time-reversed driving. For time-symmetric drivings, this reversible and the least probable efficiency coincide.
Collapse
Affiliation(s)
- Gatien Verley
- Complex Systems and Statistical Mechanics, University of Luxembourg, L-1511 Luxembourg, G.D. Luxembourg
| | | | | | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, University of Luxembourg, L-1511 Luxembourg, G.D. Luxembourg
| |
Collapse
|
15
|
Gelbwaser-Klimovsky D, Kurizki G. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022102. [PMID: 25215684 DOI: 10.1103/physreve.90.022102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Indexed: 06/03/2023]
Abstract
We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.
Collapse
Affiliation(s)
| | - G Kurizki
- Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
16
|
Iyer A, Chandra A, Swaminathan R. Hydrolytic enzymes conjugated to quantum dots mostly retain whole catalytic activity. Biochim Biophys Acta Gen Subj 2014; 1840:2935-43. [PMID: 24937605 DOI: 10.1016/j.bbagen.2014.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/22/2014] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Tagging a luminescent quantum dot (QD) with a biological like enzyme (Enz) creates value-added entities like quantum dot-enzyme bioconjugates (QDEnzBio) that find utility as sensors to detect glucose or beacons to track enzymes in vivo. For such applications, it is imperative that the enzyme remains catalytically active while the quantum dot is luminescent in the bioconjugate. A critical feature that dictates this is the quantum dot-enzyme linkage chemistry. Previously such linkages have put constraints on polypeptide chain dynamics or hindered substrate diffusion to active site, seriously undermining enzyme catalytic activity. In this work we address this issue using avidin-biotin linkage chemistry together with a flexible spacer to conjugate enzyme to quantum dot. METHODS The catalytic activity of three biotinylated hydrolytic enzymes, namely, hen egg white lysozyme (HEWL), alkaline phosphatase (ALP) and acetylcholinesterase (AChE) was investigated post-conjugation to streptavidin linked quantum dot for multiple substrate concentrations and varying degrees of biotinylation. RESULTS We demonstrate that all enzymes retain full catalytic activity in the quantum dot-enzyme bioconjugates in comparison to biotinylated enzyme alone. However, unlike alkaline phosphatase and acetylcholinesterase, the catalytic activity of hen egg white lysozyme was observed to be increasingly susceptible to ionic strength of medium with rising level of biotinylation. This susceptibility was attributed to arise from depletion of positive charge from lysine amino groups after biotinylation. CONCLUSIONS We reasoned that avidin-biotin linkage in the presence of a flexible seven atom spacer between biotin and enzyme poses no constraints to enzyme structure/dynamics enabling retention of full enzyme activity. GENERAL SIGNIFICANCE Overall our results demonstrate for the first time that streptavidin-biotin chemistry can yield quantum dot enzyme bioconjugates that retain full catalytic activity as native enzyme.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Anil Chandra
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rajaram Swaminathan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
17
|
Tu ZC. Stochastic heat engine with the consideration of inertial effects and shortcuts to adiabaticity. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052148. [PMID: 25353780 DOI: 10.1103/physreve.89.052148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Indexed: 06/04/2023]
Abstract
When a Brownian particle in contact with a heat bath at a constant temperature is controlled by a time-dependent harmonic potential, its distribution function can be rigorously derived from the Kramers equation with the consideration of the inertial effect of the Brownian particle. Based on this rigorous solution and the concept of shortcuts to adiabaticity, we construct a stochastic heat engine by employing the time-dependent harmonic potential to manipulate the Brownian particle to complete a thermodynamic cycle. We find that the efficiency at maximum power of this stochastic heat engine is equal to 1-sqrt[T(c)/T(h)], where T(c) and T(h) are the temperatures of the cold bath and the hot one in the thermodynamic cycle, respectively.
Collapse
Affiliation(s)
- Z C Tu
- Department of Physics, Beijing Normal University, Beijing 100875, China and Beijing Computational Science Research Center, Beijing 100084, China
| |
Collapse
|
18
|
Entin-Wohlman O, Jiang JH, Imry Y. Efficiency and dissipation in a two-terminal thermoelectric junction, emphasizing small dissipation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012123. [PMID: 24580188 DOI: 10.1103/physreve.89.012123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Indexed: 06/03/2023]
Abstract
The efficiency and cooling power of a two-terminal thermoelectric refrigerator are analyzed near the limit of vanishing dissipation (ideal system), where the optimal efficiency is the Carnot one, but the cooling power vanishes. This limit, where transport occurs only via a single sharp electronic energy, has been referred to as "strong coupling" or "the best thermoelectric." Confining the discussion to the linear-response regime, it is found that "parasitic" effects that make the system deviate from the ideal limit, and reduce the efficiency from the Carnot limit, are crucial for the usefulness of the device. Among these parasitics, there are: parallel phonon conduction, finite width of the electrons' transport band, and more than a single energy transport channel. In terms of a small parameter characterizing the deviation from the ideal limit, the efficiency and power grow linearly, and the dissipation quadratically. The results are generalized to the case of broken time-reversal symmetry, and the major nontrivial changes are discussed. Finally, the recent universal relation between the thermopower and the asymmetry of the dissipation between the two terminals is briefly discussed, including the small dissipation limit.
Collapse
Affiliation(s)
- O Entin-Wohlman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel and Department of Physics and the Ilse Katz Center for Meso- and Nano-Scale Science and Technology, Ben Gurion University, Beer Sheva 84105, Israel
| | - J-H Jiang
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Y Imry
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
19
|
Sheng S, Tu ZC. Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:012129. [PMID: 24580194 DOI: 10.1103/physreve.89.012129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Indexed: 06/03/2023]
Abstract
The concepts of weighted reciprocal of temperature and weighted thermal flux are proposed for a heat engine operating between two heat baths and outputting mechanical work. With the aid of these two concepts, the generalized thermodynamic fluxes and forces can be expressed in a consistent way within the framework of irreversible thermodynamics. Then the efficiency at maximum power output for a heat engine, one of key topics in finite-time thermodynamics, is investigated on the basis of a generic model under the tight-coupling condition. The corresponding results have the same forms as those of low-dissipation heat engines [ M. Esposito, R. Kawai, K. Lindenberg and C. Van den Broeck Phys. Rev. Lett. 105 150603 (2010)]. The mappings from two kinds of typical heat engines, such as the low-dissipation heat engine and the Feynman ratchet, into the present generic model are constructed. The universal efficiency at maximum power output up to the quadratic order is found to be valid for a heat engine coupled symmetrically and tightly with two baths. The concepts of weighted reciprocal of temperature and weighted thermal flux are also transplanted to the optimization of refrigerators.
Collapse
Affiliation(s)
- Shiqi Sheng
- Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Z C Tu
- Department of Physics, Beijing Normal University, Beijing 100875, China and Kavli Institute for Theoretical Physics China, CAS, Beijing 100190, China
| |
Collapse
|
20
|
Li C, Zhang Y, Wang J, He J. Performance characteristics and optimal analysis of a nanosized quantum dot photoelectric refrigerator. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062120. [PMID: 24483399 DOI: 10.1103/physreve.88.062120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/15/2013] [Indexed: 06/03/2023]
Abstract
We study the thermodynamic performance of a nanosized photoelectric refrigerator consisting of three coupled single-level quantum dots embedded between two reservoirs at different temperatures. Based on the quantum master equation, we derive expressions for the cooling power and coefficient of performance (COP) of the refrigerator and plot the characteristic curves between the cooling power and the COP. We analyze the optimal performance parameters under conditions of maximum cooling power and maximum COP, and we discuss the influence of the energy level difference and the temperature ratio on the optimal performance parameters in detail.
Collapse
Affiliation(s)
- Cong Li
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yanchao Zhang
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jianhui Wang
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jizhou He
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
21
|
Hooyberghs H, Cleuren B, Salazar A, Indekeu JO, Van den Broeck C. Efficiency at maximum power of a chemical engine. J Chem Phys 2013; 139:134111. [DOI: 10.1063/1.4821353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Tu ZC. Bounds and phase diagram of efficiency at maximum power for tight-coupling molecular motors. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:11. [PMID: 23404567 DOI: 10.1140/epje/i2013-13011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/08/2012] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
The efficiency at maximum power (EMP) for tight-coupling molecular motors is investigated within the framework of irreversible thermodynamics. It is found that the EMP depends merely on the constitutive relation between the thermodynamic current and force. The motors are classified into four generic types (linear, superlinear, sublinear, and mixed types) according to the characteristics of the constitutive relation, and then the corresponding ranges of the EMP for these four types of molecular motors are obtained. The exact bounds of the EMP are derived and expressed as the explicit functions of the free energy released by the fuel in each motor step. A phase diagram is constructed which clearly shows how the region where the parameters (the load distribution factor and the free energy released by the fuel in each motor step) are located can determine whether the value of the EMP is larger or smaller than 1/2. This phase diagram reveals that motors using ATP as fuel under physiological conditions can work at maximum power with higher efficiency (> 1/2) for a small load distribution factor (< 0.1).
Collapse
Affiliation(s)
- Z C Tu
- Department of Physics, Beijing Normal University, 100875, Beijing, China.
| |
Collapse
|
23
|
Seifert U. Stochastic thermodynamics, fluctuation theorems and molecular machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:126001. [PMID: 23168354 DOI: 10.1088/0034-4885/75/12/126001] [Citation(s) in RCA: 1282] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.
Collapse
Affiliation(s)
- Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|