Aarão Reis FDA. Normal dynamic scaling in the class of the nonlinear molecular-beam-epitaxy equation.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013;
88:022128. [PMID:
24032796 DOI:
10.1103/physreve.88.022128]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/31/2013] [Indexed: 06/02/2023]
Abstract
The scaling of local height fluctuations is studied numerically in lattice growth models of the class of the nonlinear stochastic equation of Villain-Lai-Das Sarma (VLDS) in substrate dimensions d=1 and 2. In d=1, the average local slopes of the conserved restricted solid-on-solid (CRSOS) models converge to a finite value in the long-time limit, with power-law corrections in time whose exponents are close to 0.1. Other VLDS models in d=1, such as that of Das Sarma and Tamborenea, show a divergence of local slopes up to 10(6) monolayers, typical of anomalous roughening, but a comparison of roughness distributions shows that they scale as the linear fourth-order growth equation in those time scales. Normal scaling is also obtained in a modified VLDS equation with instability suppression, in contrast to recent numerical works. In d=2, a CRSOS model and a model with lateral aggregation of diffusing particles show normal scaling of the local slopes, also with small correction exponents. These results consistently show that the VLDS class has normal dynamic scaling in d=1 and 2, in agreement with the theoretical predictions of Phys. Rev. Lett. 94, 166103 (2005), and they show that the apparently anomalous features observed in previous works are effects of large scaling correction terms or crossover effects.
Collapse