1
|
Song J, Holten-Andersen N, McKinley GH. Non-Maxwellian viscoelastic stress relaxations in soft matter. SOFT MATTER 2023; 19:7885-7906. [PMID: 37846782 DOI: 10.1039/d3sm00736g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Viscoelastic stress relaxation is a basic characteristic of soft matter systems such as colloids, gels, and biological networks. Although the Maxwell model of linear viscoelasticity provides a classical description of stress relaxation, it is often not sufficient for capturing the complex relaxation dynamics of soft matter. In this Tutorial, we introduce and discuss the physics of non-Maxwellian linear stress relaxation as observed in soft materials, the ascribed origins of this effect in different systems, and appropriate models that can be used to capture this relaxation behavior. We provide a basic toolkit that can assist the understanding and modeling of the mechanical relaxation of soft materials for diverse applications.
Collapse
Affiliation(s)
- Jake Song
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Niels Holten-Andersen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Handa R, Wagner C, Fiscina JE. Viscoelastic response of confined powder under large strain oscillations, characterized by its noise temperature. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:54. [PMID: 37452888 PMCID: PMC10349773 DOI: 10.1140/epje/s10189-023-00310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
We report a study on granular matter with and without small additions of silicon oil, under low-frequency and large amplitude oscillatory shear strain under constant normal pressure, by running experiments with a rotational rheometer with a cup-and-plate geometry. We analysed the expansion with the Chebyshev polynomials of the orthogonal decomposition of stress-strain Lissajous-Bowditch loops. We found the onset of the strain amplitude for the yielding regime indicated a regime change from filament-like structures of grains to grain rearrangements for the dry granulate and from oscillations to the breaking and regeneration of liquid bridges for wet granulates. We have shown that this viscoelastic dynamics can be characterized by a noise temperature following Sollich et al. (Phys Rev Lett https://doi.org/10.1103/PhysRevLett.78.2020 , 1997). The analysis of the first harmonics of the Chebyshev expansion showed that the state of disorder of dry and wet granular matter in pre-yielding and yielding regimes involved ensembles of different inherent states; thus, each of them was governed by a different noise temperature. The higher-order harmonics of the Chebyshev expansion revealed a proportionality between the viscous nonlinearity and the variation in the elastic nonlinearity induced by the deformation, which shows the coupling between the elastic deformation and the viscous flow of mesoscopic-scale structures.
Collapse
Affiliation(s)
- Rishab Handa
- Powderreg Project Cross-Border Cooperation, European Union, 54505, Vandoeuvre-lès-Nancy, France
- Experimental Physics, Saarland University, Im Stadtwald, 66123, Saarbrücken, Saarland, Germany
| | - Christian Wagner
- Powderreg Project Cross-Border Cooperation, European Union, 54505, Vandoeuvre-lès-Nancy, France
- Experimental Physics, Saarland University, Im Stadtwald, 66123, Saarbrücken, Saarland, Germany
- Department of Physics and Materials Science, University of Luxembourg, L1511, Luxembourg, Luxembourg
| | - Jorge Eduardo Fiscina
- Powderreg Project Cross-Border Cooperation, European Union, 54505, Vandoeuvre-lès-Nancy, France.
- Experimental Physics, Saarland University, Im Stadtwald, 66123, Saarbrücken, Saarland, Germany.
| |
Collapse
|
3
|
Zeng Z, Zhang S, Zheng X, Xia C, Kob W, Yuan Y, Wang Y. Equivalence of Fluctuation-Dissipation and Edwards' Temperature in Cyclically Sheared Granular Systems. PHYSICAL REVIEW LETTERS 2022; 129:228004. [PMID: 36493438 DOI: 10.1103/physrevlett.129.228004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Using particle trajectory data obtained from x-ray tomography, we determine two kinds of effective temperatures in a cyclically sheared granular system. The first one is obtained from the fluctuation-dissipation theorem which relates the diffusion and mobility of lighter tracer particles immersed in the system. The second is the Edwards compactivity defined via the packing volume fluctuations. We find robust agreement between these two temperatures, independent of the type of the tracers, cyclic shear amplitudes, and particle surface roughness, giving therefore the first experimental evidence that the concept of effective temperature is valid in driven frictional granular systems.
Collapse
Affiliation(s)
- Zhikun Zeng
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuyang Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Zheng
- Department of Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| | - Chengjie Xia
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Walter Kob
- Laboratoire Charles Coulomb, University of Montpellier and CNRS, 34095 Montpellier, France
| | - Ye Yuan
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yujie Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
- Department of Physics, College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
4
|
Exploring canyons in glassy energy landscapes using metadynamics. Proc Natl Acad Sci U S A 2022; 119:e2210535119. [PMID: 36256806 PMCID: PMC9618120 DOI: 10.1073/pnas.2210535119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complex physics of glass-forming systems is controlled by the structure of the low-energy portions of their potential energy landscapes. Here we report that a modified metadynamics algorithm efficiently explores and samples low-energy regions of such high-dimensional landscapes. In the energy landscape for a model foam, our algorithm finds and descends meandering canyons in the landscape, which contain dense clusters of energy minima along their floors. Similar canyon structures in the energy landscapes of two model glass formers—hard sphere fluids and the Kob–Andersen glass—allow us to reach high densities and low energies, respectively. In the hard sphere system, fluid configurations are found to form continuous regions that cover the canyon floors up to densities well above the jamming transition. For the Kob–Andersen glass former, our technique samples low-energy states with modest computational effort, with the lowest energies found approaching the predicted Kauzmann limit.
Collapse
|
5
|
Abstract
Abstract
The review presents current research results for Carbopol-based microgels as yield-stress materials, covering three aspects: chemical, physical and rheological. Such a joint three-aspect study has no analog in the literature. The chemical aspects of Carbopol polymers are presented in terms of a cross-linking polymerization of acrylic acid, their molecular structure, microgel formulation, polyacid dissociation and neutralization, osmotic pressure and associated immense microgel swelling. The physical characterization is focused on models of the shear-induced solid-to-liquid transition of microgels, which are formed of mesoscopic particles typical for soft matter materials. Models that describe interparticle effects are presented to explain the energy states of microgel particles at the mesoscale of scrutiny. Typical representatives of the models utilize attributes of jamming dispersions, micromechanical and polyelectrolyte reactions. Selected relationships that result from the models, such as scaling rules and nondimensional flow characteristics are also presented. The rheological part presents the discussion of problems of yield stress in 2D and 3D deformations, appearance and magnitude of the wall slip. The theory and characteristics of Carbopol microgel deformation in rotational rheometers are presented with graphs for the steady-state measurements, stress-controlled oscillation and two types of transient shear deformation. The review is concluded with suggestions for future research.
Collapse
Affiliation(s)
- Zdzisław Jaworski
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Tadeusz Spychaj
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Anna Story
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| | - Grzegorz Story
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology , Aleja Piastow 42 , 71-065 , Szczecin , Poland
| |
Collapse
|
6
|
Schwen EM, Ramaswamy M, Cheng CM, Jan L, Cohen I. Embedding orthogonal memories in a colloidal gel through oscillatory shear. SOFT MATTER 2020; 16:3746-3752. [PMID: 32239003 DOI: 10.1039/c9sm02222h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has recently been shown that in a broad class of disordered systems oscillatory shear training can embed memories of specific shear protocols in relevant physical parameters such as the yield strain. These shear protocols can be used to change the physical properties of the system and memories of the protocol can later be "read" out. Here we investigate shear training memories in colloidal gels, which include an attractive interaction and network structure, and discover that such systems can support memories both along and orthogonal to the training flow direction. We use oscillatory shear protocols to set and read out the yield strain memories and confocal microscopy to analyze the rearranging gel structure throughout the shear training. We find that the gel bonds remain largely isotropic in the shear-vorticity plane throughout the training process suggesting that structures formed to support shear along the training shear plane are also able to support shear along the orthogonal plane. Orthogonal memory extends the usefulness of shear memories to more applications and should apply to many other disordered systems as well.
Collapse
Affiliation(s)
- Eric M Schwen
- Department of Physics, Cornell University, Ithaca, NY 14850, USA.
| | - Meera Ramaswamy
- Department of Physics, Cornell University, Ithaca, NY 14850, USA.
| | | | - Linda Jan
- Xerox Corporation, Rochester, NY 14605, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
7
|
Hoy RS. Thermalization of plastic flow versus stationarity of thermomechanical equilibrium in SGR theory. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:2. [PMID: 30617641 DOI: 10.1140/epje/i2019-11763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
We discuss issues related to thermalization of plastic flow in the context of soft glassy rheology (SGR) theory. An apparent problem with the theory in its current form is that the stationarity of thermomechanical equilibrium obtained by requiring that its flow rule satisfy detailed balance in the absence of applied deformation requires plastic flow to be athermal. This prevents proper application of SGR to small-molecule and polymer glasses where plastic flow is often well thermalized. Clearly, one would like to have a SGR-like theory of thermalized plastic flow that satisfies stationarity. We discuss reasons why such a theory could prove very useful and clarify obstacles that must be overcome in order to develop it.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, 33620, Tampa, FL, USA.
| |
Collapse
|
8
|
Abstract
We present a version of soft glassy rheology that includes thermalized strain degrees of freedom. It fully specifies systems' strain-history-dependent positions on their energy landscapes and therefore allows for quantitative analysis of their heterogeneous yielding dynamics and nonequilibrium deformation thermodynamics. As a demonstration of the method, we illustrate the very different characteristics of fully thermal and nearly athermal plasticity by comparing results for thermalized and nonthermalized plastic flow.
Collapse
Affiliation(s)
- Robert S Hoy
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
9
|
Derzsi L, Filippi D, Mistura G, Pierno M, Lulli M, Sbragaglia M, Bernaschi M, Garstecki P. Fluidization and wall slip of soft glassy materials by controlled surface roughness. Phys Rev E 2017; 95:052602. [PMID: 28618470 DOI: 10.1103/physreve.95.052602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Indexed: 05/04/2023]
Abstract
We present a comprehensive study of concentrated emulsions flowing in microfluidic channels, one wall of which is patterned with micron-size equally spaced grooves oriented perpendicularly to the flow direction. We find a scaling law describing the roughness-induced fluidization as a function of the density of the grooves, thus fluidization can be predicted and quantitatively regulated. This suggests common scenarios for droplet trapping and release, potentially applicable for other jammed systems as well. Numerical simulations confirm these views and provide a direct link between fluidization and the spatial distribution of plastic rearrangements.
Collapse
Affiliation(s)
- Ladislav Derzsi
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Daniele Filippi
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Giampaolo Mistura
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Matteo Pierno
- Dipartimento di Fisica e Astronomia "G. Galilei"-DFA and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Matteo Lulli
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1, 00133 Roma, Italy
| | - Mauro Sbragaglia
- Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1, 00133 Roma, Italy
| | - Massimo Bernaschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini, 9, 00185 Roma, Italy
| | - Piotr Garstecki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
10
|
Hwang HJ, Riggleman RA, Crocker JC. Understanding soft glassy materials using an energy landscape approach. NATURE MATERIALS 2016; 15:1031-1036. [PMID: 27322823 DOI: 10.1038/nmat4663] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Many seemingly different soft materials-such as soap foams, mayonnaise, toothpaste and living cells-display strikingly similar viscoelastic behaviour. A fundamental physical understanding of such soft glassy rheology and how it can manifest in such diverse materials, however, remains unknown. Here, by using a model soap foam consisting of compressible spherical bubbles, whose sizes slowly evolve and whose collective motion is simply dictated by energy minimization, we study the foam's dynamics as it corresponds to downhill motion on an energy landscape function spanning a high-dimensional configuration space. We find that these downhill paths, when viewed in this configuration space, are, surprisingly, fractal. The complex behaviour of our model, including power-law rheology and non-diffusive bubble motion and avalanches, stems directly from the fractal dimension and energy function of these paths. Our results suggest that ubiquitous soft glassy rheology may be a consequence of emergent fractal geometry in the energy landscapes of many complex fluids.
Collapse
Affiliation(s)
- Hyun Joo Hwang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 S. 33rd Street, Philadelphia, Pennsylvania 19104-6393, USA
| | - Robert A Riggleman
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 S. 33rd Street, Philadelphia, Pennsylvania 19104-6393, USA
| | - John C Crocker
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 220 S. 33rd Street, Philadelphia, Pennsylvania 19104-6393, USA
| |
Collapse
|
11
|
Benzi R, Sbragaglia M, Bernaschi M, Succi S, Toschi F. Cooperativity flows and shear-bandings: a statistical field theory approach. SOFT MATTER 2016; 12:514-530. [PMID: 26486875 DOI: 10.1039/c5sm01862e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cooperativity effects have been proposed to explain the non-local rheology in the dynamics of soft jammed systems. Based on the analysis of the free-energy model proposed by L. Bocquet, A. Colin and A. Ajdari, Phys. Rev. Lett., 2009, 103, 036001, we show that cooperativity effects resulting from the non-local nature of the fluidity (inverse viscosity) are intimately related to the emergence of shear-banding configurations. This connection materializes through the onset of inhomogeneous compact solutions (compactons), wherein the fluidity is confined to finite-support subregions of the flow and strictly zero elsewhere. The compacton coexistence with regions of zero fluidity ("non-flowing vacuum") is shown to be stabilized by the presence of mechanical noise, which ultimately shapes up the equilibrium distribution of the fluidity field, the latter acting as an order parameter for the flow-noflow transitions occurring in the material.
Collapse
Affiliation(s)
- R Benzi
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - M Sbragaglia
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - M Bernaschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - S Succi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - F Toschi
- Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, 00185 Rome, Italy and Department of Physics and Department of Mathematics and Computer Science and J. M. Burgerscentrum, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| |
Collapse
|
12
|
Medvedev GA, Caruthers JM. On Thermodynamic Consistency of a Stochastic Constitutive Model for Glassy Polymers. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grigori A. Medvedev
- School of Chemical Engineering Purdue University West Lafayette, Indiana 47907, United States
| | - James M. Caruthers
- School of Chemical Engineering Purdue University West Lafayette, Indiana 47907, United States
| |
Collapse
|
13
|
Shu R, Sun W, Liu X, Tong Z. Temperature dependence of aging kinetics of hectorite clay suspensions. J Colloid Interface Sci 2015; 444:132-40. [PMID: 25594804 DOI: 10.1016/j.jcis.2014.12.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/11/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
Abstract
The aging of salt-free hectorite suspensions with different concentrations (c(L)=2.9, 3.2 and 3.5 wt%) stored for 2 days or 4 days was studied by rheology at different temperatures. The evolution of storage and loss moduli G' and G″ during aging followed aging time-temperature superposition. The temperature dependence of the shift factor a(T), which reflected the aging kinetics, was interpreted by the reaction-limited colloidal aggregation (RLCA) mechanism with counterion condensation in calculating the double-layer interaction of the charged clay particles. Temperature dependence of the plateau modulus and yield stress of the suspension aged for 800 s was modeled with the soft glassy rheology (SGR) theory. The estimated noise temperature x indicated that the sample aged at higher temperature corresponded to a deeper quench in the nonergodic state. Under larger amplitude of oscillatory shear, the suspension exhibited a strain rate-frequency superposition (SRFS). The shearing eliminated the effects of aging and heating.
Collapse
Affiliation(s)
- Ruiwen Shu
- Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Weixiang Sun
- Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| | - Xinxing Liu
- Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhen Tong
- Research Institute of Materials Science and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
14
|
Benzi R, Sbragaglia M, Scagliarini A, Perlekar P, Bernaschi M, Succi S, Toschi F. Internal dynamics and activated processes in soft-glassy materials. SOFT MATTER 2015; 11:1271-1280. [PMID: 25560202 DOI: 10.1039/c4sm02341b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Plastic rearrangements play a crucial role in the characterization of soft-glassy materials, such as emulsions and foams. Based on numerical simulations of soft-glassy systems, we study the dynamics of plastic rearrangements at the hydrodynamic scales where thermal fluctuations can be neglected. Plastic rearrangements require an energy input, which can be either provided by external sources, or made available through time evolution in the coarsening dynamics, in which the total interfacial area decreases as a consequence of the slow evolution of the dispersed phase from smaller to large droplets/bubbles. We first demonstrate that our hydrodynamic model can quantitatively reproduce such coarsening dynamics. Then, considering periodically oscillating strains, we characterize the number of plastic rearrangements as a function of the external energy-supply, and show that they can be regarded as activated processes induced by a suitable "noise" effect. Here we use the word noise in a broad sense, referring to the internal non-equilibrium dynamics triggered by spatial random heterogeneities and coarsening. Finally, by exploring the interplay between the internal characteristic time-scale of the coarsening dynamics and the external time-scale associated with the imposed oscillating strain, we show that the system exhibits the phenomenon of stochastic resonance, thereby providing further credit to the mechanical activation scenario.
Collapse
Affiliation(s)
- R Benzi
- Department of Physics and INFN, University of "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Lerner E, Bailey NP, Dyre JC. Density scaling and quasiuniversality of flow-event statistics for athermal plastic flows. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052304. [PMID: 25493793 DOI: 10.1103/physreve.90.052304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 06/04/2023]
Abstract
Athermal steady-state plastic flows were simulated for the Kob-Andersen binary Lennard-Jones system and its repulsive version in which the sign of the attractive terms is changed to a plus. Properties evaluated include the distributions of energy drops, stress drops, and strain intervals between the flow events. We show that simulations at a single density in conjunction with an equilibrium-liquid simulation at the same density allow one to predict the plastic flow-event statistics at other densities. This is done by applying the recently established "hidden scale invariance" of simple liquids to the glass phase. The resulting scaling of flow-event properties reveals quasiuniversality, i.e., that the probability distributions of energy drops, stress drops, and strain intervals in properly reduced units are virtually independent of the microscopic pair potentials.
Collapse
Affiliation(s)
- Edan Lerner
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York 10003
| | - Nicholas P Bailey
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- DNRF Centre "Glass and Time," IMFUFA, Department of Sciences, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
17
|
Cao Y, Zhang X, Kou B, Li X, Xiao X, Fezzaa K, Wang Y. A dynamic synchrotron X-ray imaging study of effective temperature in a vibrated granular medium. SOFT MATTER 2014; 10:5398-5404. [PMID: 24930865 DOI: 10.1039/c4sm00602j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a dynamic synchrotron X-ray imaging study of the effective temperature Teff in a vibrated granular medium. By tracking the directed motion and the fluctuation dynamics of the tracers inside, we obtained Teff of the system using the Einstein relationship. We found that as the system unjams with increasing vibration intensities Γ, the structural relaxation time τ increases substantially which can be fitted by an Arrhenius law using Teff. And the characteristic energy scale of structural relaxation yielded by the Arrhenius fitting is E = 0.20 ± 0.02pd(3), where p is the pressure and d is the background particle diameter, which is consistent with those from hard sphere simulations in which the structural relaxation happens via the opening up of free volume against pressure.
Collapse
Affiliation(s)
- Yixin Cao
- Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Fan Y, Yildiz B, Yip S. Analogy between glass rheology and crystal plasticity: yielding at high strain rate. SOFT MATTER 2013; 9:9511-9514. [PMID: 26029756 DOI: 10.1039/c3sm50337b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An abrupt increase of the yield stress at sufficiently high strain rate, seen in glassy as well as crystalline structures, signifies a transition from classical thermal fluctuation to stress activated processes. For crystals this behavior has been recently explained using transition-state-theory with a stress-dependent activation barrier for dislocation glide. An equivalent approach, developed independently for amorphous solids, suggests the physical basis of the upturn behavior of the yield stress is more general. Insights into the interplay between thermal and stress activation processes can contribute to the current efforts toward identifying materials science frontiers at the mesoscale.
Collapse
Affiliation(s)
- Yue Fan
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
19
|
Fuereder I, Ilg P. Nonequilibrium thermodynamics of the soft glassy rheology model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:042134. [PMID: 24229142 DOI: 10.1103/physreve.88.042134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Indexed: 06/02/2023]
Abstract
The soft glassy rheology (SGR) model is a mesoscopic framework which proved to be very successful in describing flow and deformation of various amorphous materials phenomenologically (e.g., pastes, slurries, foams, etc.). In this paper, we cast SGR in a general, model-independent framework for nonequilibrium thermodynamics called general equation for the nonequilibrium reversible-irreversible coupling. This leads to a formulation of SGR which clarifies how it can properly be coupled to hydrodynamic fields, resulting in a thermodynamically consistent, local, continuum version of SGR. Additionally, we find that compliance with thermodynamics imposes the existence of a modification to the stress tensor as predicted by SGR.
Collapse
Affiliation(s)
- Ingo Fuereder
- ETH Zurich, Department of Materials, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
20
|
Ren J, Dijksman JA, Behringer RP. Reynolds pressure and relaxation in a sheared granular system. PHYSICAL REVIEW LETTERS 2013; 110:018302. [PMID: 23383846 DOI: 10.1103/physrevlett.110.018302] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Indexed: 06/01/2023]
Abstract
We describe experiments that probe the evolution of shear jammed states, occurring for packing fractions [symbol: see text](S) ≤ [symbol: see text] ≤ [symbol: see text] J, for frictional granular disks, where above [symbol: see text]J there are no stress-free static states. We use a novel shear apparatus that avoids the formation of inhomogeneities known as shear bands. This fixed [symbol: see text] system exhibits coupling between the shear strain, γ, and the pressure, P, which we characterize by the "Reynolds pressure" and a "Reynolds coefficient," R([symbol: see text]) = (∂(2)P/∂γ(2))/2. R depends only on [symbol: see text] and diverges as R ~ ([symbol: see text])c - )(α), where [symbol: see text](c) ~/= [symbol: see text](J) and α ~/= -3.3. Under cyclic shear, this system evolves logarithmically slowly towards limit cycle dynamics, which we characterize in terms of pressure relaxation at cycle n: ΔP ~/= -βln (n/n(0)). β depends only on the shear cycle amplitude, suggesting an activated process where β plays a temperaturelike role.
Collapse
Affiliation(s)
- Jie Ren
- Department of Physics & Center for Non-linear and Complex Systems, Duke University, Science Drive, Durham, North Carolina 27708-0305, USA
| | | | | |
Collapse
|