1
|
Xiao K, Park S, Stachowiak JC, Rangamani P. Biophysical modeling of membrane curvature generation and curvature sensing by the glycocalyx. Proc Natl Acad Sci U S A 2025; 122:e2418357122. [PMID: 39969997 PMCID: PMC11873937 DOI: 10.1073/pnas.2418357122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/11/2025] [Indexed: 02/21/2025] Open
Abstract
Generation of membrane curvature is fundamental to cellular function. Recent studies have established that the glycocalyx, a sugar-rich polymer layer at the cell surface, can generate membrane curvature. While there have been some theoretical efforts to understand the interplay between the glycocalyx and membrane bending, there remain open questions about how the properties of the glycocalyx affect membrane bending. For example, the relationship between membrane curvature and the density of glycosylated proteins on its surface remains unclear. In this work, we use polymer brush theory to develop a detailed biophysical model of the energetic interactions of the glycocalyx with the membrane. Using this model, we identify the conditions under which the glycocalyx can both generate and sense curvature. Our model predicts that the extent of membrane curvature generated depends on the grafting density of the glycocalyx and the backbone length of the polymers constituting the glycocalyx. Furthermore, when coupled with the intrinsic membrane properties such as spontaneous curvature and a line tension along the membrane, the curvature generation properties of the glycocalyx are enhanced. These predictions were tested experimentally by examining the propensity of glycosylated transmembrane proteins to drive the assembly of highly curved filopodial protrusions at the plasma membrane of adherent mammalian cells. Our model also predicts that the glycocalyx has curvature-sensing capabilities, in agreement with the results of our experiments. Thus, our study develops a quantitative framework for mapping the properties of the glycocalyx to the curvature generation capability of the membrane.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA92093
| | - Sujeong Park
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX78712
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX78712
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX78712
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA92093
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
Houser JR, Cho HW, Hayden CC, Yang NX, Wang L, Lafer EM, Thirumalai D, Stachowiak JC. Molecular mechanisms of steric pressure generation and membrane remodeling by disordered proteins. Biophys J 2022; 121:3320-3333. [PMID: 36016498 PMCID: PMC9515369 DOI: 10.1016/j.bpj.2022.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022] Open
Abstract
Cellular membranes, which are densely crowded by proteins, take on an elaborate array of highly curved shapes. Steric pressure generated by protein crowding plays a significant role in shaping membrane surfaces. It is increasingly clear that many proteins involved in membrane remodeling contain substantial regions of intrinsic disorder. These domains have large hydrodynamic radii, suggesting that they may contribute significantly to steric congestion on membrane surfaces. However, it has been unclear to what extent they are capable of generating steric pressure, owing to their conformational flexibility. To address this gap, we use a recently developed sensor based on Förster resonance energy transfer to measure steric pressure generated at membrane surfaces by the intrinsically disordered domain of the endocytic protein, AP180. We find that disordered domains generate substantial steric pressure that arises from both entropic and electrostatic components. Interestingly, this steric pressure is largely invariant with the molecular weight of the disordered domain, provided that coverage of the membrane surface is held constant. Moreover, equivalent levels of steric pressure result in equivalent degrees of membrane remodeling, regardless of protein molecular weight. This result, which is consistent with classical polymer scaling relationships for semi-dilute solutions, helps to explain the molecular and physical origins of steric pressure generation by intrinsically disordered domains. From a physiological perspective, these findings suggest that a broad range of membrane-associated disordered domains are likely to play a significant and previously unknown role in controlling membrane shape.
Collapse
Affiliation(s)
- Justin R Houser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Hyun Woo Cho
- Department of Chemistry, Seoul National University of Science and Technology, Seoul, South Korea
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Noel X Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Liping Wang
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Dave Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
3
|
Vyas P, Kumar PBS, Das SL. Sorting of proteins with shape and curvature anisotropy on a lipid bilayer tube. SOFT MATTER 2022; 18:1653-1665. [PMID: 35132986 DOI: 10.1039/d2sm00077f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Curvature induced sorting of lipid membrane bound proteins has been widely studied through experiments that induce curvature variation in a giant unilamellar lipid-bilayer vesicle with adsorbed proteins by pulling thin cylindrical tethers. In the theoretical space, this has been supplemented with models that capture curvature dependent interaction between membrane and idealized protein particles, through free energy contributions. Many membrane proteins such as the BAR domain proteins are known to have extremely anisotropic shapes and soft interacting potentials, whereas the idealizations of protein particles explored in models have only assumed them as hard disk-like particles with curvature anisotropy. Here, we present a model of sorting of the proteins while including the effects of softness in their interaction potentials, shape anisotropy in the protein structure, and curvature anisotropy in the interactions with the membrane. This is based on a clean separation of free energy contributions from non-ideal fluid behavior of soft anisotropic particles and curvature interactions between proteins and membranes. We probe the behavior of the sorting function under limiting conditions and show that it converges to the previously derived models. In addition to this, we present a comparison of the variation in sorting ratio due to the observed variation in the shape parameter values in known membrane proteins. Finally, using published experimental data for membrane proteins, we perform fitting and derive model parameters. We observe that shape anisotropy adversely affects the sorting of proteins to a high curvature region, whereas curvature anisotropy and softer interaction between proteins favor sorting.
Collapse
Affiliation(s)
- Pranav Vyas
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA.
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Sovan Lal Das
- Physical and Chemical Biology Laboratory and Department of Mechanical Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| |
Collapse
|
4
|
Recent developments in membrane curvature sensing and induction by proteins. Biochim Biophys Acta Gen Subj 2021; 1865:129971. [PMID: 34333084 DOI: 10.1016/j.bbagen.2021.129971] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/11/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane-bound intracellular organelles have characteristic shapes attributed to different local membrane curvatures, and these attributes are conserved across species. Over the past decade, it has been confirmed that specific proteins control the large curvatures of the membrane, whereas many others due to their specific structural features can sense the curvatures and bind to the specific geometrical cues. Elucidating the interplay between sensing and induction is indispensable to understand the mechanisms behind various biological processes such as vesicular trafficking and budding. SCOPE OF REVIEW We provide an overview of major classes of membrane proteins and the mechanisms of curvature sensing and induction. We then discuss the importance of membrane elastic characteristics to induce the membrane shapes similar to intracellular organelles. Finally, we survey recently available assays developed for studying the curvature sensing and induction by many proteins. MAJOR CONCLUSIONS Recent theoretical/computational modeling along with experimental studies have uncovered fascinating connections between lipid membrane and protein interactions. However, the phenomena of protein localization and synchronization to generate spatiotemporal dynamics in membrane morphology are yet to be fully understood. GENERAL SIGNIFICANCE The understanding of protein-membrane interactions is essential to shed light on various biological processes. This further enables the technological applications of many natural proteins/peptides in therapeutic treatments. The studies of membrane dynamic shapes help to understand the fundamental functions of membranes, while the medicinal roles of various macromolecules (such as proteins, peptides, etc.) are being increasingly investigated.
Collapse
|
5
|
Goutaland Q, van Wijland F, Fournier JB, Noguchi H. Binding of thermalized and active membrane curvature-inducing proteins. SOFT MATTER 2021; 17:5560-5573. [PMID: 33978669 DOI: 10.1039/d1sm00027f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The phase behavior of a membrane induced by the binding of curvature-inducing proteins is studied by a combination of analytical and numerical approaches. In thermal equilibrium under the detailed balance between binding and unbinding, the membrane exhibits three phases: an unbound uniform flat phase (U), a bound uniform flat phase (B), and a separated/corrugated phase (SC). In the SC phase, the bound proteins form hexagonally-ordered bowl-shaped domains. The transitions between the U and SC phases and between the B and SC phases are second order and first order, respectively. At a small spontaneous curvature of the protein or high surface tension, the transition between B and SC phases becomes continuous. Moreover, a first-order transition between the U and B phases is found at zero spontaneous curvature driven by the Casimir-like interactions between rigid proteins. Furthermore, nonequilibrium dynamics is investigated by the addition of active binding and unbinding at a constant rate. The active binding and unbinding processes alter the stability of the SC phase.
Collapse
Affiliation(s)
- Quentin Goutaland
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris & CNRS, 75013 Paris, France
| | - Frédéric van Wijland
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris & CNRS, 75013 Paris, France
| | - Jean-Baptiste Fournier
- Laboratoire Matière et Systèmes Complexes (MSC), Université de Paris & CNRS, 75013 Paris, France
| | - Hiroshi Noguchi
- Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan. and Institut Lumière Matière, UMR 5306 CNRS, Université Lyon 1, F-69622 Villeurbanne, France
| |
Collapse
|
6
|
Martinez Galvez JM, Garcia-Hernando M, Benito-Lopez F, Basabe-Desmonts L, Shnyrova AV. Microfluidic chip with pillar arrays for controlled production and observation of lipid membrane nanotubes. LAB ON A CHIP 2020; 20:2748-2755. [PMID: 32602490 DOI: 10.1039/d0lc00451k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Lipid membrane nanotubes (NTs) are a widespread template for in vitro studies of cellular processes happening at high membrane curvature. Traditionally NTs are manufactured one by one, using sophisticated membrane micromanipulations, while simplified methods for controlled batch production of NTs are in growing demand. Here we propose a lab-on-a-chip (LOC) approach to the simultaneous formation of multiple NTs with length and radius controlled by the chip design. The NTs form upon rolling silica microbeads covered by lipid lamellas over the pillars of a polymer micropillar array. The array's design and surface chemistry set the geometry of the resulting free-standing NTs. The integration of the array inside a microfluidic chamber further enables fast and turbulence-free addition of components, such as proteins, to multiple preformed NTs. This LOC approach to NT production is compatible with the use of high power objectives of a fluorescence microscope, making real-time quantification of the different modes of the protein activity in a single experiment possible.
Collapse
Affiliation(s)
- Juan Manuel Martinez Galvez
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
| | | | | | | | | |
Collapse
|
7
|
Villaluenga JPG, Vidal J, Cao-García FJ. Noncooperative thermodynamics and kinetic models of ligand binding to polymers: Connecting McGhee-von Hippel model with the Tonks gas model. Phys Rev E 2020; 102:012407. [PMID: 32795076 DOI: 10.1103/physreve.102.012407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
Ligand binding to polymers modifies the physical and chemical properties of the polymers, leading to physical, chemical, and biological implications. McGhee and von Hippel obtained the equilibrium coverage as a function of the ligand affinity, through the computation of the possible binding sites for the ligand. Here, we complete this theory deriving the kinetic model for the ligand-binding dynamics and the associated equilibrium chemical potential, which turns out to be of the Tonks gas model type. At low coverage, the Tonks chemical potential becomes the Fermi chemical potential and even the ideal gas chemical potential. We also discuss kinetic models associated with these chemical potentials. These results clarify the kinetic models of ligand binding, their relations with the chemical potentials, and their range of validity. Our results highlight the inaccuracy of ideal and simplified kinetic approaches for medium and high coverages.
Collapse
Affiliation(s)
- Juan P G Villaluenga
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| | - Jules Vidal
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain
| | - Francisco Javier Cao-García
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Pza. de Ciencias, 1, 28040 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA Nanociencia, C/Faraday, 9, 28049 Madrid, Spain
| |
Collapse
|
8
|
van Hilten N, Stroh KS, Risselada HJ. Membrane Thinning Induces Sorting of Lipids and the Amphipathic Lipid Packing Sensor (ALPS) Protein Motif. Front Physiol 2020; 11:250. [PMID: 32372966 PMCID: PMC7177014 DOI: 10.3389/fphys.2020.00250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Heterogeneities (e.g., membrane proteins and lipid domains) and deformations (e.g., highly curved membrane regions) in biological lipid membranes cause lipid packing defects that may trigger functional sorting of lipids and membrane-associated proteins. To study these phenomena in a controlled and efficient way within molecular simulations, we developed an external field protocol that artificially enhances packing defects in lipid membranes by enforcing local thinning of a flat membrane region. For varying lipid compositions, we observed strong thinning-induced depletion or enrichment, depending on the lipid's intrinsic shape and its effect on a membrane's elastic modulus. In particular, polyunsaturated and lysolipids are strongly attracted to regions high in packing defects, whereas phosphatidylethanolamine (PE) lipids and cholesterol are strongly repelled from it. Our results indicate that externally imposed changes in membrane thickness, area, and curvature are underpinned by shared membrane elastic principles. The observed sorting toward the thinner membrane region is in line with the sorting expected for a positively curved membrane region. Furthermore, we have demonstrated that the amphipathic lipid packing sensor (ALPS) protein motif, a known curvature and packing defect sensor, is effectively attracted to thinner membrane regions. By extracting the force that drives amphipathic molecules toward the thinner region, our thinning protocol can directly quantify and score the lipid packing sensing of different amphipathic molecules. In this way, our protocol paves the way toward high-throughput exploration of potential defect- and curvature-sensing motifs, making it a valuable addition to the molecular simulation toolbox.
Collapse
Affiliation(s)
- Niek van Hilten
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - Kai Steffen Stroh
- Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| | - Herre Jelger Risselada
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands.,Institute for Theoretical Physics, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Fonda P, Rinaldin M, Kraft DJ, Giomi L. Thermodynamic equilibrium of binary mixtures on curved surfaces. Phys Rev E 2019; 100:032604. [PMID: 31639923 DOI: 10.1103/physreve.100.032604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 06/10/2023]
Abstract
We study the global influence of curvature on the free energy landscape of two-dimensional binary mixtures confined on closed surfaces. Starting from a generic effective free energy, constructed on the basis of symmetry considerations and conservation laws, we identify several model-independent phenomena, such as a curvature-dependent line tension and local shifts in the binodal concentrations. To shed light on the origin of the phenomenological parameters appearing in the effective free energy, we further construct a lattice-gas model of binary mixtures on nontrivial substrates, based on the curved-space generalization of the two-dimensional Ising model. This allows us to decompose the interaction between the local concentration of the mixture and the substrate curvature into four distinct contributions, as a result of which the phase diagram splits into critical subdiagrams. The resulting free energy landscape can admit, as stable equilibria, strongly inhomogeneous mixed phases, which we refer to as "antimixed" states below the critical temperature. We corroborate our semianalytical findings with phase-field numerical simulations on realistic curved lattices. Despite this work being primarily motivated by recent experimental observations of multicomponent lipid vesicles supported by colloidal scaffolds, our results are applicable to any binary mixture confined on closed surfaces of arbitrary geometry.
Collapse
Affiliation(s)
- Piermarco Fonda
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Melissa Rinaldin
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, P.O. Box 9504, 2300 RA Leiden, Netherlands
| | - Daniela J Kraft
- Huygens-Kamerlingh Onnes Laboratory, Universiteit Leiden, P.O. Box 9504, 2300 RA Leiden, Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| |
Collapse
|
10
|
Sachin Krishnan TV, Das SL, Kumar PBS. Transition from curvature sensing to generation in a vesicle driven by protein binding strength and membrane tension. SOFT MATTER 2019; 15:2071-2080. [PMID: 30734812 DOI: 10.1039/c8sm02623h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability of proteins to sense and/or generate membrane curvature is crucial for many biological processes inside the cell. We introduce a model for the binding and unbinding of curvature inducing proteins on vesicles using Dynamic Triangulation Monte Carlo (DTMC) simulations. In our study, the interaction between membrane curvature and protein binding is characterised by the binding affinity parameter μ, which indicates the interaction strength. We demonstrate that both sensing and generation of curvature can be observed in the same system as a function of the protein binding affinity on the membrane. Our results show that at low μ values, proteins only sense membrane curvature, whereas at high μ values, they induce curvature. The transition between sensing and generation regimes is marked by a sharp change in the μ-dependence of the protein bound fraction. We present ways to quantitatively characterise these two regimes. We also observe that imposing tension on the membrane (through internal excess pressure for liposomes) extends the region of curvature sensing in the parameter space.
Collapse
|
11
|
Zeno WF, Ogunyankin MO, Longo ML. Scaling relationships for translational diffusion constants applied to membrane domain dissolution and growth. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1994-2003. [PMID: 29501605 DOI: 10.1016/j.bbamem.2018.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 01/10/2023]
Abstract
We compare the way that relationships for diffusion constants scale with the size of diffusing membrane domains and the geometry of their environments. Then, we review our experimental work on the dynamics of dissolution/growth of membrane domains in crowding induced mixing, phase separation, and Ostwald ripening in a highly confined environment. Overall, the scaling relationships applied to diffusion constants obtained by fits to our dynamic data indicate that dissolution and growth is influenced by the diffusion of clusters or small domains of lipids, in addition to kinetic processes and geometrical constraints.
Collapse
Affiliation(s)
- Wade F Zeno
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Maria O Ogunyankin
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, United States
| | - Marjorie L Longo
- Department of Chemical Engineering, University of California Davis, Davis, CA 95616, United States.
| |
Collapse
|
12
|
Singh P, Hui CY. Hydrodynamics govern the pre-fusion docking time of synaptic vesicles. J R Soc Interface 2018; 15:rsif.2017.0818. [PMID: 29386403 DOI: 10.1098/rsif.2017.0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/09/2018] [Indexed: 11/12/2022] Open
Abstract
Synaptic vesicle fusion is a crucial step in the neurotransmission process. Neurotransmitter-filled vesicles are pre-docked at the synapse by the mediation of ribbon structures and SNARE proteins at the ribbon synapses. An electrical impulse triggers the fusion process of pre-docked vesicles, leading to the formation of a fusion pore and subsequently resulting in the release of neurotransmitter into the synaptic cleft. In this study, a continuum model of lipid membrane along with lubrication theory is used to determine the traverse time of the synaptic vesicle under the influence of hydrodynamic forces. We find that the traverse time is strongly dependent on how fast the driving force decays or grows with closure of the gap between the vesicle and the plasma membrane. If the correct behaviour is chosen, the traverse time obtained is of the order of a few hundred milliseconds and lies within the experimentally obtained value of approximately 250 ms (Zenisek D, Steyer JA, Almers W. 2000 Nature406, 849-854 (doi:10.1038/35022500)). We hypothesize that there are two different force behaviours, which complies with the experimental findings of pre-fusion docking of synaptic vesicles at the ribbon synapses. The common theme in the proposed force models is that the driving force has to very rapidly increase or decrease with the amount of clamping.
Collapse
Affiliation(s)
- Pankaj Singh
- Department of Theoretical and Applied Mechanics, Cornell University, Ithaca, NY 14853, USA
| | - Chung-Yuen Hui
- Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
13
|
Ramakrishnan N, Sreeja KK, Roychoudhury A, Eckmann DM, Ayyaswamy PS, Baumgart T, Pucadyil T, Patil S, Weaver VM, Radhakrishnan R. Excess area dependent scaling behavior of nano-sized membrane tethers. Phys Biol 2018; 15:026002. [PMID: 29116056 DOI: 10.1088/1478-3975/aa9905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Thermal fluctuations in cell membranes manifest as an excess area ([Formula: see text]) which governs a multitude of physical process at the sub-micron scale. We present a theoretical framework, based on an in silico tether pulling method, which may be used to reliably estimate [Formula: see text] in live cells. We perform our simulations in two different thermodynamic ensembles: (i) the constant projected area and (ii) the constant frame tension ensembles and show the equivalence of our results in the two. The tether forces estimated from our simulations compare well with our experimental measurements for tethers extracted from ruptured GUVs and HeLa cells. We demonstrate the significance and validity of our method by showing that all our calculations performed in the initial tether formation regime (i.e. when the length of the tether is comparable to its radius) along with experiments of tether extraction in 15 different cell types collapse onto two unified scaling relationships mapping tether force, tether radius, bending stiffness κ, and membrane tension σ. We show that [Formula: see text] is an important determinant of the radius of the extracted tether, which is equal to the characteristic length [Formula: see text] for [Formula: see text], and is equal to [Formula: see text] for [Formula: see text]. We also find that the estimated excess area follows a linear scaling behavior that only depends on the true value of [Formula: see text] for the membrane, based on which we propose a self-consistent technique to estimate the range of excess membrane areas in a cell.
Collapse
Affiliation(s)
- N Ramakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Onsager’s Variational Principle in Soft Matter: Introduction and Application to the Dynamics of Adsorption of Proteins onto Fluid Membranes. THE ROLE OF MECHANICS IN THE STUDY OF LIPID BILAYERS 2018. [DOI: 10.1007/978-3-319-56348-0_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Mahata P, Das SL. Generation of wavy structure on lipid membrane by peripheral proteins: a linear elastic analysis. FEBS Lett 2017; 591:1333-1348. [DOI: 10.1002/1873-3468.12661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Paritosh Mahata
- Department of Mechanical Engineering; Birla Institute of Technology Mesra; Ranchi India
| | - Sovan Lal Das
- Department of Mechanical Engineering; Indian Institute of Technology Kharagpur; India
| |
Collapse
|
16
|
Klaus CJS, Raghunathan K, DiBenedetto E, Kenworthy AK. Analysis of diffusion in curved surfaces and its application to tubular membranes. Mol Biol Cell 2016; 27:3937-3946. [PMID: 27733625 PMCID: PMC5170615 DOI: 10.1091/mbc.e16-06-0445] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/08/2016] [Accepted: 10/04/2016] [Indexed: 11/11/2022] Open
Abstract
Diffusion of particles in curved surfaces is inherently complex compared with diffusion in a flat membrane, owing to the nonplanarity of the surface. The consequence of such nonplanar geometry on diffusion is poorly understood but is highly relevant in the case of cell membranes, which often adopt complex geometries. To address this question, we developed a new finite element approach to model diffusion on curved membrane surfaces based on solutions to Fick's law of diffusion and used this to study the effects of geometry on the entry of surface-bound particles into tubules by diffusion. We show that variations in tubule radius and length can distinctly alter diffusion gradients in tubules over biologically relevant timescales. In addition, we show that tubular structures tend to retain concentration gradients for a longer time compared with a comparable flat surface. These findings indicate that sorting of particles along the surfaces of tubules can arise simply as a geometric consequence of the curvature without any specific contribution from the membrane environment. Our studies provide a framework for modeling diffusion in curved surfaces and suggest that biological regulation can emerge purely from membrane geometry.
Collapse
Affiliation(s)
| | - Krishnan Raghunathan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232
| | | | - Anne K Kenworthy
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 .,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
17
|
Simunovic M, Prévost C, Callan-Jones A, Bassereau P. Physical basis of some membrane shaping mechanisms. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0034. [PMID: 27298443 PMCID: PMC4920286 DOI: 10.1098/rsta.2016.0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 05/24/2023]
Abstract
In vesicular transport pathways, membrane proteins and lipids are internalized, externalized or transported within cells, not by bulk diffusion of single molecules, but embedded in the membrane of small vesicles or thin tubules. The formation of these 'transport carriers' follows sequential events: membrane bending, fission from the donor compartment, transport and eventually fusion with the acceptor membrane. A similar sequence is involved during the internalization of drug or gene carriers inside cells. These membrane-shaping events are generally mediated by proteins binding to membranes. The mechanisms behind these biological processes are actively studied both in the context of cell biology and biophysics. Bin/amphiphysin/Rvs (BAR) domain proteins are ideally suited for illustrating how simple soft matter principles can account for membrane deformation by proteins. We review here some experimental methods and corresponding theoretical models to measure how these proteins affect the mechanics and the shape of membranes. In more detail, we show how an experimental method employing optical tweezers to pull a tube from a giant vesicle may give important quantitative insights into the mechanism by which proteins sense and generate membrane curvature and the mechanism of membrane scission.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Mijo Simunovic
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Coline Prévost
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, CNRS, UMR 7057, 75205 Paris Cedex 13, France
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| |
Collapse
|
18
|
Simunovic M, Voth GA, Callan-Jones A, Bassereau P. When Physics Takes Over: BAR Proteins and Membrane Curvature. Trends Cell Biol 2015; 25:780-792. [PMID: 26519988 DOI: 10.1016/j.tcb.2015.09.005] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 10/22/2022]
Abstract
Cell membranes become highly curved during membrane trafficking, cytokinesis, infection, immune response, or cell motion. Bin/amphiphysin/Rvs (BAR) domain proteins with their intrinsically curved and anisotropic shape are involved in many of these processes, but with a large spectrum of modes of action. In vitro experiments and multiscale computer simulations have contributed in identifying a minimal set of physical parameters, namely protein density on the membrane, membrane tension, and membrane shape, that control how bound BAR domain proteins behave on the membrane. In this review, we summarize the multifaceted coupling of BAR proteins to membrane mechanics and propose a simple phase diagram that recapitulates the effects of these parameters.
Collapse
Affiliation(s)
- Mijo Simunovic
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637, USA; Institut Curie, Centre de Recherche, F-75248 Paris, France
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, 5735 S Ellis Avenue, Chicago, IL 60637, USA
| | - Andrew Callan-Jones
- Université Paris Diderot, F-75205 Paris, France; CNRS, Matière et Systèmes Complexes, UMR 7057, F-75205 Paris, France
| | - Patricia Bassereau
- Institut Curie, Centre de Recherche, F-75248 Paris, France; CNRS, PhysicoChimie Curie, UMR 168, F-75248 Paris, France; Université Pierre et Marie Curie, F-75252 Paris, France.
| |
Collapse
|
19
|
Prévost C, Zhao H, Manzi J, Lemichez E, Lappalainen P, Callan-Jones A, Bassereau P. IRSp53 senses negative membrane curvature and phase separates along membrane tubules. Nat Commun 2015; 6:8529. [PMID: 26469246 PMCID: PMC4634128 DOI: 10.1038/ncomms9529] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/30/2015] [Indexed: 02/03/2023] Open
Abstract
BAR domain proteins contribute to membrane deformation in diverse cellular processes. The inverted-BAR (I-BAR) protein IRSp53, for instance, is found on the inner leaflet of the tubular membrane of filopodia; however its role in the formation of these structures is incompletely understood. Here we develop an original assay in which proteins are encapsulated in giant unilamellar vesicles connected to membrane nanotubes. Our results demonstrate that I-BAR dimers sense negative membrane curvature. Experiment and theory reveal that the I-BAR displays a non-monotonic sorting with curvature, and expands the tube at high imposed tension while constricting it at low tension. Strikingly, at low protein density and tension, protein-rich domains appear along the tube. This peculiar behaviour is due to the shallow intrinsic curvature of I-BAR dimers. It allows constriction of weakly curved membranes coupled to local protein enrichment at biologically relevant conditions. This might explain how IRSp53 contributes in vivo to the initiation of filopodia. The inverted-BAR domain protein IRSp53 associates with the inner leaflet of tubular membranes such as filopodia. Here, Prévost et al. demonstrate that the I-BAR domain of IRSp53 senses negative membrane curvature, and undergoes phase separation which may aid its clustering upon filopodia generation.
Collapse
Affiliation(s)
- Coline Prévost
- Institut Curie, Centre de Recherche, 75248 Paris Cedex 05, France.,CNRS, Physico-Chimie Curie, UMR 168, 75248 Paris Cedex 05, France.,Université Pierre et Marie Curie, 75252 Paris Cedex 05, France.,Université Paris-Diderot, 75205 Paris Cedex 05, France
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - John Manzi
- Institut Curie, Centre de Recherche, 75248 Paris Cedex 05, France.,CNRS, Physico-Chimie Curie, UMR 168, 75248 Paris Cedex 05, France.,Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
| | - Emmanuel Lemichez
- INSERM, U1065, UNSA, Centre Méditerranéen de Médecine Moléculaire, C3M, 06204 Nice Cedex 3, France
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Andrew Callan-Jones
- CNRS, Laboratoire Matière et Systèmes Complexes, UMR 7057, 75205 Paris Cedex 13, France.,Université Paris-Diderot, 75205 Paris Cedex 05, France
| | - Patricia Bassereau
- Institut Curie, Centre de Recherche, 75248 Paris Cedex 05, France.,CNRS, Physico-Chimie Curie, UMR 168, 75248 Paris Cedex 05, France.,Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
| |
Collapse
|
20
|
Tourdot RW, Ramakrishnan N, Baumgart T, Radhakrishnan R. Application of a free-energy-landscape approach to study tension-dependent bilayer tubulation mediated by curvature-inducing proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:042715. [PMID: 26565280 PMCID: PMC4794322 DOI: 10.1103/physreve.92.042715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 05/26/2023]
Abstract
We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension.
Collapse
Affiliation(s)
- Richard W Tourdot
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - N Ramakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Tobias Baumgart
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
21
|
Rangamani P, Mandadap KK, Oster G. Protein-induced membrane curvature alters local membrane tension. Biophys J 2015; 107:751-762. [PMID: 25099814 DOI: 10.1016/j.bpj.2014.06.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/01/2014] [Accepted: 06/09/2014] [Indexed: 10/24/2022] Open
Abstract
Adsorption of proteins onto membranes can alter the local membrane curvature. This phenomenon has been observed in biological processes such as endocytosis, tubulation, and vesiculation. However, it is not clear how the local surface properties of the membrane, such as membrane tension, change in response to protein adsorption. In this article, we show that the partial differential equations arising from classical elastic model of lipid membranes, which account for simultaneous changes in shape and membrane tension due to protein adsorption in a local region, cannot be solved for nonaxisymmetric geometries using straightforward numerical techniques; instead, a viscous-elastic formulation is necessary to fully describe the system. Therefore, we develop a viscous-elastic model for inhomogeneous membranes of the Helfrich type. Using the newly available viscous-elastic model, we find that the lipids flow to accommodate changes in membrane curvature during protein adsorption. We show that, at the end of protein adsorption process, the system sustains a residual local tension to balance the difference between the actual mean curvature and the imposed spontaneous curvature. We also show that this change in membrane tension can have a functional impact such as altered response to pulling forces in the presence of proteins.
Collapse
Affiliation(s)
- Padmini Rangamani
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California
| | - Kranthi K Mandadap
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California; Department of Chemistry, University of California at Berkeley, Berkeley, California
| | - George Oster
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California.
| |
Collapse
|
22
|
Božič B, Das SL, Svetina S. Sorting of integral membrane proteins mediated by curvature-dependent protein-lipid bilayer interaction. SOFT MATTER 2015; 11:2479-2487. [PMID: 25675862 DOI: 10.1039/c4sm02289k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cell membrane proteins, both bound and integral, are known to preferentially accumulate at membrane locations with curvatures favorable to their shape. This is mainly due to the curvature dependent interaction between membrane proteins and their lipid environment. Here, we analyze the effects of the protein-lipid bilayer interaction energy due to mismatch between the protein shape and the principal curvatures of the surrounding bilayer. The role of different macroscopic parameters that define the interaction energy term is elucidated in relation to recent experiment in which the lateral distribution of a membrane embedded protein potassium channel KvAP is measured on a giant unilamellar lipid vesicle (reservoir) and a narrow tubular extension - a tether - kept at constant length. The dependence of the sorting ratio, defined as the ratio between the areal density of the protein on the tether and on the vesicle, on the inverse tether radius is influenced by the strength of the interaction, the intrinsic shape of the membrane embedded protein, and its abundance in the reservoir. It is described how the values of these constants can be extracted from experiments. The intrinsic principal curvatures of a protein are related to the tether radius at which the sorting ratio attains its maximum value. The estimate of the principal intrinsic curvature of the protein KvAP, obtained by comparing the experimental and theoretical sorting behavior, is consistent with the available information on its structure.
Collapse
Affiliation(s)
- Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| | | | | |
Collapse
|
23
|
Wasnik V, Wingreen NS, Mukhopadhyay R. Modeling curvature-dependent subcellular localization of the small sporulation protein SpoVM in Bacillus subtilis. PLoS One 2015; 10:e0111971. [PMID: 25625300 PMCID: PMC4307972 DOI: 10.1371/journal.pone.0111971] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/01/2014] [Indexed: 11/19/2022] Open
Abstract
Recent in vivo experiments suggest that in the bacterium, Bacillus subtilis, the cue for the localization of the small sporulation protein, SpoVM, an essential factor in spore coat formation, is curvature of the bacterial plasma membrane. In vitro measurements of SpoVM adsorption to vesicles of varying sizes also find high sensitivity of adsorption to vesicle radius. This curvature-dependent adsorption is puzzling given the orders of magnitude difference in length scale between an individual protein and the radius of curvature of the cell or vesicle, suggesting protein clustering on the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane adsorption and clustering of SpoVM. Based on our analysis, we hypothesize that the radius dependence of SpoVM adsorption observed in vitro is governed primarily by membrane tension, while for in-vivo localization of SpoVM, we propose a highly sensitive mechanism for curvature sensing based on the formation of macroscopic protein clusters on the membrane.
Collapse
Affiliation(s)
- Vaibhav Wasnik
- Department of Physics, Clark University, Worcester, Massachusetts, United States of America
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ranjan Mukhopadhyay
- Department of Physics, Clark University, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Mahata P, Das SL. Two-dimensional convex-molecule fluid model for surface adsorption of proteins: effect of soft interaction on adsorption equilibria. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062713. [PMID: 25615135 DOI: 10.1103/physreve.90.062713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Indexed: 06/04/2023]
Abstract
Adsorption of proteins on membrane surfaces plays an important role in cell biological processes. In this work, we develop a two-dimensional fluid model for proteins. The protein molecules have been modeled as two-dimensional convex and soft particles. The Lennard-Jones potential for circular particles and Kihara (12,6) potential for elliptical particles with hard core have been used to model pairwise intermolecular interactions. The equation of state of the fluid model has been derived using Weeks-Chandler-Andersen decomposition and it involves three parameters, an attraction, a repulsion, and a size parameter, which depend on the shape and core size of the molecules. For validation of the model, a two-dimensional molecular dynamics simulation has been performed. Finally, the model has been applied to study the adsorption of proteins on a flat membrane. In comparison with the existing model of hard and convex particles for protein adsorption, our model predicts a higher packing fraction for the adsorption equilibria. Although the present work is based on Lennard-Jones-type interaction, it can be extended for other specific soft interactions between convex molecules. Thus the model has general applicability for any other two-dimensional adsorption systems of molecules with soft interaction.
Collapse
Affiliation(s)
- Paritosh Mahata
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sovan Lal Das
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
25
|
Ramakrishnan N, Sunil Kumar PB, Radhakrishnan R. Mesoscale computational studies of membrane bilayer remodeling by curvature-inducing proteins. PHYSICS REPORTS 2014; 543:1-60. [PMID: 25484487 PMCID: PMC4251917 DOI: 10.1016/j.physrep.2014.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biological membranes constitute boundaries of cells and cell organelles. These membranes are soft fluid interfaces whose thermodynamic states are dictated by bending moduli, induced curvature fields, and thermal fluctuations. Recently, there has been a flood of experimental evidence highlighting active roles for these structures in many cellular processes ranging from trafficking of cargo to cell motility. It is believed that the local membrane curvature, which is continuously altered due to its interactions with myriad proteins and other macromolecules attached to its surface, holds the key to the emergent functionality in these cellular processes. Mechanisms at the atomic scale are dictated by protein-lipid interaction strength, lipid composition, lipid distribution in the vicinity of the protein, shape and amino acid composition of the protein, and its amino acid contents. The specificity of molecular interactions together with the cooperativity of multiple proteins induce and stabilize complex membrane shapes at the mesoscale. These shapes span a wide spectrum ranging from the spherical plasma membrane to the complex cisternae of the Golgi apparatus. Mapping the relation between the protein-induced deformations at the molecular scale and the resulting mesoscale morphologies is key to bridging cellular experiments across the various length scales. In this review, we focus on the theoretical and computational methods used to understand the phenomenology underlying protein-driven membrane remodeling. Interactions at the molecular scale can be computationally probed by all atom and coarse grained molecular dynamics (MD, CGMD), as well as dissipative particle dynamics (DPD) simulations, which we only describe in passing. We choose to focus on several continuum approaches extending the Canham - Helfrich elastic energy model for membranes to include the effect of curvature-inducing proteins and explore the conformational phase space of such systems. In this description, the protein is expressed in the form of a spontaneous curvature field. The approaches include field theoretical methods limited to the small deformation regime, triangulated surfaces and particle-based computational models to investigate the large-deformation regimes observed in the natural state of many biological membranes. Applications of these methods to understand the properties of biological membranes in homogeneous and inhomogeneous environments of proteins, whose underlying curvature fields are either isotropic or anisotropic, are discussed. The diversity in the curvature fields elicits a rich variety of morphological states, including tubes, discs, branched tubes, and caveola. Mapping the thermodynamic stability of these states as a function of tuning parameters such as concentration and strength of curvature induction of the proteins is discussed. The relative stabilities of these self-organized shapes are examined through free-energy calculations. The suite of methods discussed here can be tailored to applications in specific cellular settings such as endocytosis during cargo trafficking and tubulation of filopodial structures in migrating cells, which makes these methods a powerful complement to experimental studies.
Collapse
Affiliation(s)
- N. Ramakrishnan
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104
| | - P. B. Sunil Kumar
- Department of Physics, Indian Institute of Technology Madras, Chennai, India - 600036
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA-19104
| |
Collapse
|
26
|
Tourdot RW, Ramakrishnan N, Radhakrishnan R. Defining the free-energy landscape of curvature-inducing proteins on membrane bilayers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:022717. [PMID: 25215768 PMCID: PMC4336182 DOI: 10.1103/physreve.90.022717] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Indexed: 05/08/2023]
Abstract
Curvature-sensing and curvature-remodeling proteins, such as Amphiphysin, Epsin, and Exo70, are known to reshape cell membranes, and this remodeling event is essential for key biophysical processes such as tubulation, exocytosis, and endocytosis. Curvature-inducing proteins can act as curvature sensors; they aggregate to membrane regions matching their intrinsic curvature; as well as induce curvature in cell membranes to stabilize emergent high curvature, nonspherical, structures such as tubules, discs, and caveolae. A definitive understanding of the interplay between protein recruitment and migration, the evolution of membrane curvature, and membrane morphological transitions is emerging but remains incomplete. Here, within a continuum framework and using the machinery of Monte Carlo simulations, we introduce and compare three free-energy methods to delineate the free-energy landscape of curvature-inducing proteins on bilayer membranes. We demonstrate the utility of the Widom test particle (or field) insertion methodology in computing the excess chemical potentials associated with curvature-inducing proteins on the membrane-in particular, we use this method to track the onset of morphological transitions in the membrane at elevated protein densities. We validate this approach by comparing the results from the Widom method with those of thermodynamic integration and Bennett acceptance ratio methods. Furthermore, the predictions from the Widom method have been tested against analytical calculations of the excess chemical potential at infinite dilution. Our results are useful in precisely quantifying the free-energy landscape, and also in determining the phase boundaries associated with curvature-induction, curvature-sensing, and morphological transitions. This approach can be extended to studies exploring the role of thermal fluctuations and other external (control) variables, such as membrane excess area, in shaping curvature-mediated interactions on bilayer membranes.
Collapse
Affiliation(s)
- Richard W. Tourdot
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - N. Ramakrishnan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
27
|
Bassereau P, Sorre B, Lévy A. Bending lipid membranes: experiments after W. Helfrich's model. Adv Colloid Interface Sci 2014; 208:47-57. [PMID: 24630341 DOI: 10.1016/j.cis.2014.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Current description of biomembrane mechanics originates for a large part from W. Helfrich's model. Based on his continuum theory, many experiments have been performed in the past four decades on simplified membranes in order to characterize the mechanical properties of lipid membranes and the contribution of polymers or proteins. The long-term goal was to develop a better understanding of the mechanical properties of cell membranes. In this paper, we will review representative experimental approaches that were developed during this period and the main results that were obtained.
Collapse
|
28
|
Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes GES, Bassereau P. Membrane shape modulates transmembrane protein distribution. Dev Cell 2014; 28:212-8. [PMID: 24480645 DOI: 10.1016/j.devcel.2013.12.012] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/22/2013] [Accepted: 12/19/2013] [Indexed: 01/01/2023]
Abstract
Although membrane shape varies greatly throughout the cell, the contribution of membrane curvature to transmembrane protein targeting is unknown because of the numerous sorting mechanisms that take place concurrently in cells. To isolate the effect of membrane shape, we used cell-sized giant unilamellar vesicles (GUVs) containing either the potassium channel KvAP or the water channel AQP0 to form membrane nanotubes with controlled radii. Whereas the AQP0 concentrations in flat and curved membranes were indistinguishable, KvAP was enriched in the tubes, with greater enrichment in more highly curved membranes. Fluorescence recovery after photobleaching measurements showed that both proteins could freely diffuse through the neck between the tube and GUV, and the effect of each protein on membrane shape and stiffness was characterized using a thermodynamic sorting model. This study establishes the importance of membrane shape for targeting transmembrane proteins and provides a method for determining the effective shape and flexibility of membrane proteins.
Collapse
Affiliation(s)
- Sophie Aimon
- Centre de Recherche, Institut Curie, Paris F-75248, France; CNRS, PhysicoChimie Curie, UMR168, Paris F-75248, France; Université Pierre et Marie Curie, Paris F-75252, France; Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, CNRS/Université Paris-Diderot, UMR 7057, 75205 Paris Cedex 13, France
| | - Alice Berthaud
- Centre de Recherche, Institut Curie, Paris F-75248, France; CNRS, PhysicoChimie Curie, UMR168, Paris F-75248, France; Université Pierre et Marie Curie, Paris F-75252, France; CelTisPhyBio Labex, Paris Sciences et Lettres, 75005 Paris, France
| | - Mathieu Pinot
- Centre de Recherche, Institut Curie, Paris F-75248, France; CelTisPhyBio Labex, Paris Sciences et Lettres, 75005 Paris, France; CNRS, Subcellular Structure and Cellular Dynamics, UMR144, Paris F-75248, France
| | - Gilman E S Toombes
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3017, USA.
| | - Patricia Bassereau
- Centre de Recherche, Institut Curie, Paris F-75248, France; CNRS, PhysicoChimie Curie, UMR168, Paris F-75248, France; Université Pierre et Marie Curie, Paris F-75252, France; CelTisPhyBio Labex, Paris Sciences et Lettres, 75005 Paris, France
| |
Collapse
|
29
|
Johannes L, Wunder C, Bassereau P. Bending "on the rocks"--a cocktail of biophysical modules to build endocytic pathways. Cold Spring Harb Perspect Biol 2014; 6:6/1/a016741. [PMID: 24384570 DOI: 10.1101/cshperspect.a016741] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous biological processes rely on endocytosis. The construction of endocytic pits is achieved by a bewildering complexity of biochemical factors that function in clathrin-dependent and -independent pathways. In this review, we argue that this complexity can be conceptualized by a deceptively small number of physical principles that fall into two broad categories: passive mechanisms, such as asymmetric transbilayer stress, scaffolding, line tension, and crowding, and active mechanisms driven by mechanochemical enzymes and/or cytoskeleton. We illustrate how the functional identity of biochemical modules depends on system parameters such as local protein density on membranes, thus explaining some of the controversy in the field. Different modules frequently operate in parallel in the same step and often are shared by apparently divergent uptake processes. The emergence of a novel endocytic classification system may thus be envisioned in which functional modules are the elementary bricks.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie-Centre de Recherche, Traffic, Signaling and Delivery Group, 75248 Paris Cedex 05, France
| | | | | |
Collapse
|
30
|
Ramesh P, Baroji YF, Reihani SNS, Stamou D, Oddershede LB, Bendix PM. FBAR syndapin 1 recognizes and stabilizes highly curved tubular membranes in a concentration dependent manner. Sci Rep 2013; 3:1565. [PMID: 23535634 PMCID: PMC3610093 DOI: 10.1038/srep01565] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/14/2013] [Indexed: 12/21/2022] Open
Abstract
Syndapin 1 FBAR, a member of the Bin-amphiphysin-Rvs (BAR) domain protein family, is known to induce membrane curvature and is an essential component in biological processes like endocytosis and formation and growth of neurites. We quantify the curvature sensing of FBAR on reconstituted porcine brain lipid vesicles and show that it senses membrane curvature at low density whereas it induces and reinforces tube stiffness at higher density. FBAR strongly up-concentrates on the high curvature tubes pulled out of Giant Unilamellar lipid Vesicles (GUVs), this sorting behavior is strongly amplified at low protein densities. Interestingly, FBAR from syndapin 1 has a large affinity for tubular membranes with curvatures larger than its own intrinsic concave curvature. Finally, we studied the effect of FBAR on membrane relaxation kinetics with high temporal resolution and found that the protein increases relaxation time of the tube holding force in a density-dependent fashion.
Collapse
Affiliation(s)
- Pradeep Ramesh
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
31
|
Scheve CS, Gonzales PA, Momin N, Stachowiak JC. Steric pressure between membrane-bound proteins opposes lipid phase separation. J Am Chem Soc 2013; 135:1185-8. [PMID: 23321000 DOI: 10.1021/ja3099867] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular membranes are densely crowded with a diverse population of integral and membrane-associated proteins. In this complex environment, lipid rafts, which are phase-separated membrane domains enriched in cholesterol and saturated lipids, are thought to organize the membrane surface. Specifically, rafts may help to concentrate proteins and lipids locally, enabling cellular processes such as assembly of caveolae, budding of enveloped viruses, and sorting of lipids and proteins in the Golgi. However, the ability of rafts to concentrate protein species has not been quantified experimentally. Here we show that when membrane-bound proteins become densely crowded within liquid-ordered membrane regions, steric pressure arising from collisions between proteins can destabilize lipid phase separations, resulting in a homogeneous distribution of proteins and lipids over the membrane surface. Using a reconstituted system of lipid vesicles and recombinant proteins, we demonstrate that protein-protein steric pressure creates an energetic barrier to the stability of phase-separated membrane domains that increases in significance as the molecular weight of the proteins increases. Comparison with a simple analytical model reveals that domains are destabilized when the steric pressure exceeds the approximate enthalpy of membrane mixing. These results suggest that a subtle balance of free energies governs the stability of phase-separated cellular membranes, providing a new perspective on the role of lipid rafts as concentrators of membrane proteins.
Collapse
Affiliation(s)
- Christine S Scheve
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|