1
|
Oliveira TJ. Kardar-Parisi-Zhang universality class in (d+1)-dimensions. Phys Rev E 2022; 106:L062103. [PMID: 36671175 DOI: 10.1103/physreve.106.l062103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The determination of the exact exponents of the KPZ class in any substrate dimension d is one of the most important open issues in Statistical Physics. Based on the behavior of the dimensional variation of some exact exponent differences for other growth equations, I find here that the KPZ growth exponents (related to the temporal scaling of the fluctuations) are given by β_{d}=7/8d+13. These exponents present an excellent agreement with the most accurate estimates for them in the literature. Moreover, they are confirmed here through extensive Monte Carlo simulations of discrete growth models and real-space renormalization group (RG) calculations for directed polymers in random media (DPRM), up to d=15. The left-tail exponents of the probability density functions for the DPRM energy provide another striking verification of the analytical result above.
Collapse
Affiliation(s)
- Tiago J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| |
Collapse
|
2
|
Wiese KJ. Theory and experiments for disordered elastic manifolds, depinning, avalanches, and sandpiles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086502. [PMID: 35943081 DOI: 10.1088/1361-6633/ac4648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 12/23/2021] [Indexed: 06/15/2023]
Abstract
Domain walls in magnets, vortex lattices in superconductors, contact lines at depinning, and many other systems can be modeled as an elastic system subject to quenched disorder. The ensuing field theory possesses a well-controlled perturbative expansion around its upper critical dimension. Contrary to standard field theory, the renormalization group (RG) flow involves a function, the disorder correlator Δ(w), and is therefore termed the functional RG. Δ(w) is a physical observable, the auto-correlation function of the center of mass of the elastic manifold. In this review, we give a pedagogical introduction into its phenomenology and techniques. This allows us to treat both equilibrium (statics), and depinning (dynamics). Building on these techniques, avalanche observables are accessible: distributions of size, duration, and velocity, as well as the spatial and temporal shape. Various equivalences between disordered elastic manifolds, and sandpile models exist: an elastic string driven at a point and the Oslo model; disordered elastic manifolds and Manna sandpiles; charge density waves and Abelian sandpiles or loop-erased random walks. Each of the mappings between these systems requires specific techniques, which we develop, including modeling of discrete stochastic systems via coarse-grained stochastic equations of motion, super-symmetry techniques, and cellular automata. Stronger than quadratic nearest-neighbor interactions lead to directed percolation, and non-linear surface growth with additional Kardar-Parisi-Zhang (KPZ) terms. On the other hand, KPZ without disorder can be mapped back to disordered elastic manifolds, either on the directed polymer for its steady state, or a single particle for its decay. Other topics covered are the relation between functional RG and replica symmetry breaking, and random-field magnets. Emphasis is given to numerical and experimental tests of the theory.
Collapse
Affiliation(s)
- Kay Jörg Wiese
- Laboratoire de physique, Département de physique de l'ENS, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 75005 Paris, France
| |
Collapse
|
3
|
Nakayama Y, Nishida Y. Efimov effect at the Kardar-Parisi-Zhang roughening transition. Phys Rev E 2021; 103:012117. [PMID: 33601523 DOI: 10.1103/physreve.103.012117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
Surface growth governed by the Kardar-Parisi-Zhang (KPZ) equation in dimensions higher than two undergoes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that the KPZ equation can be mapped onto quantum mechanics of attractive bosons with a contact interaction, where the roughening transition corresponds to a binding transition of two bosons with increasing the attraction. Such critical bosons in three dimensions actually exhibit the Efimov effect, where a three-boson coupling turns out to be relevant under the renormalization group so as to break the scale invariance down to a discrete one. On the basis of these facts linking the two distinct subjects in physics, we predict that the KPZ roughening transition in three dimensions shows either the discrete scale invariance or no intrinsic scale invariance.
Collapse
Affiliation(s)
- Yu Nakayama
- Department of Physics, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Yusuke Nishida
- Department of Physics, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|
4
|
Gomes WP, Penna ALA, Oliveira FA. From cellular automata to growth dynamics: The Kardar-Parisi-Zhang universality class. Phys Rev E 2019; 100:020101. [PMID: 31574642 DOI: 10.1103/physreve.100.020101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate that in the continuous limit the etching mechanism yields the Kardar-Parisi-Zhang (KPZ) equation in a (d+1)-dimensional space. We show that the parameters ν, associated with the surface tension, and λ, associated with the nonlinear term of the KPZ equation, are not phenomenological, but rather they stem from a new probability distribution function. The Galilean invariance is recovered independently of d, and we illustrate this via very precise numerical simulations. We obtain firsthand the coupling parameter as a function of the probabilities. In addition, we strengthen the argument that there is no upper critical limit for the KPZ equation.
Collapse
Affiliation(s)
| | - André L A Penna
- Instituto de Física, Universidade de Brasília, Brazil
- International Center for Condensed Matter Physics, CP 04455, 70919-970 Brasília DF, Brazil
| | - Fernando A Oliveira
- Instituto de Física, Universidade de Brasília, Brazil
- International Center for Condensed Matter Physics, CP 04455, 70919-970 Brasília DF, Brazil
| |
Collapse
|
5
|
Kim JM. Zero-temperature directed polymer in random potential in 4+1 dimensions. Phys Rev E 2017; 94:062149. [PMID: 28085341 DOI: 10.1103/physreve.94.062149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 11/07/2022]
Abstract
Zero-temperature directed polymer in random potential in 4+1 dimensions is described. The fluctuation ΔE(t) of the lowest energy of the polymer varies as t^{β} with β=0.159±0.007 for polymer length t and ΔE follows ΔE(L)∼L^{α} at saturation with α=0.275±0.009, where L is the system size. The dynamic exponent z≈1.73 is obtained from z=α/β. The estimated values of the exponents satisfy the scaling relation α+z=2 very well. We also monitor the end to end distance of the polymer and obtain z independently. Our results show that the upper critical dimension of the Kardar-Parisi-Zhang equation is higher than d=4+1 dimensions.
Collapse
Affiliation(s)
- Jin Min Kim
- Department of Physics and Research Institute for the Origin of Matter and the Evolution of Galaxies, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
6
|
Alves SG, Ferreira SC. Scaling, cumulant ratios, and height distribution of ballistic deposition in 3+1 and 4+1 dimensions. Phys Rev E 2016; 93:052131. [PMID: 27300853 DOI: 10.1103/physreve.93.052131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 06/06/2023]
Abstract
We investigate the origin of the scaling corrections in ballistic deposition models in high dimensions using the method proposed by Alves et al. [Phys. Rev. E 90, 052405 (2014)PLEEE81539-375510.1103/PhysRevE.90.052405] in d=2+1 dimensions, where the intrinsic width associated with the fluctuations of the height increments during the deposition processes is explicitly taken into account. In the present work, we show that this concept holds for d=3+1 and 4+1 dimensions. We have found that growth and roughness exponents and dimensionless cumulant ratios are in agreement with other models, presenting small finite-time corrections to the scaling, that in principle belong to the Kardar-Parisi-Zhang (KPZ) universality class in both d=3+1 and 4+1. Our results constitute further evidence that the upper critical dimension of the KPZ class, if it exists, is larger than 4.
Collapse
Affiliation(s)
- Sidiney G Alves
- Departamento de Física e Matemática, Universidade Federal de São João Del Rei, 36420-000 Ouro Branco, MG, Brazil
| | - Silvio C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| |
Collapse
|
7
|
Gueudre T, Le Doussal P, Bouchaud JP, Rosso A. Ground-state statistics of directed polymers with heavy-tailed disorder. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062110. [PMID: 26172664 DOI: 10.1103/physreve.91.062110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 06/04/2023]
Abstract
In this mostly numerical study, we reconsider the statistical properties of the ground state of a directed polymer in a d=1+1 "hilly" disorder landscape, i.e., when the quenched disorder has power-law tails. When disorder is Gaussian, the polymer minimizes its total energy through a collective optimization, where the energy of each visited site only weakly contributes to the total. Conversely, a hilly landscape forces the polymer to distort and explore a larger portion of space to reach some particularly deep energy sites. As soon as the fifth moment of the disorder diverges, this mechanism radically changes the standard Kardar-Parisi-Zhang scaling behavior of the directed polymer, and new exponents prevail. After confirming again that the Flory argument accurately predicts these exponents in the tail-dominated phase, we investigate several other statistical features of the ground state that shed light on this unusual transition and on the accuracy of the Flory argument. We underline the theoretical challenge posed by this situation, which paradoxically becomes even more acute above the upper critical dimension.
Collapse
Affiliation(s)
- Thomas Gueudre
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Cedex 05, Paris, France
| | - Pierre Le Doussal
- CNRS-Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Cedex 05, Paris, France
| | | | | |
Collapse
|
8
|
Alves SG, Oliveira TJ, Ferreira SC. Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:020103. [PMID: 25215669 DOI: 10.1103/physreve.90.020103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 06/03/2023]
Abstract
We show that the theoretical machinery developed for the Kardar-Parisi-Zhang (KPZ) class in low dimensions is obeyed by the restricted solid-on-solid model for substrates with dimensions up to d=6. Analyzing different restriction conditions, we show that the height distributions of the interface are universal for all investigated dimensions. It means that fluctuations are not negligible and, consequently, the system is still below the upper critical dimension at d=6. The extrapolation of the data to dimensions d≥7 predicts that the upper critical dimension of the KPZ class is infinite.
Collapse
Affiliation(s)
- S G Alves
- Departamento de Física, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - T J Oliveira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| | - S C Ferreira
- Departamento de Física, Universidade Federal de Viçosa, 36570-000, Viçosa, MG, Brazil
| |
Collapse
|
9
|
Kim JM, Kim SW. Restricted solid-on-solid model with a proper restriction parameter N in 4+1 dimensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:034102. [PMID: 24125386 DOI: 10.1103/physreve.88.034102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Indexed: 06/02/2023]
Abstract
A restricted solid-on-solid growth model is studied for various restriction parameters N in d=4+1 dimensions. The interface width W grows as t^{β} with β=0.158 ± 0.006 and W follows W∼L{α} at saturation with α=0.273 ± 0.009, where L is the system size. The dynamic exponent z≈1.73 is obtained from the relation z=α/β. The estimated exponents satisfy the scaling relation α+z=2 very well. Our results indicate that the upper critical dimension of the Kardar-Parisi-Zhang equation is larger than d=4+1 dimensions. With a proper choice of the restriction parameter N, we can reduce the discrete effect of the height to the width and obtain the values of the exponents accurately.
Collapse
Affiliation(s)
- Jin Min Kim
- Department of Physics and Institute for Integrative Basic Sciences, Soongsil University, Seoul 156-743, Korea
| | | |
Collapse
|
10
|
Boltz HH, Kierfeld J. Stiff directed lines in random media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012103. [PMID: 23944410 DOI: 10.1103/physreve.88.012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 06/02/2023]
Abstract
We investigate the localization of stiff directed lines with bending energy by a short-range random potential. We apply perturbative arguments, Flory scaling arguments, a variational replica calculation, and functional renormalization to show that a stiff directed line in 1+d dimensions undergoes a localization transition with increasing disorder for d>2/3. We demonstrate that this transition is accessible by numerical transfer matrix calculations in 1+1 dimensions and analyze the properties of the disorder-dominated phase in detail. On the basis of the two-replica problem, we propose a relation between the localization of stiff directed lines in 1+d dimensions and of directed lines under tension in 1+3d dimensions, which is strongly supported by identical free-energy distributions. This shows that pair interactions in the replicated Hamiltonian determine the nature of directed line localization transitions with consequences for the critical behavior of the Kardar-Parisi-Zhang equation. We support the proposed relation to directed lines via multifractal analysis, revealing an analogous Anderson transition-like scenario and a matching correlation length exponent. Furthermore, we quantify how the persistence length of the stiff directed line is reduced by disorder.
Collapse
|
11
|
Pagnani A, Parisi G. Multisurface coding simulations of the restricted solid-on-solid model in four dimensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:010102. [PMID: 23410269 DOI: 10.1103/physreve.87.010102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Indexed: 06/01/2023]
Abstract
We study the restricted solid-on-solid model for surface growth in spatial dimension d=4 by means of a multisurface coding technique that allows us to analyze samples of size up to 256(4) in the steady-state regime. For such large systems we are able to achieve a controlled asymptotic regime where the typical scale of the fluctuations are larger than the lattice spacing used in the simulations. A careful finite-size scaling analysis of the critical exponents clearly indicate that d=4 is not the upper critical dimension of the model.
Collapse
Affiliation(s)
- Andrea Pagnani
- Human Genetics Foundation (HuGeF), Via Nizza 52, I-10126 Turin, Italy
| | | |
Collapse
|
12
|
Boltz HH, Kierfeld J. Localization transition of stiff directed lines in random media. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:060102. [PMID: 23367882 DOI: 10.1103/physreve.86.060102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Indexed: 06/01/2023]
Abstract
We investigate the localization of stiff directed lines with bending energy by a short-range random potential. Using perturbative arguments, Flory arguments, and a replica calculation, we show that a stiff directed line in 1+d dimensions undergoes a localization transition with increasing disorder for d>2/3. We demonstrate that this transition is accessible by numerical transfer matrix calculations in 1+1 dimensions and analyze the properties of the disorder-dominated phase. On the basis of the two-replica problem, we propose a relation between the localization of stiff directed lines in 1+d dimensions and of directed lines under tension in 1+3d dimensions, which is strongly supported by identical free energy distributions. This shows that pair interactions in the replicated Hamiltonian determine the nature of directed line localization transitions with consequences for the critical behavior of the Kardar-Parisi-Zhang (KPZ) equation. Furthermore, we quantify how the persistence length of the stiff directed line is reduced by disorder.
Collapse
|
13
|
Kloss T, Canet L, Wschebor N. Nonperturbative renormalization group for the stationary Kardar-Parisi-Zhang equation: scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:051124. [PMID: 23214755 DOI: 10.1103/physreve.86.051124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Indexed: 06/01/2023]
Abstract
We investigate the strong-coupling regime of the stationary Kardar-Parisi-Zhang equation for interfaces growing on a substrate of dimension d = 1, 2, and 3 using a nonperturbative renormalization group (NPRG) approach. We compute critical exponents, correlation and response functions, extract the related scaling functions, and calculate universal amplitude ratios. We work with a simplified implementation of the second-order (in the response field) approximation proposed in a previous work [Phys. Rev. E 84, 061150 (2011) and Phys. Rev. E 86, 019904(E) (2012)], which greatly simplifies the frequency sector of the NPRG flow equations, while keeping a nontrivial frequency dependence for the two-point functions. The one-dimensional scaling function obtained within this approach compares very accurately with the scaling function obtained from the full second-order NPRG equations and with the exact scaling function. Furthermore, the approach is easily applicable to higher dimensions and we provide scaling functions and amplitude ratios in d = 2 and d = 3. We argue that our ansatz is reliable up to d [Symbol: see text] 3.5.
Collapse
Affiliation(s)
- Thomas Kloss
- Laboratoire de Physique et Modélisation des Milieux Condensés, CNRS UMR 5493, Université Joseph Fourier Grenoble I, BP166, 38042 Grenoble Cedex, France
| | | | | |
Collapse
|