1
|
Starzonek S, Kalabiński J, Drozd-Rzoska A, Rzoska SJ, Iglič A. Melting Temperature Hidden Behind Liquid-Liquid Phase Transition in Glycerol. J Phys Chem B 2025; 129:1670-1674. [PMID: 39848623 PMCID: PMC11808767 DOI: 10.1021/acs.jpcb.4c04552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
Liquid-liquid phase transitions play a pivotal role in various scientific disciplines and technological applications, ranging from biology to materials science and geophysics. Understanding the behavior of materials undergoing these transitions provides valuable insights into complex systems and their dynamic properties. This review explores the implications of liquid-liquid phase transitions, particularly focusing on the transition between low-density liquid (LDL) and high-density liquid (HDL) phases. We investigate the thermodynamic, structural, and mechanistic aspects of these transitions, emphasizing their relevance in diverse fields. The creation of dynamic heterogeneities and critical fluctuations during liquid-liquid phase transitions is discussed, highlighting their role in shaping the phase behavior and dynamics of complex fluids. Experimental observations, including the use of dielectric spectroscopy and nonlinear methods, shed light on the intricate nature of these transitions. Our findings suggest a connection between liquid-liquid phase transitions and critical phenomena, with implications for understanding the supercooled state and phase behavior of hydrogen-bonded liquids such as glycerol. Overall, this review underscores the importance of interdisciplinary approaches in unraveling the complexities of liquid-liquid phase behavior and addressing fundamental questions.
Collapse
Affiliation(s)
- Szymon Starzonek
- Institute
of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Kraków 30-348, Poland
| | - Jakub Kalabiński
- Institute
of High Pressure Physics of the Polish Academy of Sciences, Warsaw 01-142, Poland
| | | | - Sylwester J. Rzoska
- Institute
of High Pressure Physics of the Polish Academy of Sciences, Warsaw 01-142, Poland
| | - Aleš Iglič
- Laboratory
of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
2
|
The Possible Mechanism of Amyloid Transformation Based on the Geometrical Parameters of Early-Stage Intermediate in Silico Model for Protein Folding. Int J Mol Sci 2022; 23:ijms23169502. [PMID: 36012765 PMCID: PMC9409474 DOI: 10.3390/ijms23169502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 12/03/2022] Open
Abstract
The specificity of the available experimentally determined structures of amyloid forms is expressed primarily by the two- and not three-dimensional forms of a single polypeptide chain. Such a flat structure is possible due to the β structure, which occurs predominantly. The stabilization of the fibril in this structure is achieved due to the presence of the numerous hydrogen bonds between the adjacent chains. Together with the different forms of twists created by the single R- or L-handed α-helices, they form the hydrogen bond network. The specificity of the arrangement of these hydrogen bonds lies in their joint orientation in a system perpendicular to the plane formed by the chain and parallel to the fibril axis. The present work proposes the possible mechanism for obtaining such a structure based on the geometric characterization of the polypeptide chain constituting the basis of our early intermediate model for protein folding introduced formerly. This model, being the conformational subspace of Ramachandran plot (the ellipse path), was developed on the basis of the backbone conformation, with the side-chain interactions excluded. Our proposal is also based on the results from molecular dynamics available in the literature leading to the unfolding of α-helical sections, resulting in the β-structural forms. Both techniques used provide a similar suggestion in a search for a mechanism of conformational changes leading to a formation of the amyloid form. The potential mechanism of amyloid transformation is presented here using the fragment of the transthyretin as well as amyloid Aβ.
Collapse
|
3
|
Lupi L, Vázquez Ramírez B, Gallo P. Dynamical crossover and its connection to the Widom line in supercooled TIP4P/Ice water. J Chem Phys 2021; 155:054502. [PMID: 34364341 DOI: 10.1063/5.0059190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We perform molecular dynamics simulations with the TIP4P/Ice water model to characterize the relationship between dynamics and thermodynamics of liquid water in the supercooled region. We calculate the relevant properties of the phase diagram, and we find that TIP4P/Ice presents a retracing line of density maxima, similar to what was previously found for atomistic water models and models of other tetrahedral liquids. For this model, a liquid-liquid critical point between a high-density liquid and a low-density liquid was recently found. We compute the lines of the maxima of isothermal compressibility and the minima of the coefficient of thermal expansion in the one phase region, and we show that these lines point to the liquid-liquid critical point while collapsing on the Widom line. This line is the line of the maxima of correlation length that emanates from a second order critical point in the one phase region. Supercooled water was found to follow mode coupling theory and to undergo a transition from a fragile to a strong behavior right at the crossing of the Widom line. We find here that this phenomenology also happens for TIP4P/Ice. Our results appear, therefore, to be a general characteristic of supercooled water, which does not depend on the interaction potential used, and they reinforce the idea that the dynamical crossover from a region where the relaxation mechanism is dominated by cage relaxation to a region where cages are frozen and hopping dominates is correlated in water to a phase transition between a high-density liquid and a low-density liquid.
Collapse
Affiliation(s)
- Laura Lupi
- Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Benjamín Vázquez Ramírez
- Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Paola Gallo
- Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| |
Collapse
|
4
|
Bachler J, Handle PH, Giovambattista N, Loerting T. Glass polymorphism and liquid-liquid phase transition in aqueous solutions: experiments and computer simulations. Phys Chem Chem Phys 2019; 21:23238-23268. [PMID: 31556899 DOI: 10.1039/c9cp02953b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most intriguing anomalies of water is its ability to exist as distinct amorphous ice forms (glass polymorphism or polyamorphism). This resonates well with the possible first-order liquid-liquid phase transition (LLPT) in the supercooled state, where ice is the stable phase. In this Perspective, we review experiments and computer simulations that search for LLPT and polyamorphism in aqueous solutions containing salts and alcohols. Most studies on ionic solutes are devoted to NaCl and LiCl; studies on alcohols have mainly focused on glycerol. Less attention has been paid to protein solutions and hydrophobic solutes, even though they reveal promising avenues. While all solutions show polyamorphism and an LLPT only in dilute, sub-eutectic mixtures, there are differences regarding the nature of the transition. Isocompositional transitions for varying mole fractions are observed in alcohol but not in ionic solutions. This is because water can surround alcohol molecules either in a low- or high-density configuration whereas for ionic solutes, the water ion hydration shell is forced into high-density structures. Consequently, the polyamorphic transition and the LLPT are prevented near the ions, but take place in patches of water within the solutions. We highlight discrepancies and different interpretations within the experimental community as well as the key challenges that need consideration when comparing experiments and simulations. We point out where reinterpretation of past studies helps to draw a unified, consistent picture. In addition to the literature review, we provide original experimental results. A list of eleven open questions that need further consideration is identified.
Collapse
Affiliation(s)
- Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
5
|
Teboul V, Rajonson G. Simulations of supercooled water under passive or active stimuli. J Chem Phys 2019; 150:214505. [DOI: 10.1063/1.5093353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Victor Teboul
- Laboratoire de Photonique d’Angers EA 4464, Physics Department, Université d’Angers, 2 Bd Lavoisier, 49045 Angers, France
| | - Gabriel Rajonson
- Laboratoire de Photonique d’Angers EA 4464, Physics Department, Université d’Angers, 2 Bd Lavoisier, 49045 Angers, France
| |
Collapse
|
6
|
Swenson J. Possible relations between supercooled and glassy confined water and amorphous bulk ice. Phys Chem Chem Phys 2018; 20:30095-30103. [DOI: 10.1039/c8cp05688a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A proposed relaxation scenario of bulk water based on studies of confined water and low density amorphous ice.
Collapse
Affiliation(s)
- Jan Swenson
- Department of Physics, Chalmers University of Technology
- SE-412 96 Göteborg
- Sweden
| |
Collapse
|
7
|
De Marzio M, Camisasca G, Conde MM, Rovere M, Gallo P. Structural properties and fragile to strong transition in confined
water. J Chem Phys 2017; 146:084505. [DOI: 10.1063/1.4975624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- M. De Marzio
- Dipartimento di Matematica e Fisica, Università “Roma Tre,”
Via della Vasca Navale 84, 00146 Roma, Italy
| | - G. Camisasca
- Dipartimento di Matematica e Fisica, Università “Roma Tre,”
Via della Vasca Navale 84, 00146 Roma, Italy
| | - M. M. Conde
- Dipartimento di Matematica e Fisica, Università “Roma Tre,”
Via della Vasca Navale 84, 00146 Roma, Italy
| | - M. Rovere
- Dipartimento di Matematica e Fisica, Università “Roma Tre,”
Via della Vasca Navale 84, 00146 Roma, Italy
| | - P. Gallo
- Dipartimento di Matematica e Fisica, Università “Roma Tre,”
Via della Vasca Navale 84, 00146 Roma, Italy
| |
Collapse
|
8
|
De Marzio M, Camisasca G, Rovere M, Gallo P. Microscopic origin of the fragile to strong crossover in supercooled water: The role of activated processes. J Chem Phys 2017; 146:084502. [DOI: 10.1063/1.4975387] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. De Marzio
- Dipartimento di Matematica e Fisica, Università “Roma Tre,” Via della Vasca Navale 84, 00146 Roma, Italy
| | - G. Camisasca
- Dipartimento di Matematica e Fisica, Università “Roma Tre,” Via della Vasca Navale 84, 00146 Roma, Italy
| | - M. Rovere
- Dipartimento di Matematica e Fisica, Università “Roma Tre,” Via della Vasca Navale 84, 00146 Roma, Italy
| | - P. Gallo
- Dipartimento di Matematica e Fisica, Università “Roma Tre,” Via della Vasca Navale 84, 00146 Roma, Italy
| |
Collapse
|
9
|
Camisasca G, De Marzio M, Corradini D, Gallo P. Two structural relaxations in protein hydration water and their dynamic crossovers. J Chem Phys 2016; 145:044503. [DOI: 10.1063/1.4959286] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
10
|
Gallo P, Amann-Winkel K, Angell CA, Anisimov MA, Caupin F, Chakravarty C, Lascaris E, Loerting T, Panagiotopoulos AZ, Russo J, Sellberg JA, Stanley HE, Tanaka H, Vega C, Xu L, Pettersson LGM. Water: A Tale of Two Liquids. Chem Rev 2016; 116:7463-500. [PMID: 27380438 PMCID: PMC5424717 DOI: 10.1021/acs.chemrev.5b00750] [Citation(s) in RCA: 484] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Water is the most abundant liquid
on earth and also the substance
with the largest number of anomalies in its properties. It is a prerequisite
for life and as such a most important subject of current research
in chemical physics and physical chemistry. In spite of its simplicity
as a liquid, it has an enormously rich phase diagram where different
types of ices, amorphous phases, and anomalies disclose a path that
points to unique thermodynamics of its supercooled liquid state that
still hides many unraveled secrets. In this review we describe the
behavior of water in the regime from ambient conditions to the deeply
supercooled region. The review describes simulations and experiments
on this anomalous liquid. Several scenarios have been proposed to
explain the anomalous properties that become strongly enhanced in
the supercooled region. Among those, the second critical-point scenario
has been investigated extensively, and at present most experimental
evidence point to this scenario. Starting from very low temperatures,
a coexistence line between a high-density amorphous phase and a low-density
amorphous phase would continue in a coexistence line between a high-density
and a low-density liquid phase terminating in a liquid–liquid
critical point, LLCP. On approaching this LLCP from the one-phase
region, a crossover in thermodynamics and dynamics can be found. This
is discussed based on a picture of a temperature-dependent balance
between a high-density liquid and a low-density liquid favored by,
respectively, entropy and enthalpy, leading to a consistent picture
of the thermodynamics of bulk water. Ice nucleation is also discussed,
since this is what severely impedes experimental investigation of
the vicinity of the proposed LLCP. Experimental investigation of stretched
water, i.e., water at negative pressure, gives access to a different
regime of the complex water diagram. Different ways to inhibit crystallization
through confinement and aqueous solutions are discussed through results
from experiments and simulations using the most sophisticated and
advanced techniques. These findings represent tiles of a global picture
that still needs to be completed. Some of the possible experimental
lines of research that are essential to complete this picture are
explored.
Collapse
Affiliation(s)
- Paola Gallo
- Dipartimento di Matematica e Fisica, Università Roma Tre , Via della Vasca Navale 84, 00146 Rome, Italy
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University , SE-106 91 Stockholm, Sweden
| | - Charles Austen Angell
- Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Mikhail Alexeevich Anisimov
- Institute for Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland , College Park, Maryland 20742, United States
| | - Frédéric Caupin
- Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon 1-CNRS, Université de Lyon, Institut Universitaire de France , 69622 Villeurbanne, France
| | - Charusita Chakravarty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas , New Delhi 110016, India
| | - Erik Lascaris
- Center for Polymer Studies and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck , 6020 Innsbruck, Austria
| | | | - John Russo
- Institute of Industrial Science, University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.,School of Mathematics, University of Bristol , Bristol BS8 1TW, United Kingdom
| | - Jonas Alexander Sellberg
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology , SE-106 91 Stockholm, Sweden
| | - Harry Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Hajime Tanaka
- Institute of Industrial Science, University of Tokyo , 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Carlos Vega
- Departamento de Quimica Fisica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid , 28040 Madrid, Spain
| | - Limei Xu
- International Centre for Quantum Materials and School of Physics, Peking University , Beijing 100871, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | | |
Collapse
|
11
|
De Marzio M, Camisasca G, Rovere M, Gallo P. Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water. J Chem Phys 2016; 144:074503. [DOI: 10.1063/1.4941946] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Corradini D, Rovere M, Gallo P. The Widom line and dynamical crossover in supercritical water: Popular water models versus experiments. J Chem Phys 2015; 143:114502. [DOI: 10.1063/1.4930542] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Ma Z, Li J, Wang F. Continuous and Discontinuous Dynamic Crossover in Supercooled Water in Computer Simulations. J Phys Chem Lett 2015; 6:3170-4. [PMID: 27476514 PMCID: PMC4565576 DOI: 10.1021/acs.jpclett.5b01348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/31/2015] [Indexed: 05/20/2023]
Abstract
The dynamic crossover behavior of supercooled water as described by the first-principle based WAIL potential was investigated. Below the second liquid-liquid critical point, the viscosity shows a discontinuous jump consistent with a first-order phase transition between the high density liquid and the low density liquid. Above the critical point, a continuous transition occurs with only the first derivative of viscosity being discontinuous, and the dynamic crossover temperature is about 8 K below the thermodynamic switchover temperature. The 8 K shift can be explained by a delay in dynamic crossover, which does not occur until the more viscous liquid starts to dominate the population and jams the flow. On the basis of finite-size effects observed in our simulations, we believe that dynamic discontinuity may be observable above the critical point in confined water when the confinement is on a length scale shorter than the spatial correlation.
Collapse
|
14
|
Gallo P, Rovere M. Relation between the two-body entropy and the relaxation time in supercooled water. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012107. [PMID: 25679570 DOI: 10.1103/physreve.91.012107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Indexed: 06/04/2023]
Abstract
The two-body excess entropy of supercooled water is calculated from the radial distribution functions obtained from computer simulation of the TIP4P model for different densities upon supercooling. This quantity is considered in connection with the relaxation time of the self intermediate scattering function. The relaxation time shows a mode coupling theory (MCT) behavior in the region of mild supercooling and a strong behavior in the deep supercooled region. We find here that the two-body entropy is connected to the relaxation time and shows a logarithmic behavior with an apparent asymptotic divergence at the mode coupling crossover temperature. There is also evidence of a change in behavior of the two-body entropy upon crossing from the fragile (hopping-free) state to the strong (hopping-dominated) state of supercooled water, and the relation that connects the two-body entropy and the relxation time in the MCT region no longer holds.
Collapse
Affiliation(s)
- P Gallo
- Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - M Rovere
- Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| |
Collapse
|
15
|
Gallo P, Corradini D, Rovere M. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl. J Chem Phys 2013; 139:204503. [DOI: 10.1063/1.4832382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
16
|
Zhou S, Solana JR. Monte Carlo and theoretical calculations of the first four perturbation coefficients in the high temperature series expansion of the free energy for discrete and core-softened potential models. J Chem Phys 2013; 138:244115. [DOI: 10.1063/1.4811285] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Corradini D, Su Z, Stanley HE, Gallo P. A molecular dynamics study of the equation of state and the structure of supercooled aqueous solutions of methanol. J Chem Phys 2013; 137:184503. [PMID: 23163379 DOI: 10.1063/1.4767060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We perform molecular dynamics computer simulations in order to study the equation of state and the structure of supercooled aqueous solutions of methanol at methanol mole fractions x(m) = 0.05 and x(m) = 0.10. We model the solvent using the TIP4P/2005 potential and the methanol using the OPLS-AA force field. We find that for x(m) = 0.05 the behavior of the equation of state, studied in the P - T and P - ρ planes, is consistent with the presence of a liquid-liquid phase transition, reminiscent of that previously found for x(m) = 0. We estimate the position of the liquid-liquid critical point to be at T = 193 K, P = 96 MPa, and ρ = 1.003 g/cm(3). When the methanol mole fraction is doubled to x(m) = 0.10 no liquid-liquid transition is observed, indicating its possible disappearance at this concentration. We also study the water-water and water-methanol structure in the two solutions. We find that down to low temperature methanol can be incorporated into the water structure for both x(m) = 0.05 and x(m) = 0.10.
Collapse
Affiliation(s)
- Dario Corradini
- Center for Polymer Studies and Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
18
|
Lukšič M, Hribar-Lee B, Vlachy V, Pizio O. Structural and thermodynamical properties of charged hard spheres in a mixture with core-softened model solvent. J Chem Phys 2012; 137:244502. [DOI: 10.1063/1.4772582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Gallo P, Rovere M. Mode coupling and fragile to strong transition in supercooled TIP4P water. J Chem Phys 2012; 137:164503. [DOI: 10.1063/1.4759262] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|