1
|
Saryal S, Gerry M, Khait I, Segal D, Agarwalla BK. Universal Bounds on Fluctuations in Continuous Thermal Machines. PHYSICAL REVIEW LETTERS 2021; 127:190603. [PMID: 34797144 DOI: 10.1103/physrevlett.127.190603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
We study bounds on ratios of fluctuations in steady-state time-reversal energy conversion devices. In the linear response regime, we prove that the relative fluctuations (precision) of the output current (power) is always lower bounded by the relative fluctuations of the input current (heat current absorbed from the hot bath). As a consequence, the ratio between the fluctuations of the output and input currents are bounded both from above and below, where the lower (upper) bound is determined by the square of the averaged efficiency (square of the Carnot efficiency) of the engine. The saturation of the lower bound is achieved in the tight-coupling limit when the determinant of the Onsager response matrix vanishes. Our analysis can be applied to different operational regimes, including engines, refrigerators, and heat pumps. We illustrate our findings in two types of continuous engines: two-terminal coherent thermoelectric junctions and three-terminal quantum absorption refrigerators. Numerical simulations in the far-from-equilibrium regime suggest that these bounds apply more broadly, beyond linear response.
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Matthew Gerry
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - Ilia Khait
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - Dvira Segal
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
2
|
Saryal S, Sadekar O, Agarwalla BK. Thermodynamic uncertainty relation for energy transport in a transient regime: A model study. Phys Rev E 2021; 103:022141. [PMID: 33736118 DOI: 10.1103/physreve.103.022141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
We investigate a transient version of the recently discovered thermodynamic uncertainty relation (TUR) which provides a precision-cost trade-off relation for certain out-of-equilibrium thermodynamic observables in terms of net entropy production. We explore this relation in the context of energy transport in a bipartite setting for three exactly solvable toy model systems (two coupled harmonic oscillators, two coupled qubits, and a hybrid coupled oscillator-qubit system) and analyze the role played by the underlying statistics of the transport carriers in the TUR. Interestingly, for all these models, depending on the statistics, the TUR ratio can be expressed as a sum or a difference of a universal term which is always greater than or equal to 2 and a corresponding entropy production term. We find that the generalized version of the TUR, originating from the universal fluctuation symmetry, is always satisfied. However, interestingly, the specialized TUR, a tighter bound, is always satisfied for the coupled harmonic oscillator system obeying Bose-Einstein statistics. Whereas, for both the coupled qubit, obeying Fermi-like statistics, and the hybrid qubit-oscillator system with mixed Fermi-Bose statistics, violation of the tighter bound is observed in certain parameter regimes. We have provided conditions for such violations. We also provide a rigorous proof following the nonequilibrium Green's function approach that the tighter bound is always satisfied in the weak-coupling regime for generic bipartite systems.
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Onkar Sadekar
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
3
|
Kalantar N, Agarwalla BK, Segal D. On the definitions and simulations of vibrational heat transport in nanojunctions. J Chem Phys 2020; 153:174101. [PMID: 33167626 DOI: 10.1063/5.0027414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thermal transport through nanosystems is central to numerous processes in chemistry, material sciences, and electrical and mechanical engineering, with classical molecular dynamics as the key simulation tool. Here, we focus on thermal junctions with a molecule bridging two solids that are maintained at different temperatures. The classical steady state heat current in this system can be simulated in different ways, either at the interfaces with the solids, which are represented by thermostats, or between atoms within the conducting molecule. We show that while the latter, intramolecular definition feasibly converges to the correct limit, the molecule-thermostat interface definition is more challenging to converge to the correct result. The problem with the interface definition is demonstrated by simulating heat transport in harmonic and anharmonic one-dimensional chains illustrating unphysical effects such as thermal rectification in harmonic junctions.
Collapse
Affiliation(s)
- Na'im Kalantar
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
4
|
Saryal S, Friedman HM, Segal D, Agarwalla BK. Thermodynamic uncertainty relation in thermal transport. Phys Rev E 2019; 100:042101. [PMID: 31770984 DOI: 10.1103/physreve.100.042101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 11/07/2022]
Abstract
We use the fundamental nonequilibrium steady-state fluctuation symmetry and derive a condition on the validity of the thermodynamic uncertainty relation (TUR) in thermal transport problems, classical and quantum alike. We test this condition and study the breakdown of the TUR in different thermal transport junctions of bosonic and electronic degrees of freedom. We prove that the TUR is valid in harmonic oscillator junctions. In contrast, in the nonequilibrium spin-boson model, which realizes many-body effects, it is satisfied in the Markovian limit, but violations arise as we tune (reduce) the cutoff frequency of the thermal baths, thus observing non-Markovian dynamics. We consider heat transport by noninteracting electrons in a tight-binding chain model. We show that the TUR is feasibly violated by tuning, e.g., the hybridization energy of the chain to the metal leads. These results manifest that the validity of the TUR relies on the statistics of the participating carriers, their interaction, and the nature of their couplings to the macroscopic contacts (metal electrodes and phonon baths).
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Hava Meira Friedman
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
5
|
Kilgour M, Agarwalla BK, Segal D. Path-integral methodology and simulations of quantum thermal transport: Full counting statistics approach. J Chem Phys 2019; 150:084111. [PMID: 30823775 DOI: 10.1063/1.5084949] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop and test a computational framework to study heat exchange in interacting, nonequilibrium open quantum systems. Our iterative full counting statistics path integral (iFCSPI) approach extends a previously well-established influence functional path integral method, by going beyond reduced system dynamics to provide the cumulant generating function of heat exchange. The method is straightforward; we implement it for the nonequilibrium spin boson model to calculate transient and long-time observables, focusing on the steady-state heat current flowing through the system under a temperature difference. Results are compared to perturbative treatments and demonstrate good agreement in the appropriate limits. The challenge of converging nonequilibrium quantities, currents and high order cumulants, is discussed in detail. The iFCSPI, a numerically exact technique, naturally captures strong system-bath coupling and non-Markovian effects of the environment. As such, it is a promising tool for probing fundamental questions in quantum transport and quantum thermodynamics.
Collapse
Affiliation(s)
- Michael Kilgour
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhaba Road, Pune, India
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
6
|
Liu J, Hsieh CY, Segal D, Hanna G. Heat transfer statistics in mixed quantum-classical systems. J Chem Phys 2018; 149:224104. [PMID: 30553258 DOI: 10.1063/1.5066025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The modelling of quantum heat transfer processes at the nanoscale is crucial for the development of energy harvesting and molecular electronic devices. Herein, we adopt a mixed quantum-classical description of a device, in which the open subsystem of interest is treated quantum mechanically and the surrounding heat baths are treated in a classical-like fashion. By introducing such a mixed quantum-classical description of the composite system, one is able to study the heat transfer between the subsystem and bath from a closed system point of view, thereby avoiding simplifying assumptions related to the bath time scale and subsystem-bath coupling strength. In particular, we adopt the full counting statistics approach to derive a general expression for the moment generating function of heat in systems whose dynamics are described by the quantum-classical Liouville equation (QCLE). From this expression, one can deduce expressions for the dynamics of the average heat and heat current, which may be evaluated using numerical simulations. Due to the approximate nature of the QCLE, we also find that the steady state fluctuation symmetry holds up to order ℏ for systems whose subsystem-bath couplings and baths go beyond bilinear and harmonic, respectively. To demonstrate the approach, we consider the nonequilibrium spin boson model and simulate its time-dependent average heat and heat current under various conditions.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Chang-Yu Hsieh
- Singapore-MIT Alliance for Research and Technology (SMART) Center, 1 Create Way, Singapore 138602, Singapore
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| | - Gabriel Hanna
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
7
|
Liu J, Hsieh CY, Wu C, Cao J. Frequency-dependent current noise in quantum heat transfer: A unified polaron calculation. J Chem Phys 2018; 148:234104. [PMID: 29935498 DOI: 10.1063/1.5025367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To investigate frequency-dependent current noise (FDCN) in open quantum systems at steady states, we present a theory which combines Markovian quantum master equations with a finite time full counting statistics. Our formulation of the FDCN generalizes previous zero-frequency expressions and can be viewed as an application of MacDonald's formula for electron transport to heat transfer. As a demonstration, we consider the paradigmatic example of quantum heat transfer in the context of a non-equilibrium spin-boson model. We adopt a recently developed polaron-transformed Redfield equation which allows us to accurately investigate heat transfer with arbitrary system-reservoir coupling strength, arbitrary values of spin bias, and temperature differences. We observe a turn-over of FDCN in the intermediate coupling regimes, similar to the zero-frequency case. We find that the FDCN with varying coupling strengths or bias displays a universal Lorentzian-shape scaling form in the weak coupling regime, and a white noise spectrum emerges with zero bias in the strong coupling regime due to distinctive spin dynamics. We also find that the bias can suppress the FDCN in the strong coupling regime, in contrast to its zero-frequency counterpart which is insensitive to bias changes. Furthermore, we utilize the Saito-Utsumi relation as a benchmark to validate our theory and study the impact of temperature differences at finite frequencies. Together, our results provide detailed dissections of the finite time fluctuation of heat current in open quantum systems.
Collapse
Affiliation(s)
- Junjie Liu
- Singapore-MIT Alliance for Research and Technology (SMART) Center, 1 CREATE Way, Singapore 138602, Singapore
| | - Chang-Yu Hsieh
- Singapore-MIT Alliance for Research and Technology (SMART) Center, 1 CREATE Way, Singapore 138602, Singapore
| | - Changqin Wu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianshu Cao
- Singapore-MIT Alliance for Research and Technology (SMART) Center, 1 CREATE Way, Singapore 138602, Singapore
| |
Collapse
|
8
|
Zimbovskaya NA. Length-dependent Seebeck effect in single-molecule junctions beyond linear response regime. J Chem Phys 2017. [DOI: 10.1063/1.4983130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
9
|
Friedman HM, Agarwalla BK, Segal D. Effects of vibrational anharmonicity on molecular electronic conduction and thermoelectric efficiency. J Chem Phys 2017. [DOI: 10.1063/1.4965824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hava Meira Friedman
- Chemical Physics Theory Group, Department of Chemistry, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| | - Bijay Kumar Agarwalla
- Chemical Physics Theory Group, Department of Chemistry, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
10
|
Abstract
Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor-acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures.
Collapse
Affiliation(s)
- Galen T Craven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104; School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
11
|
Abstract
We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.
Collapse
Affiliation(s)
- Dvira Segal
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada;,
| | | |
Collapse
|
12
|
Agarwalla BK, Segal D. Reconciling perturbative approaches in phonon-assisted transport junctions. J Chem Phys 2016; 144:074102. [PMID: 26896971 DOI: 10.1063/1.4941582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present consistent results for molecular conduction using two central-complementary approaches: the non-equilibrium Green's function technique and the quantum master equation method. Our model describes electronic conduction in a donor-acceptor junction in which electron transfer is coupled to nuclear motion, modeled by a harmonic vibrational mode. This primary mode is further coupled to secondary phonon modes, a thermal bath. Assuming weak electron-phonon coupling but an arbitrary large molecule-metal hybridization, we compute several non-equilibrium transport quantities: the mean phonon number of the primary mode, charge current statistics. We further present scaling relations for the cumulants valid in the large voltage regime. Our analysis illustrates that the non-equilibrium Green's function technique and the quantum master equation method can be worked out consistently, when taking into account corresponding scattering processes.
Collapse
Affiliation(s)
- Bijay Kumar Agarwalla
- Chemical Physics Theory Group, Department of Chemistry, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
13
|
Agarwalla BK, Jiang JH, Segal D. Thermoelectricity in molecular junctions with harmonic and anharmonic modes. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2015; 6:2129-39. [PMID: 26665085 PMCID: PMC4660944 DOI: 10.3762/bjnano.6.218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
We study charge and energy transfer in two-site molecular electronic junctions in which electron transport is assisted by a vibrational mode. To understand the role of mode harmonicity/anharmonicity in transport behavior, we consider two limiting situations: (i) the mode is assumed harmonic, (ii) we truncate the mode spectrum to include only two levels, to represent an anharmonic mode. Based on the cumulant generating functions of the models, we analyze the linear-response and nonlinear performance of these junctions and demonstrate that while the electrical and thermal conductances are sensitive to whether the mode is harmonic/anharmonic, the Seebeck coefficient, the thermoelectric figure-of-merit, and the thermoelectric efficiency beyond linear response, conceal this information.
Collapse
Affiliation(s)
- Bijay Kumar Agarwalla
- Chemical Physics Theory Group, Department of Chemistry, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario, M5S 3H6, Canada
| | - Jian-Hua Jiang
- Department of Physics, Soochow University, 1 Shizi Street, Suzhou 215006, China
| | - Dvira Segal
- Chemical Physics Theory Group, Department of Chemistry, and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George St., Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
14
|
Agarwalla BK, Li H, Li B, Wang JS. Exchange fluctuation theorem for heat transport between multiterminal harmonic systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052101. [PMID: 25353734 DOI: 10.1103/physreve.89.052101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Indexed: 06/04/2023]
Abstract
We study full counting statistics for transferred heat and entropy production between multiterminal systems in absence of a finite junction. The systems are modeled as collections of coupled harmonic oscillators, which are kept at different equilibrium temperatures and are connected via arbitrary time-dependent couplings. Following consistent quantum framework and two-time measurement concept we obtain analytical expressions for the generalized cumulant generating function. We discuss transient and steady-state fluctuation theorems for the transferred quantities. We also address the effect of coupling strength on the exchange fluctuation theorem.
Collapse
Affiliation(s)
- Bijay Kumar Agarwalla
- Department of Physics and Center for Computational Science and Engineering, National University of Singapore, Singapore 117542, Republic of Singapore and Chemistry Department, University of California, Irvine, California 92697-2025, USA
| | - Huanan Li
- Department of Physics and Center for Computational Science and Engineering, National University of Singapore, Singapore 117542, Republic of Singapore
| | - Baowen Li
- Department of Physics and Center for Computational Science and Engineering, National University of Singapore, Singapore 117542, Republic of Singapore and NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Republic of Singapore and Center for Phononics and Thermal Energy Science, Department of Physics, Tongji University, 200092 Shanghai, China
| | - Jian-Sheng Wang
- Department of Physics and Center for Computational Science and Engineering, National University of Singapore, Singapore 117542, Republic of Singapore
| |
Collapse
|
15
|
Cuansing EC, Li H, Wang JS. Role of the on-site pinning potential in establishing quasi-steady-state conditions of heat transport in finite quantum systems. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031132. [PMID: 23030891 DOI: 10.1103/physreve.86.031132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Indexed: 06/01/2023]
Abstract
We study the transport of energy in a finite linear harmonic chain by solving the Heisenberg equation of motion, as well as by using nonequilibrium Green's functions to verify our results. The initial state of the system consists of two separate and finite linear chains that are in their respective equilibriums at different temperatures. The chains are then abruptly attached to form a composite chain. The time evolution of the current from just after switch-on to the transient regime and then to later times is determined numerically. We expect the current to approach a steady-state value at later times. Surprisingly, this is possible only if a nonzero quadratic on-site pinning potential is applied to each particle in the chain. If there is no on-site potential a recurrent phenomenon appears when the time scale is longer than the traveling time of sound to make a round trip from the midpoint to a chain edge and then back. Analytic expressions for the transient and steady-state currents are derived to further elucidate the role of the on-site potential.
Collapse
Affiliation(s)
- Eduardo C Cuansing
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Republic of Singapore.
| | | | | |
Collapse
|